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Preface

In recent years, fractional-order partial differential equation models have been

proposed and investigated in many research fields, such as fluid mechanics,

mechanics of materials, biology, plasma physics, finance, chemistry and so

on. Fractional-order differential equations, such as fractional Fokker-Plank

equation, fractional nonlinear Schrödinger equation, fractional Navier-Stokes

equation, fractional quasi-geostrophic equation, fractional Ginzburg-Landau

equation and fractional Landau-Lifshitz equation have clear physical back-

ground and opened up related new research fields. In fact, some mathemati-

cians (such as L’Hôpital, Leibniz, Euler) began to consider how to define

the fractional derivative as early as the end of the 17th century. In 1870s,

Riemann and Liouville obtained the definition of fractional derivative for a

given function by extending the Cauchy integral formula,

0D
−v
t f(t) =

1

Γ(v)

∫ t

0

(t− τ)v−1f(τ)dτ

where Re v > 0. Nowadays, the commonly used fractional derivative defi-

nitions include Riemann-Liouville definition, Caputo definition, Grünwald-

Letnikov derivative and Weyl definition. Kohn and Nirenberg began the

research on pseudo-differential operator in 1960s.

In recent years, we collected and summarized the researches on nonlin-

ear fractional differential equations and their numerical methods for specific

physical problems appearing in the fields of atmosphere-ocean dynamics and

plasma physics, and studied the mathematical theory of these problems. This

book introduces the latest research achievements in these areas, as well as

some researches of the authors and our collaborators. To give a systematic

understanding of fractional problems to our readers, here we also briefly in-

troduce some basic concepts of the fractional calculus, algorithms and their

basic properties. In particular, we give brief introductions of numerical meth-

ods for the fractional differential equations. The aim of this book is to give a

basic understanding of recent developments in this research field for readers

who are interested in this topic. Our expectation is that the readers, who

want to engage in this field, can access to the frontier of this study based on

reading this book, and thus promote a more vigorous development.

v
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vi Preface

Due to the time and knowledge limited, errors and inadequacies of the

book are inevitable. Any suggestions and comments are welcome. At last, we

express our heartful thanks to the seminar members of Institute of Applied

Physics and Computational Mathematics. We also thank Professor W. Chen

and his team at Hohai University who translated the Chinese version into

English of the first version, which greatly reduced our burden of translation.

We also express our gratitude to all those unnamed here.

December 1, 2010
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Chapter 1

Physics Background

Fractional differential equations have profound physical background and rich

theory, and are particularly noticeable in recent years. They are equations

containing fractional derivative or fractional integrals, which have received

great interest across disciplines such as physics, biology and chemistry. More

specifically, they are widely used in dynamical systems with chaotic dynami-

cal behavior, quasi-chaotic dynamical systems, the dynamics of complex ma-

terial or porous media and random walks with memory. The purpose of

this chapter is to introduce the origin of the fractional derivative, then in-

troduce some physical background of fractional differential equations. Due

to space limitations, this chapter only gives some brief introductions, but

these are sufficient to show that the fractional differential equations, includ-

ing fractional partial differential equations and fractional integral equations,

are widely employed in various applied fields. However, the mathematical

theory and the numerical algorithms of fractional differential equations need

to be further studied. Interested readers can refer to the monographs and

literature.

1.1 Origin of the fractional derivative

The concepts of integer order derivative and integral are well known. The

derivative dny/dxn describes the changes of variable y with respect to variable

x, and has a profound physical background. The present problem is how to

generalize n into a fraction, even a complex number.

This long-standing problem can be dated back to the letter from L’Hôpital

to Leibniz in 1695, in which it is asked what the derivative dny/dxn is when

n = 1/2. In the same year, the derivative of general order was mentioned in

the letter from Leibniz to J. Bernoulli. The problem was also considered by

Euler(1730), Lagrange(1849) et al, and gave some relevant insights. In 1812,

by using the concept of integral, Laplace provided a definition of fractional

1
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2 Chapter 1 Physics Background

derivative. When y = xm, employing the gamma function

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n, m � n, (1.1.1)

was derived by Lacroix, which gives

d1/2y

dx1/2
=

2
√
x√
π

. (1.1.2)

When y = x and n =
1

2
. This is consistent with the so-called Riemann-

Liouville fractional derivative.

Soon later, Fourier (1822) gave the definition of fractional derivative

through the so-called Fourier transform. Noting that the function f(x) can

be expressed as a double integral

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(y) cos ξ(x− y)dξdy,

and
dn

dxn
cos ξ(x− y) = ξn cos

(
ξ(x − y) + 1

2
nπ

)
,

replacing n with a general ν, and calculating the derivative under the sign

of integration, one then generalizes the integer order derivative into the frac-

tional derivative

dν

dxν
f(x) =

1

2π

∫ ∞

−∞

∫ ∞

−∞

f(y)ξν cos

(
ξ(x− y) + 1

2
νπ

)
dξdy.

Consider the Abel integral equation

k =

∫ x

0

(x − t)−1/2f(t)dt, (1.1.3)

where f is to be determined. The right hand side defines a definite integral

of fractional integral with order 1/2. In Abel’s research on the above inte-

gral equation, its right end was written as
√
π

d−1/2

dx−1/2
f(x), then

d1/2

dx1/2
k =

√
πf(x), which indicates that the fractional derivative of a constant is no

longer zero.

In 1930s, Liouville, possibly inspired by Fourier and Abel, made a series

of work in the field of fractional derivative, and successfully applied them

into the potential theory. Since

Dmeax = ameax,
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1.1 Origin of the fractional derivative 3

the order of the derivative was generalized into an arbitrary order by Liouville

(ν can be a rational number, irrational number, even a complex number)

Dνeax = aνeax. (1.1.4)

If the function f can be expanded into an infinite series

f(x) =
∞∑

n=0

cne
anx, Re an > 0, (1.1.5)

then its fractional derivative can be obtained as

Dνf(x) =
∞∑

n=0

cna
ν
ne

anx. (1.1.6)

Which method can be employed to obtain the fractional derivative if f can

not be written in the form of equation (1.1.5)? Maybe Liouville had noticed

this problem, and he gave another expression by using the Gamma function.

In order to take advantage of the basic assumptions (1.1.4), noting that

I =

∫ ∞

0

ua−1e−xu = x−aΓ(a),

one then obtains

Dνx−a =
(−1)ν
Γ(a)

∫ ∞

0

ua+ν−1e−xudu

=
(−1)νΓ(a+ ν)

Γ(a)
x−a−ν , a > 0. (1.1.7)

So far, we have introduced two different definitions of fractional deriva-

tives. One is the definition (1.1.1) with respect to xa(a > 0) given by

Lacroix, the other one is the definition (1.1.7) with regard to x−a(a > 0)

given by Liouville. It can be seen that, Lacroix’s definition shows that the

fractional derivative of a constant x0 is no longer zero. For instance, when

m = 0, n =
1

2
,

d1/2

dx1/2
x0 =

Γ(1)

Γ(1/2)
x−1/2 =

1√
πx
. (1.1.8)

However, in Liouville’s definition, since Γ(0) =∞, the fractional derivative of

a constant is zero (despite Liouville’s assumption a > 0). As far as which is

the correct form of fractional derivative between the two definitions, Willian

Center pointed out that the whole problem can be attributed to how to
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determine dνx0/dxν , and as De Morgan pointed out (1840), both of them

may very possibly be parts of a more general system.

The present Riemann-Liouville’s definition (R-L) of fractional derivative

may be derived from N. Ya Sonin (1869). His starting point is the Cauchy

integration formula, from which the nth derivative of f can be defined as

Dnf(z) =
n!

2πi

∫
C

f(ξ)

(ξ − z)n+1
dξ. (1.1.9)

Using contour integration, the following generalization can be obtained (in

which, Laurent’s work contributed!)

cD
−ν
x f(x) =

1

Γ(ν)

∫ x

c

(x− t)ν−1f(t)dt, Re ν > 0, (1.1.10)

where the constant c = 0 is commonly used, which is known to be the

Riemann-Liouville fractional derivative, i.e.,

0D
−ν
x f(x) =

1

Γ(ν)

∫ x

0

(x− t)ν−1f(t)dt, Re ν > 0. (1.1.11)

In order to make the integral convergent, a sufficient condition is f(1/x) =

O(x1−ε), ε > 0. An integrable function with this property is often referred

to as belonging to the function of the Riemann class. When c = −∞,

−∞D
−ν
x f(x) =

1

Γ(ν)

∫ x

−∞

(x− t)ν−1f(t)dt, Re ν > 0. (1.1.12)

In order to make the integral convergent, a sufficient condition is when x→
∞, f(−x) = O(x−ν−ε)(ε > 0). An integrable function with this property

is often referred to as belonging to the function of the Liouville class. This

integral also satisfies the following exponential rule

cD
−μ
x cD

−ν
x f(x) = cD

−μ−ν
x f(x).

When f(x) = xa(a > −1), ν > 0, from the equation (1.1.11), it is easy

to get

0D
−ν
x xa =

Γ(a+ 1)

Γ(a+ ν + 1)
xa+ν .

By using the chain law, has D[D−νf(x)] = D1−νf(x), then one can obtain

0D
ν
xx

a =
Γ(a+ 1)

Γ(a− ν + 1)
xa−ν , 0 < ν < 1, a > −1.

Specially, when f(x) = x, ν =
1

2
, Lacroix’s equation (1.1.2) can be recovered;

when f(x) = x0 = 1, ν =
1

2
, then the equation (1.1.8) can be also recovered.
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1.2 Anomalous diffusion and fractional advection-diffusion 5

In addition, the Weyl’s definition of fractional integral is frequently used

now

xW
−ν
∞ f(x) =

1

Γ(ν)

∫ ∞

x

(t− x)ν−1f(t)dt, Re ν > 0. (1.1.13)

Using the R-L’s definition of fractional derivative (1.1.12), and taking the

transform t = −τ , one obtains

−∞D
−ν
x f(x) = − 1

Γ(ν)

∫ −x

∞

(x + τ)ν−1f(−τ)dτ.

Then taking the transform x = −ξ, one derives the following equation

−∞D
−ν
−ξ f(−ξ) =

1

Γ(ν)

∫ ∞

ξ

(τ − ξ)ν−1f(−τ)dτ.

Let f(−ξ) = g(ξ), then the right end of Weyl’s definition (1.1.13) can be

recovered.

1.2 Anomalous diffusion and fractional advection-

diffusion

Anomalous diffusion phenomena are ubiquitous in the natural sciences and

social sciences. In fact, many complex dynamical systems often contain

anomalous diffusion. Fractional kinetic equations are usually an effective

method to describe these complex systems, including diffusion type, diffusive

convection type and Fokker-Planck type of fractional differential equations.

Complex systems typically have the following characteristics. First, the sys-

tem typically contains a large diversity of elementary units. Secondly, strong

interactions exist among these basic units. Thirdly, the anomalous evolution

is non-predictable as time evolves. In general, the time evolution of, and

within, such systems deviates from the corresponding standard laws. These

systems now exist in a large number of practical problems across disciplines

such as physics, chemistry, engineering, geology, biology, economics, meteo-

rology, and atmospheric. We do not plan to give a systematic introduction

of anomalous diffusion or fractional advection diffusion, but just introduce

some fractional differential equations to describe complex systems. We refer

the reader to some monographs mentioned below.

In the classical exponential Debye mode, the relaxation of the system

usually satisfies the relation Φ(t) = Φ0 exp(−t/τ). However, in complex sys-

tems it often satisfies the exponential Kohlrausch-Williams-Watts relation

Φ(t) = Φ0 exp(−(t/τ)α) for 0 < α < 1, or the following asymptotic power
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law Φ(t) = Φ0(1 + t/τ)−n for n > 0. In addition, the conversion from the

exponential to power-law relationship can be observed in practical systems.

Similarly, in many complex systems, the diffusion process no longer follows

the Gauss statistics. Then, the Fick second law is not sufficient to describe

the transport behavior. In the classical Brownian motion, linear dependence

of the time-mean-square displacement can be observed

< x2(t) >∼ K1t. (1.2.1)

But in anomalous diffusion, the mean-square displacement is no longer a lin-

ear function of time. The power-law dependence is common, i.e., < x2(t) >∼
Kαt

α. Based on the index α of the anomalous diffusion, different anomalous

diffusion types can be defined. When α = 1, it is the normal diffusion pro-

cess. When 0 < α < 1, it is sub-diffusion process or dispersive, slow diffusion

process with the anomalous diffusion index. When α > 1, it is ultra-diffusion

process or increased, fast diffusion process.

There have been extensive research results on anomalous diffusion process

with or without an external force field situation, including:

(1) fractional Brownian motion, which can be dated to Benôıt Mandelbrot

[153, 154];

(2) continuous-time random walk model;

(3) generalized diffusion equation [28];

(4) Langevin equation;

(5) generalized Langevin equation;

...
Among them, (2) and (5) appropriately depict the memory behavior of the

system, and the specific form of the probability distribution function [162],

however, it is insufficient to directly consider the role of the external force

field, boundary value problem or the dynamics in the phase space.

1.2.1 The random walk and fractional equations

The following is a brief description of the random walk and the fractional

diffusion equation. Considering the one-dimensional random walk, the test

particle is assumed to jump randomly to one of its nearest neighbour sites in

discrete time steps of span Δt, with lattice constant Δx. Such a system can

be described by the following equation

Wj(t+Δt) =
1

2
Wj−1(t) +

1

2
Wj+1(t),

where Wj(t) represents the probability of the particle located at site j, at

time t, the coefficient
1

2
means the walks of the particle are isotropic, i.e. the
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probability of jumping to left or right is
1

2
. Consider the continuum limit

Δt→ 0, Δx→ 0, and by the Talyor series expansion, we can get

Wj(t+Δt) =Wj(t) + Δt
∂Wj

∂t
+O((Δt)2),

Wj±1(t) =W (x, t)±Δx
∂W

∂x
+

(Δx)2

2

∂2W

∂x2
+O((Δx)3),

which leads to the diffusion equation

∂W

∂t
= K1

∂2

∂x2
W (x, t), K1 = lim

Δx→0,Δt→0

(Δx)2

2Δt
<∞. (1.2.2)

Based on simple knowledge of partial differential equations, the solution of

the equation (1.2.2) can be expressed as

W (x, t) =
1√

4πK1t
exp

(
− x2

4K1t

)
. (1.2.3)

The function (1.2.3) is often called the propagator, i.e. the solution of the

equation (1.2.2) with initial data W0(x) = δ(x). The solution of equation

(1.2.2) satisfies the exponential decay law

W (k, t) = exp(−K1k
2t), (1.2.4)

for individual mode in Fourier phase space.

For anomalous diffusion, we first consider the continuous-time random

walk model. It is mainly based on the idea: for a given jump, the jump length

and waiting time between two adjacent jumps are determined by a probability

density function ψ(x, t). The respective probability density functions of the

jump length and waiting time are

λ(x) =

∫ ∞

0

ψ(x, t)dt, w(t) =

∫ ∞

−∞

ψ(x, t)dx. (1.2.5)

Here λ(x)dx can be understood as the probability of the jump length in the

interval (x, x + dx), and w(t)dt is the probability of a jump waiting time

in time slice (t, t + dt). It is easy to see that if the jump time and jump

length are independent, then ψ(x, t) = w(t)λ(x). Different continuous-time

random walk processes can be determined by the converging or diverging

characteristics of the waiting time T =

∫ ∞

0

w(t)tdt, and the variance of the

jump length Σ2 =

∫ ∞

−∞

λ(x)x2dx. Now, the following equation can depict a

continuous-time random walk model

η(x, t) =

∫ ∞

−∞

dx′
∫ ∞

0

dt′η(x′, t′)ψ(x− x′, t− t′) + δ(x)δ(t), (1.2.6)
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which links the probability density function η(x, t) of the particle arrived at

the site x at time t and the event of the particle arrived at the site x′ at time

t′. The second item on the right hand side represents the initial condition.

Thus, the probability density function W (x, t) of the particle at the site x at

time t can be expressed as

W (x, t) =

∫ t

0

dt′η(x, t′)Ψ(t− t′), Ψ(t) = 1−
∫ t

0

dt′w(t′). (1.2.7)

The items of the equation (1.2.7) have the meanings: η(x, t′) means the

probability density function of the particle at the site x at time t′, and

Ψ(t − t′) is the probability density function of the particle which does not

leave before time t, thereby W (x, t) is the probability density function of the

particle at the site x at time t. By using the Fourier transforms and Laplace

transform, W (x, t) satisfies the following algebraic relation [126]

W (k, u) =
1− w(u)
u

W0(k)

1− ψ(k, u) , (1.2.8)

where W0(k) represents the Fourier transform of the initial value W0(x).

When w(t) and λ(t) are independent, i.e. ψ(x, t) = w(t)λ(x), and T

and Σ2 are finite, the continuous-time random walk model is asymptoti-

cally equivalent to the Brownian motion. Consider the probability den-

sity function of the Poisson waiting time w(t) = τ−1 exp(−t/τ), and T =

τ , and the Gauss probability density function of the jump length λ(x) =

(4πσ2)−1/2 exp(−x2/(4σ2)), Σ2 = 2σ2. The Laplace transforms and the

Fourier transform have the following forms, respectively w(u) ∼ 1−uτ+O(τ2)
and λ(k) ∼ 1− σ2k2 +O(k4).

Consider a special case: fractional time random walk. This will lead to

the fractional diffusion equation to describe the sub-diffusion process. In this

model, the characteristic waiting time T is divergent and the variance Σ2 of

the jump length is finite [196]. Introduce the probability density function

of the long-tail waiting time, whose asymptotic behavior and the Laplace

transform satisfy, respectively, w(t) ∼ Aα(τ/t)
1+α and w(u) ∼ 1 − (uτ)α,

where the specific form of w(t) is insignificant. Taking into account the

above mentioned probability density function λ(x) of Gauss jump length, we

can obtain the probability density function

W (k, u) =
[W0(k)/u]

1 +Kαu−αk2
. (1.2.9)

Using the Laplace transform of the fractional integral [16, 69, 165, 175, 195]

L {0D−p
t W (x, t)} = u−pW (x, u), p � 0,
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and noticing L {1} = 1/u, one obtains the following fractional integral equa-

tion from the equation (1.2.9),

W (x, t)−W0(x) = 0D
−α
t Kα

∂2

∂x2
W (x, t). (1.2.10)

Introducing the operator
∂

∂t
of the time derivative, then we can get the

fractional derivative equation

∂W

∂t
= 0D

1−α
t Kα

∂2

∂x2
W (x, t), (1.2.11)

where the Riemann-Liouville operator 0D
1−α
t =

∂

∂t
0D

−α
t (0 < α < 1) is

defined as (please refer to the next chapter)

0D
1−α
t W (x, t) =

1

Γ(α)

∂

∂t

∫ t

0

W (x, t′)

(t− t′)1−α
dt′. (1.2.12)

Since the integral kernek M(t) ∝ tα−1 in the definition, the sub-diffusion

process defined in the equation (1.2.11) does not have the Markov properties.

In fact, it can be shown that [162]

< x2(t) >=
2Kα

Γ(1 + α)
tα.

The equation (1.2.11) can also be transformed into its equivalent form

0D
α
t W − t−α

Γ(1− α)
W0(x) = Kα

∂2

∂x2
W (x, t),

where, unlike the normal diffusion process, the initial value W0(x) no longer

has the exponential decay property, but the power law decay instead [17]

(compare with equation (1.2.4)).

Consider another special form: Levy flights. The characteristic waiting

time T is finite and Σ2 is divergent. This model possesses a Poisson waiting

time and a Lévy distribution for the jump length, i.e.,

λ(k) = exp(−σµ|k|µ) ∼ 1− σµ|k|µ, 1 < µ < 2, (1.2.13)

which asymptotically satisfies λ(x) ∼ Aµσ
−µ|x|−1−µ for |x| ≫ σ. Since

T is finite, this process has the Markov property. Substituting the asymp-

totic expansion of λ(k) in equation (1.2.13) into the equation (1.2.8) leads to

W (k, u) = 1/(u+Kµ|k|µ). By Fourier and Laplace inverse transform, the

following fractional derivative equation can be obtained

∂W

∂t
= Kµ

−∞D
µ
xW (x, t), Kµ ≡ σµ/τ. (1.2.14)
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Here −∞D
μ
x is the Weyl operator (please refer to the next chapter),

which is equivalent to the Riesz operator ∇
μ in the one-dimensional case.

Use the Fourier transform, the propagator can be expressed as W (k, t) =

exp(−Kμt|k|μ). If both of Σ2 and T are divergent, then we can get the

following fractional derivative equation [162]

∂W

∂t
= 0D

1−α
t Kμ

α∇
μW (x, t), Kμ

α ≡ σμ/τα. (1.2.15)

1.2.2 Fractional advection-diffusion equation

Here, we consider the fractional advection-diffusion equation. In a Brownian

motion, when a system has an additional velocity field v or under the influ-

ence of a constant external force field, it can be described by the following

advection-diffusion equation

∂W

∂t
+ v
∂W

∂x
= K1

∂2

∂x2
W (x, t). (1.2.16)

The equation will no longer well describe the anomalous diffusion. Some

common generalizations are considered below.

First, note that the equation (1.2.16) is Galilean invariance, i.e. the prob-

lem is invariant under the transform x → x − vt. Assume, when consid-

ered under the moving frame (reference frame) with homogeneous velocity

field v, the jump function of the tested particle in random walk is ψ(x, t),

then the corresponding jump function of the particle to be tested under the

laboratory frame is φ(x, t) = ψ(x − vt, t). Using the corresponding Fourier-

Laplace transform, we get φ(k, u) = ψ(k, u+ ivk). When T is divergent and

Σ2 is finite, the propagator can be obtained from the equation (1.2.8) that

W (k, u) = 1/(u+ ivk +Kαk
2u1−α). Then the fractional advection-diffusion

equation can be deduced (compare with the equation (1.2.11))

∂W

∂t
+ v
∂W

∂x
= 0D

1−α
t Kα

∂2

∂x2
W (x, t), (1.2.17)

whose solution can be obtained through the Galilean transform of the equa-

tion (1.2.11), i.e.

W (x, t) =Wv=0(x− vt, t).
Some moment statistics of the equation (1.2.17) are

< x(t) >= vt, < x2(t) >=
2Kα

Γ(1 + α)
tα + v2t2,

< (Δx(t))2 >=
2Kα

Γ(1 + α)
tα.

(1.2.18)
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It can be seen that, the mean square displacement< (Δx(t))2 > only contains

the distribution information of the molecule. The first moment < x(t) >

explains the parallel translation along the velocity field v. This Galilean-

invariant sub-diffusion can depict the motion of the particles in the flow

field, where the liquid itself has sub-diffusion phenomenon.

If the velocity field v = v(x) depends on the space variable [49-51], one

assumes φ(x, t;x0) = ψ(x − τav(x0), t), then we can deduce the following

fractional differential equation

∂W

∂t
= 0D

1−α
t

[
−Aα

∂

∂x
v(x) +Kα

∂2

∂x2

]
W (x, t). (1.2.19)

For a homogeneous velocity field, the following fractional differential equation

can be obtained:

∂W

∂t
= 0D

1−α
t

[
−Aα

∂

∂x
v +Kα

∂2

∂x2

]
W (x, t). (1.2.20)

It can be proved that the solution of the fractional equation does not satisfy

the Galilean transform of the form W (x − v∗tα, t). Some statistics of the

equation are

< x(t) >=
Aαvt

α

Γ(1 + α)
, < x2(t) >=

2A2
αv

2t2α

Γ(1 + 2α)
+

2Kαt
α

Γ(1 + α)
, (1.2.21)

in which case, the first moment increases sub-linearly.

For the Lévy flight under an external velocity field v, i.e. T is finite and

Σ2 is divergent, the following fractional differential equation can be deduced

∂W

∂t
+ v
∂W

∂x
= Kμ

∇
μW (x, t), (1.2.22)

which can be used to describe the Markov process with divergent mean square

displacement.

1.2.3 Fractional Fokker-Planck equation

The Fokker-Planck equation (FPE) can be used to describe the classical

diffusion process under an external force field [84, 162, 178, 191, 217]:

∂W

∂t
=

[
∂

∂x

V ′(x)

mη1
+K1

∂2

∂x2

]
W (x, t), (1.2.23)

wherem is the mass of the tested particle, η1 is the friction coefficient between

the tested particle and the environment, the external force can be expressed

as F (x) = −dV

dx
using the external field. Its properties can be found in
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related literature. To compare it with the following fractional Fokker-Planck

equation (FFPE), several important basic properties are given below.

(1) When the external force does not exist, the equation (1.2.23) degener-

ates into Fick’s second law, and hence the mean square displacement satisfies

the linear relation described in equation (1.2.1);

(2) Single-mode relaxation decay with time exponent:

Tn(t) = exp(−λn,1t), (1.2.24)

where, λn,1 is the eigenvalue of the Fokker-Planck operatorLFP =
∂

∂x

V ′(x)

mη1
+

K1
∂2

∂x2
;

(3) The steady state solution Wst(x) = limt→∞W (x, t) is given by the

Gibbs-Boltzmann distribution

Wst = N exp(−βV (x)), (1.2.25)

where N is the regularization constant, β = (kBT )
−1 is the Boltzmann factor;

(4) FPE satisfies the Einstein-Stokes-Smoluchowski relationship.

K1 = kBT/mη1;

(5) The second Einstein relationship is established.

< x(t) >F=
FK1

kBT
t, (1.2.26)

which links the first moment under the constant external force F and the

second moment < x2(t) >0= 2K1t without external force.

The FPE equation and its applications have been extensively studied.

To describe the anomalous diffusion under an external field, the generalized

FFPE is introduced [17, 159, 160, 162]

∂W

∂t
=0 D

1−α
t

[
∂

∂x

V ′(x)

mηα
+Kα

∂2

∂x2

]
W (x, t). (1.2.27)

This equation has the following properties.

(1) Without the external force field,

< x2(t) >0=
2Kα

Γ(1 + α)
tα,

which degenerates into the equation (1.2.11) when V = is a constant.
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(2) The single-mode relaxation is given by the Mittag-Leffler function

(compare with the equation (1.2.24)).

Using the method of separating variables, we let

Wn(x, t) = Tn(t)ϕn(x),

then the equation (1.2.27) can be decomposed into the following equations

dTn
dt

= −λn,α0D
1−α
t Tn(t), (1.2.28)

LFPϕn(x) = −λn,αϕn(x). (1.2.29)

When Tn(0) = 1, Tn(t) is given by the Mittag-Leffler function.

Tn(t) = Eα(−λn,αtα) =
∞∑
j=0

(−λn,αtα)j
Γ(1 + αj)

.

(3) The steady state solution is given by the Gibbs-Boltzmann distribu-

tion.

The right end of the equation (1.2.27) as follows

− 0D
1−α
t

∂S(x, t)

∂x
, S(x, t) =

[
− ∂
∂x

V ′(x)

mηα
−Kα

∂2

∂x2

]
W (x, t), (1.2.30)

where S(x, t) represents the probability current. In the case of the steady-

state solution, S(x, t) is a constant, thus

V ′(x)

mηα
Wst(x) +Kα

d

dx
Wst(x) = 0, (1.2.31)

whose solution is given by

Wst(x) = N exp(− V (x)

mηαKα
).

Similar to the classical case, Wst is given by the Boltzmann distribution.

(4) The generalized Einstein-Stokes-Smoluchowski relationship: Kα =

kBT/mηα.

(5) The second Einstein relationship still holds for FFPE.

< x(t) >F=
F

mηαΓ(1 + α)
tα =

FKα

kBTΓ(1 + α)
tα.

This relationship reduces to equation (1.2.26), since Γ(2) = 1.

Consider a special case V (x) =
1

2
mω2x2, the system depicts the motion
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of sub-diffusive harmonic restrained particles. Now, the equation (1.2.27) is

simplified as

∂W

∂t
= 0D

1−α
t

[
∂

∂x

ω2x

ηα
+Kα

∂2

∂x2

]
W (x, t).

By using the method of separating variables and the definition of the Hermite

polynomial [2], the solution of this equation can be obtained [159]

W =

√
mω2

2πkBT

∞∑
0

1

2nn!
Eα

(−nω2tα

ηα

)
Hn

(√
mωx′√
2kBT

)
Hn

( √
mωx√
2kBT

)
exp

(
−mω

2x2

2kBT

)
,

where, Hn’s are the Hermite polynomials. The steady state solution can be

expressed as

Wst(x) =

√
mω2

2πkBT
H0

(√
mωx′√
2kBT

)
H0

( √
mωx√
2kBT

)
exp

(
−mω

2x2

2kBT

)

=

√
mω2

2πkBT
exp

(
−mω

2x2

2kBT

)
,

which is the Gibbs-Boltzmann distribution, as expected.

Using the Laplace transform with the same initial valueW0(x) = δ(x−x′),
the solution of the equation (1.2.27) satisfies

Wα(x, u) =
ηα
η1
uα−1W1

(
x,
ηα
η1
uα
)
, 0 < α < 1, (1.2.32)

whereW1 andWα respectively represent the solutions of the equations (1.2.23)

and (1.2.27). This shows that under the Laplace transform, the sub-diffusion

system and the classical diffusion differ by a scale. Furthermore, Wα can be

expressed in terms of W1 through

Wα(x, t) =

∫ ∞

0

dsA(s, t)W1(x, s), (1.2.33)

where A(s, t) is given by the inverse Laplace transform

A(s, t) = L
−1

[
ηα

η1u1−α
exp

(
ηα
η1
uαs

)]
. (1.2.34)

If we consider the non-local jump process, i.e. assume that Σ2 is divergent,

then we can obtain the following FFPE [162]

∂W

∂t
= 0D

1−α
t

[
∂

∂x

V ′(x)

mηα
+Kμ

∇
μ

]
W (x, t). (1.2.35)
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When μ = 2, i.e. Σ2 is finite, the equation reduces to the sub-diffusive

FFPE(1.2.27). Considering the opposite case, i.e. T is finite and Σ2 is

divergent, one obtains similar to (1.2.35)

∂W

∂t
=

[
∂

∂x

V ′(x)

mη1
+Kμ

1 −∞D
μ
x

]
W (x, t). (1.2.36)

This is the Lévy flight with the external field F (x).

1.2.4 Fractional Klein-Framers equation

Based on the continuous-time Chapamn-Fokker equation [107, 217, 218], and

the Markov-Langevin equation describing the damped particles with an ex-

ternal fore field, the fractional Klein-Kramers(FKK) equation can be derived

whose velocity averaged high-friction limit reproduces the fractional Fokker-

Planck equation, and explains the occurrence of the generalised transport

coeffcients Kα and ηα. The FKK equation is of the form [162]

∂W

∂t
= 0D

1−α
t

[
−v∗ ∂

∂x
+
∂

∂x

(
η∗v − F

∗(x)

m

)
+ η∗

kBT

m

∂2

∂v2

]
W (x, v, t)

(1.2.37)

where, v∗ = vϑ, η∗ = ηϑ, F ∗(x) = F (x)ϑ and ϑ = τ∗/τα. Integrating this

equation w.r.t. v, one obtains the following

∂W

∂t
+ 0D

1+α
t

W

η∗
= 0D

1−α
t

[
− ∂
∂x

F (x)

mηα
+Kα

∂2

∂x2

]
W (x, t). (1.2.38)

The equation (1.2.38) is of the type of the generalized Cattaneo equation,

which reduces to the telegraph equation when α = 1, in the limiting case

of the Brownian motion. When considering the high-friction limit or the

long time limit, one recovers the fractional Fokker-Planck equation (1.2.27).

Integrating with respect to the position coordinates of the above equation

and considering the undamped limit, one then obtains the fractional Rayleigh

equation

∂W

∂t
= 0D

1−α
t η∗

[
∂

∂v
v +

kBT

m

∂2

∂v2

]
W (v, t), (1.2.39)

whose solutionW (v, t) of probability density distribution depicts the process

tending to the stable Maxwell distribution

Wst(v) =
βm

2π
exp

(
−βm

2
v2
)
.
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1.3 Fractional quasi-geostrophic equation

Fractional quasigeostrophic equation (quasigeostrophic equation) has the fol-

lowing form [53]
Dθ

Dt
=
∂θ

∂t
+ v ·∇θ = 0, (1.3.1)

where, v = (v1, v2) is a two-dimensional velocity field which is decided by the

stream function

v1 = − ∂ψ
∂x2

, v2 =
∂ψ

∂x1
. (1.3.2)

Here the current function ψ and θ has the relationship

(−Δ)
1
2ψ = −θ. (1.3.3)

By using the Fourier transform, the fractional Laplace operator can be defined

as

(−Δ)
1
2ψ =

∫
e2πix·k2π|k|ψ̂(k)dk.

Here, θ is the potential temperature, v is the current velocity, ψ can be

regarded as the pressure. When the viscous term is considered, the following

equation can be derived

θt + κ(−Δ)αθ + v ·∇θ = 0,

where θ and v are still determined by the equation (1.3.2)-(1.3.3), 0 � α � 1

and κ > 0 is a real number. More generally, we can consider the fractional

QG equation with an external force term

θt + u ·∇θ + κ(−Δ)αθ = f.

For simplicity, f is usually assumed to be independent of time.

The fractional QG equation (1.3.1)-(1.3.2) and the three-dimensional in-

compressible Euler equation share many similarities in physics and mathe-

matics. The three-dimensional vorticity equation has the following form

Dω

Dt
= (∇v)ω, (1.3.4)

where
D

Dt
=
∂

∂t
+ v ·∇, v = (v1, v2, v3) is the three-dimensional vorticity

vector, and divv = 0 and ω = curlv is the vorticity vector. Introduce the

vector ∇
⊥θ =t (−θx2 , θx1). One can find that the roles of the vector field

∇
⊥θ in the two-dimensional QG equation are similar to ω in the three-

dimensional Euler equation. Differentiating the equation (1.3.1), one obtains

D∇
⊥θ

Dt
= (∇v)∇⊥θ, (1.3.5)
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where v = ∇
⊥ψ and hence divv = 0. It can be seen that ∇

⊥ψ in the

equation (1.3.5) and the vorticity ω in the equation (1.3.4) satisfy the same

equation.

Then we examine its analytic structure. For the three-dimensional Euler

equation, the velocity v can be expressed by its vorticity, i.e. by the well

known Biot-Savart law

v(x) = − 1

4π

∫
R3

(
∇
⊥ 1

|y|
)
× ω(x+ y)dy.

The matrix ∇v = (vixj
) can be decomposed into the symmetric part and the

antisymmetric part

DE =
1

2
[(∇v) + (∇v)t], and ΩE =

1

2
[(∇v)− (∇v)t],

where the symmetric part DE can be expressed as a singular integral

DE(x) =
3

4π
P.V.

∫
R3

M
E(ŷ, ω(x+ y))

|y|3 dy.

As the fluid is incompressible, trDE =
∑

i
dii = 0. Here the matrix M

E is

given by

M
E(ŷ, ω) =

1

2
[ŷ ⊗ (ŷ × ω) + (ŷ × ω)⊗ ŷ],

where a ⊗ b = (aibj) is the tensor product of two vectors. Obviously, the

Euler equation can be rewritten as

Dω

Dt
= ω ·∇v = DEω.

For the two-dimensional fractional QG equation

ψ(x) = −
∫
R2

1

|y|θ(x+ y)dy,

and hence

v = −
∫
R2

1

|y|∇
⊥θ(x+ y)dy.

Now, the symmetric part DQG(x) =
1

2
((∇v) + (∇v)t) of the matrix of the

velocity gradient can be written as the singular integral

DQG = P.V.

∫
R2

M
QG(ŷ, (∇⊥θ)(x + y))

|y|2 dy, (1.3.6)
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where, ŷ =
y

|y| and

M
QG =

1

2
(ŷ⊥ ⊗ ω⊥ + ω⊥ ⊗ ŷ⊥).

For fixed ω, the mean of the function M
QG in the singular integral is zero

over the unit circle. The velocity in the two-dimensional QG equation and

three-dimensional Euler equation has similar expression

v =

∫
Rd

Kd(y)ω(x+ y)dy,

where Kd(y) is a homogeneous kernel function of order 1− d. The symmet-

ric parts DE and DQG can be represented by the singular integral of ω(x),

whose kernel function is −d order homogeneous function and has the stan-

dard cancellation property. From the above discussions, we know that the

roles of ∇⊥θ in the two-dimensional QG equation and the vorticity ω in the

three-dimensional incompressible Euler equation are equivalent .

Consider the vortex lines of the three-dimensional Euler equation. The

smooth curve C = {y(s) ∈ R3 : 0 < s < 1} is called the vortex line at fixed

time t, if the curve and the vorticity ω are tangential at each point, i.e.

dy

ds
(s) = λ(s)ω(y(s), t), λ(s) 
= 0.

Let C = {y(s) ∈ R3 : 0 < s < 1} be the initial vortex line, as time evolves,

it develops into C(t) = {X(y(s), t) ∈ R3 : 0 < s < 1}, where X(α, t) denotes

the trajectory of the particle of α. Using the vorticity equation, one can show

that X(α, t) satisfies the equation

ω(X(α, t), t) = ∇αX(α, t)ω0(α).

From the definition of C(t), we know that

dX(y(s), t)

ds
= ∇αX(y(s), t)

dy(s)

ds
= ∇αX(y(s), t)λ(s)ω0(y(s)),

and hence
dX

ds
(y(s), t) = λ(s)ω(X(y(s), t), t).

It shows that in the ideal fluid, the vortex line moves with the fluid. Let

LSQG represent the level set of the two-dimensional QG equation, i.e. θ is a

constant. From the equation (1.3.1), LSQG moves with the fluid, and ∇
⊥θ

is tangent to the level set LSQG. This shows that the level set for the two-

dimensional QG equation plays similar roles as the vortex line does for the
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three-dimensional Euler equation. Furthermore, for the three-dimensional

Euler equation,

D|ω|
Dt

= αE |ω|,

where αE(x, t) = DE(x, t)ξ · ξ, ξ =
ω(x, t)

|ω(x, t)| . Analogously, for the two-

dimensional QG equation, the development of |∇⊥θ| satisfies the same equa-

tion

D|∇⊥θ|
Dt

= α|∇⊥θ|, (1.3.7)

where αQG = DQG(x, t)ξ · ξ, DQG is defined in the equation (1.3.6), and

ξ =
∇
⊥θ

|∇⊥θ| is the direction vector of ∇⊥θ.

Now we investigate the conserved quantity of the equation. Using the

Fourier transform, we know that v̂(k) = ̂
∇
⊥ψ(k) =

i(−k2, k1)
|k| θ̂(k), and by

utilizing the Plancherel formula, we have

1

2

∫
R2

|v|2 =
1

2

∫
R2

|θ|2dx.

For the two-dimensional QG equation, it is evident that

∫
R2

G(θ)dx is con-

served. In particular, letting G(θ) =
1

2
θ2 shows its kinetic energy is con-

served. This is consistent with the three-dimensional Euler equation.

Recently, the following fractional Navier-Stokes equation is widely con-

sidered {
∂tu+ u ·∇u+∇p = −ν(−Δ)αu,

∇ · u = 0,
(1.3.8)

where ν > 0, α > 0 are real numbers. The existence and uniqueness of the

fractional NS equation in the Besov space are established [223].

Recently, we also established the existence of solutions and their time

decay of a class of high-order two-dimensional quasi-geostrophic equation

[181] (
∂

∂t
+
∂ψ

∂x

∂

∂y
− ∂ψ
∂y

∂

∂x

)
q =

1

Re
(−Δ)1+αψ, (1.3.9)

where q = Δψ − Fψ + βy, (x, y) ∈ R2, t � 0.
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1.4 Fractional nonlinear Schrödinger equation

In quantum mechanics, the Schrödinger equation of free particles plays an

important role

i�
∂

∂t
ψ(r, t) = − �2

2m
∇

2ψ(r, t),

where ψ(r, t) is the quantum ground state wave function describing the mi-

croscopic particles. After the wave function ψ(r, t) is determined, the mean

of any mechanical quantity of the particle and its probability distribution

are completely determined. Hence determining the evolution of the wave

function with time and identifying the possible wave functions under specific

situations become the core issues in quantum mechanics. Taking into account

the potential field V (r, t), one gets

i�
∂

∂t
ψ(r, t) =

[
− �2

2m
∇

2 + V (r, t)

]
ψ(r, t).

This is the Schrödinger equation, which reveals the the basic law of the motion

of matter in the microscopic world.

Consider the stable stochastic process. In the mid-1930s, P. Lévy and

A.Y. Khintchine proposed that under which situation the probability distri-

bution pN (X) of the summation X = X1 + · · ·+XN of N independent and

identically distributed random variables equals pi(Xi)? The concept of stable

roots here. Taking into consideration the central limit theorem, the tradi-

tional answer had been that each pi(Xi) satisfies the Gaussian distribution,

i.e. the summation of Gaussian random variables is still a Gaussian ran-

dom variable. Lévy and Khintchine showed the possibility of non-Gaussian

distributions, i.e. the nowadays called Lévy α-stable probability distribu-

tion (0 < α � 2). When α = 2, the distribution is the standard Gaussian

distribution.

In quantum mechanics, Feynman path integrals are actually the Brownian-

type quantum mechanics path based integrals. The Brownian motion is a

Lévy α-stable stochastic process, and the Brownian-type path integral leads

to the classical Schrödinger equation. Replacing the Brownian-type path

with Levy-type quantum mechanics path, one gets the fractional Schrödinger

equation [130]

i�
∂

∂t
ψ(r, t) = Dα(−�2Δ)α/2ψ(r, t) + V (r, t)ψ(r, t), (1.4.1)

where α is the order of spatial derivative and Dα is a constant with dimen-

sionless [Dα] = erg1−α ·cmα · sec−α. This equation can also be written as the
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following operational form

i�
∂ψ

∂t
= Hαψ,

where Hα = Dα(−�2Δ)α/2 + V (r, t) is called the fractional Hamiltonian

operator.

Consider the Fourier transform and its inverse transform of the three-

dimensional case,

ϕ(p, t) =

∫
e−i px

� ψ(r, t)dr, ψ(r, t) =
1

(2π�)3

∫
ei

px
� ϕ(p, t)dp.

The operation of the three-dimensional quantum Riesz fractional derivative

(−�2Δ)α/2 on a function ψ(r, t) can be expressed as

(−�2Δ)α/2ψ(r, t) =
1

(2π�)3

∫
ei

pr
� |p|αϕ(p, t)dp.

By using the integration by parts formula,

(φ, (−Δ)α/2χ) = ((−Δ)α/2, χ)

we know that the fractional Hamilton operator Hα is hermitian operator

under the dot product (φ, χ) :=

∫ ∞

−∞

φ∗(r, t)χ(r, t)dr, where ∗ represents the
complex conjugate. The average energy of the fractional quantum system

with the Hamilton quantity Hα is

Eα =

∫ ∞

∞

ψ∗(r, t)Hαψ(r, t)dr.

By using the integration by parts formula

Eα =

∫ ∞

∞

ψ∗(r, t)Hαψ(r, t)dr =

∫ ∞

∞

(H+
α ψ(r, t))ψ(r, t)dr = E

∗
α,

which shows that the energy of the system is always real valued. Therefore

the fractional Hamilton quantity in the above definition is Hermitian or self-

adjoint under the dot product (H+
α φ, χ) = (φ,Hαχ).

Fractional nonlinear Schrödinger equation also has a certain parity struc-

ture. From the definition of the fractional Laplace operator,

(−�2Δ)α/2eipx/� = |p|αeipx/�,

hence eipx/� is the eigenfunction of the operator (−�2Δ)α/2 whose eigenvalue

is |p|α. On the other hand, the operator (−�2Δ)α/2 is symmetric, i.e.

(−�2Δr)
α/2 = · · · = (−�2Δ−r)

α/2 = · · · .
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From this, the Hamilton Hα is invariant under the space reflection trans-

formation. Let P̂ be the reflection operator, then the invariance can be

expressed as the commutativity of P̂ and Hα, i.e., P̂Hα = HαP̂ . Under

these notations, the wave functions of quantum mechanical states with a

well-defined eigenvalue of the operator P̂ can be divided into two classes.

Functions that invariant under the reflection transform P̂ψ+(r) = ψ+(r) are

called the even states, and functions that change signs under the reflection

transform P̂ψ−(r) = −ψ−(r) are called the odd states. If the state of a closed

fractional quantum mechanics system has a given parity, then this parity is

conserved.

In the study of the fractional Schrödinger equation, the case that Hα does

not depend on time is important in physics research. In this situation, the

equation (1.4.1) has a particular solution ψ(r, t) = e−iEt/�φ(t), where φ(r)

satisfies Hαφ(r) = Eφ(r), or

Dα(−�2Δ)α/2φ(r) + V (r)φ(r) = Eφ(r).

Usually, this equation is called the stationary fractional Schrödinger equation.

Consider the current density. From the equation (1.4.1),

∂

∂t

∫
ψ∗(r, t)ψ(r, t)dr

=
Dα

i�

∫ [
ψ∗(r, t)(−�2Δ)α/2ψ(r, t)− ψ(r, t)(−�2Δ)α/2ψ∗(r, t)

]
dr.

This equation can be simplified into

∂ρ(r, t)

∂t
+ divj(r, t) = 0,

where ρ(r, t) = ψ∗(r, t)ψ(r, t) is called the probability density and

j(r, t)=
Dα�

i

(
ψ∗(r, t)(−�2Δ)α/2−1

∇ψ(r, t)− ψ(r, t)(−�2Δ)α/2−1
∇ψ∗(r, t)

)
is called fractional probability current density with ∇ =

∂

∂r
.

Introducing the momentum operator p̂ =
�

i
∇, the vector j can be written

as

j = Dα

(
ψ(p̂2)α/2−1p̂ψ∗ + ψ∗(p̂∗2)α/2−1p̂∗ψ

)
, 1 < α � 2.

When α = 2 and Dα = 1/2m, the above derivation corresponds to the clas-

sical quantum mechanics and the classical Schrödinger equation. Thus, the

above discussion is the generalization of the classic system into the fractional
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order system. Let v̂ =
d

dt
r̂ be the coordinate operator, then

v̂ =
d

dt
r̂ =

i

�
[Hα, r] =

i

�
(Hαr − rHα),

and hence

v̂ = αDα|p̂2|α/2−1p̂,

which yields

j =
1

α
(ψv̂ψ∗ + ψ∗v̂ψ), 1 < α � 2.

To normalize the probability current density, one may let

ψ(r, t) =

√
α

2v
e

ipr
�
− iEt

� , E = Dα|p|α, 1 < α � 2.

The time fractional Schrödinger equation can also be considered. We only

investigate the one-dimensional case and now the one dimensional classical

Schrödinger equation is

i�∂tψ = − �2

2m
∂2xψ + V ψ.

Two types of generalizations can be made [172]

(iTp)
νDν

t ψ = − L2
p

2Nm
∂2xψ +NV ψ, (1.4.2)

and

i(Tp)
νDν

t ψ = − L2
p

2Nm
∂2xψ +NV ψ, (1.4.3)

where, Dν
t represents the ν-order Caputo fractional derivative, and its pa-

rameters are Tp =
√
G�/c5, Lp =

√
G�/c3, Nν = V/Ep, Ep = Mpc

2,

Nm = m/Mp, Mp =
√

�c/G.

1.5 Fractional Ginzburg-Landau equation

Here we derive the fractional Ginzburg-Landau equation (FGLE) from the

Euler-Lagrange equation for fractal substance [211]. This equation can be

used to describe the dynamics for substance having fractional dispersion.

The classical Ginzburg-Landau equation (GLE) [132]

gΔZ = aZ − bZ3,

can be derived as the variational Euler-Lagrange equation

δF (Z)

δZ
= 0,
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for the free energy functional

F (Z) = F0 +
1

2

∫
Ω

[g(∇Z)2 + aZ2 +
b

2
Z4]dV3. (1.5.1)

Two fractional generalizations of the equation (1.5.1) are considered. One is

the fractional generalization of the integral in F (Z), and the other one is the

fractional generalization of the derivatives in F (Z).

The simplest generalization is to consider the following energy functional

F (Z) = F0 +
1

2

∫
Ω

[g(∇Z)2 + aZ2 +
b

2
Z4]dVD, (1.5.2)

where dVD is D-dimensional volume element dVD = C3(D, x)dV3. Here, in

the Riesz definition of fractional integral, we have C3(D, x) = (23−DΓ(3/2)

|x|D−3)/(Γ(D/2)) and in the Riemann-Liouville definition of fractional inte-

gral, we have C3(D, x) = (|x1x2x3|D/3−1)/(Γ3(D/3)).

Let

F(Z(x),∇Z(x)) = 1

2

[
g(∇Z)2 + aZ2 +

b

2
Z4

]
, (1.5.3)

then the Euler-Lagrange equation can be obtained

C3(D, x)
∂F
∂Z
−

3∑
k=1

∇k(C3(D, x)
∂F
∂∇kZ

) = 0.

From (1.5.2), the following generalized FGLE can be obtained

gC−1
3 (D, x)∇k(C3(D, x)∇kZ)− aZ − bZ3 = 0, (1.5.4)

or equivalently

gΔZ + Ek(D, x)∇kZ − aZ − bZ3 = 0, (1.5.5)

where Ek(D, x) = C
−1
3 (D, x)∂kC3(D, x).

Generalize the energy functional into the fractional form

F (Z) = F0 +

∫
Ω

F(Z(x), DαZ(x))dVD , (1.5.6)

where Dα is the Riesz fractional derivative and F is given by

F(Z(x), DαZ(x)) =
1

2

[
g(DαZ)2 + aZ2 +

b

2
Z4

]
. (1.5.7)

Its Euler-Lagrange equation is

C3(D, x)
∂F
∂Z

+

3∑
k=1

Dα
xk

(
C3(D, x)

∂F
∂Dα

xk
Z

)
= 0.
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In general D 
= 3α and this equation is equivalent to

gC−1
3 (D, x)

3∑
k=1

Dα
xk
(C3(D, x)D

α
xk
Z) + aZ + bZ3 = 0. (1.5.8)

Such a generalized equation is called fractional Ginzburg-Landau equation.

Below we consider some special cases of the equation (1.5.8).

(1) In the one-dimensional case, Z = Z(x). Using the formulas for frac-

tional integration by parts∫ ∞

∞

f(x)
dβg(x)

dxβ
dx =

∫ ∞

∞

g(x)
dβf(x)

d(−x)β dx∫ ∞

∞

f(x)Dα
x g(x)dx =

∫ ∞

∞

g(x)Dα
xf(x)dx,

(1.5.9)

we obtain the Euler-Lagrange equation

Dα
x

(
C1(D, x)

∂F
∂Dα

xZ

)
+ C1(D, x)

∂F
∂Z

= 0, C1(D, x) =
|x|D−1

Γ(D)
,

Using (1.5.7), we arrive at

C−1
1 (D, x)Dα

x (C1(D, x)D
α
xZ) + aZ + bZ3 = 0.

For the case D = 1, we have C1 = 1 and hence

D2α
x Z + aZ + bZ3 = 0,

where Dα
x is the Riesz fractional derivative operator.

(Dα
xf)(x) =

−1
2 cos(πα/2)Γ(n− α)

∂n

∂xn(∫ x

−∞

f(z)dz

(x− z)α−n+1
+

∫ ∞

x

(−1)nf(z)dz
(z − x)α−n+1

)
.

(2) Consider

F =
1

2
g1(D

α
xZ)

2 +
1

2
g2(D

β
xZ)

2 +
a

2
Z2 +

b

4
Z4.

Using (1.5.9), we get the following Euler-Lagrange equation

Dα
x

(
C1(D, x)

∂F
∂Dα

xZ

)
+Dβ

x

(
C1(D, x)

∂F
∂Dβ

xZ

)
+ C1(D, x)

∂F
∂Z

= 0,

and hence the fractional Ginzburg-Landau equation

g1C
−1
1 Dα

x (C1(D, x)D
α
xZ) + g2C

−1
1 (D, x)Dβ

x(C1(D, x)D
β
xZ) + aZ + bZ3 = 0.



February 6, 2015 16:42 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-1-2 page 26

26 Chapter 1 Physics Background

In particular, when D = 1, C1 = 1 and hence

g1D
2α
x Z + g2D

2β
x Z + aZ + bZ3 = 0, 1 � α, β � 1.

(3) For a more general case, we consider

F = F(Z,Dα1
x1
Z,Dα2

x2
Z,Dα3

x3
Z).

In this case, the FGLE for fractal media is

g1C
−1
3 (D, x)

3∑
k=1

Dαk
xk

(C3(D, x)D
αk
xk
Z) + aZ + bZ3 = 0.

Below we consider another generalization of the GLE. Consider the wave

propagation in some media, whose wave vector �k satisfies �k = �k0 + �κ =
�k0 + �κ‖ + �κ⊥, where �k0 is the unperturbed wave vector and the subscripts

(‖,⊥) are taken respectively to the direction of �k0. Considering a symmetric

dispersion law ω = ω(k) for wave propagation with κ� k0, we have

ω(k) = ω(|�k0+�κ|) ≈ ω(k0)+c(|�k0+�κ|−k0) ≈ ω(k0)+c�κ‖+
c

2k0
�κ2⊥ (1.5.10)

where c = ∂ω/∂k0. This equation is the momentum representation of the

field Z in the dual space corresponding to the following equation in coordinate

space

− i
∂Z

∂t
= ic

∂Z

∂x1
+
c

2k0
ΔZ, (1.5.11)

where x1 is the direction of �k0. By comparing the two equations, one has the

following correspondences between the dual space and space-time space

ω(k)↔ i
∂

∂t
, �κ‖ ↔ −i

∂

∂x1
, (�κ⊥)

2 ↔ −Δ = − ∂
2

∂x22
− ∂2

∂x23
.

Generalizing it into the nonlinear dispersion relation, one obtains

ω(k, |Z|2) ≈ ω(k, 0) + b|Z|2 = ω(|�k0 + �κ|, 0) + b|Z|2, (1.5.12)

with some constant b = (∂ω(k, |Z|2))/(∂|Z|2) at |Z|2 = 0. Analogously, the

following equation can be obtained

− i
∂Z

∂t
= ic

∂Z

∂x
+
c

2k0
ΔZ − ω(k0)Z − b|Z|2Z, (1.5.13)

which is also called the nonlinear Schrödinger equation, and all its coefficients

can be complex numbers. Let Z = Z(t, x1 − t, x2, x3), then one has

−i∂Z
∂t

=
c

2k0
ΔZ − ω(k0)Z − b|Z|2Z.



February 6, 2015 16:42 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-1-2 page 27

1.6 Fractional Landau-Lifshitz equation 27

Generalizing the dispersion relation (1.5.12) into the fractional case, one

obtains

ω(k, |Z|2) = ω(�k0, 0) + c�κ‖ + cα(�κ2⊥)α/2 + b|Z|2, 1 < α < 2,

where cα is a constant. By using the correspondence relation (−Δ)α/2 ↔
(�κ2⊥)

α/2, we obtain

− i
∂Z

∂t
= ic

∂Z

∂x
− c

2k0
(−Δ)α/2Z + ω(k0)Z + b|Z|2Z, (1.5.14)

which is called the fractional Ginzburg-Landau equation (FGLE) or the frac-

tional nonlinear Schrödinger equation (FNLS). The first term of the equation

on the right hand side describes the wave propagation in fractional media,

and its fractional derivative can be caused by the super-diffusion wave prop-

agation or other physical mechanisms. The remaining terms represent the

interactions of the wave motions in the nonlinear media. Therefore, this equa-

tion can be used to depict the self focusing or related fractional processes.

In the one-dimensional case, the equation (1.5.14) can be simplified as

c
∂Z

∂t
= gDα

xZ + aZ + b|Z|2Z,

where g, b, c are constants. Let x = x3 − ct, then the traveling wave solution

Z = Z(x) of the above equation satisfies

gDα
xZ + cD1

xZ + aZ + b|Z|2Z = 0,

or for the real value Z

gDα
xZ + cD1

xZ + aZ + bZ3 = 0.

1.6 Fractional Landau-Lifshitz equation

The Landau-Lifshitz equation (LLE) plays an important role in the ferro-

magnetic theory, which describes the movement pattern of the magnetization

vector. LLE was first proposed by Landau and Lifshitz when they studied

the dispersive theory of the magnetization phenomena of the ferromagnetic

body, which is also called the ferromagnetic chain equation [128]. After-

wards, the equation are often used in condensed matter physics. In the

1960s, Soviet physicists A.Z. Akhiezer et al studied the spin wave, travel-

ling wave solutions of the ferromagnetic chain equation and so on in their

monograph [7]. In 1974, Nakamura et al first obtained the soliton solution

of the Landau-Lifshitz equation without Gilbert term in the one-dimensional
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case. Since the 1980s, many mathematicians turned to study this equation,

and gained many important results. In China, at the frontier in this re-

gard is the research team led by Y. Zhou and B. Guo, the academician, who

obtained the global weak solutions of the initial and initial-boundary value

problems of the Landau-Lifshitz equation, and the global smooth solution of

the one-dimensional LLE [230]. Soon later, B. Guo and M. Hong studied

the two-dimensional LLE, and got the global existence for small initial data

and established the relationship between the LLE and heat flow of harmonic

maps [104]. Recently, mathematical problems of the Landau-Lifshitz equa-

tion has increasingly attracted the attention of the mathematical community,

and a large number of literature and monographs has been published. For

further knowledge, the readers can refer to the recently published monograph

by B. Guo and S. Ding [102] and the references therein.

The Landau-Lifshitz equation is of the following form

∂M

∂t
= −γM ×Heff − α2M × (M ×Heff),

where γ is called the gyromagnetic ratio, α > 0 is a constant depending on the

physical properties of the material, M = (M1,M2,M3) is the magnetization

vector, and Heff− δEtot

δM
is the effective magnetic field acting on the magnetic

moment. Here, Etot represents the energy functional of the entire magnetic

field, which consists of the following parts [47]

Etot = Eexc + Eani + Edem + Eapp.

Recently, DeSimone et al [63] gave the following two-dimensional model when

studied the film micromagnetic theory, where

Etot =

∫
R2

(|ξ · M̂χΩ|2/|ξ|)dξ.

Now
δEtot

δM
= −∇(−Δ)−

1
2 divM . If we only consider the Gilbert term (i.e.,

γ = 0), then the following equation is obtained

∂M

∂t
−∇(−Δ)−

1
2divM +∇(−Δ)−

1
2 divM ·MM = 0,

where M = (M1,M2) represents the two-dimensional magnetization vec-

tor. It can be seen that this equation is a partial differential equation with

fractional derivatives. We can also consider the following Landau-Lifshitz

equation having exchange energy. In this case,

Etot = ε

∫
Ω

|∇M |2dx+
∫
R2

(|ξ · M̂χΩ|2/|ξ|)dξ,
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leading to

∂M

∂t
= εΔM +∇(−Δ)−

1
2 divM + ε|∇M |2M −∇(−Δ)−

1
2 divM ·MM = 0.

In addition, recently B. Guo et al studied the initial value problem of the

following fractional Landau-Lifshitz equation with periodic boundary values

[108, 182] {
Mt =M × (−Δ)αM, Td × (0, T )

M(0, x) =M0, x ∈ Td.
(1.6.1)

Applying the vanishing viscosity method, the authors considered the follow-

ing approximation problem and then proved the global existence of the weak

solutions

Mt =
M

max{1, |M |} × (−Δ)αM − β M

max{1, |M |} ×ΔM + εΔM. (1.6.2)

Recently the authors obtained global existence of weak solutions by Galerkin

approximation and local smooth solutions by vanishing viscosity method for

the Landau-Lifshitz equation with or without Gilbert damping term. The

following fractional Landau-Lifshitz-Gilbert equation can be also considered

cf. [182, 183, 185],

Mt = γM × (−Δ)αM + βM × (M × (−Δ)αM). (1.6.3)

1.7 Some applications of fractional differential equations

This section introduces some applications of fractional differential equations

in applied disciplines, such as viscoelasticity mechanics, biology, cybernetics

and statistics. In this section, we only introduce several applications of the

fractional partial differential equations, from which we can catch a glimpse

of how powerful the FPDEs are in applied scientific branches. The interested

readers may refer to the literatures cited herein.

Viscoelasticity mechanics is one of the disciplines in which the fractional

differential equations are extensively applied, and a lot of related research pa-

pers have been published [38,155,194]. Almost all deformed materials exhibit

elastic and viscous properties through simultaneous storage and dissipation

of mechanical energy. So any viscoelastic material may be treated as a linear

system with the stress as excitation function and the strain as the response

function. In mechanics of materials, the Hooke’s low reads σ(t) = Eε(t) for

a solid, and Newton’s law reads σ(t) = ηdε(t)/dt for fluids, where σ is the

stress and ε is the strain. Both of them are not universal laws, but merely
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mathematical models of the ideal solid and fluid. Neither of them can ade-

quately describe the real situation in the real world. In fact, real materials

are between the two limit cases. Two fundamental methods are employed

to connect the above two models. One is the cascade connection and from

this the Maxwell model in viscoelasticity mechanics is obtained; the other

is the parallel connection from which the Voigt model is obtained. In the

Maxwell model, when the stress is a constant, then strain will grow infinitely.

However, in the Voigt model, the viscoelasticity does not reflect the exper-

imentally observed stress relaxation. To remedy the disadvantages of these

two models, Kelvin model and Zener model were proposed, both of which can

give satisfactory qualitative descriptions of the viscoelasticity. But neither

of them are satisfactory as far as quantitative descriptions are considered.

Hence more complex rheological models are proposed for the viscoelasticity

materials, leading to complicated differential equations of higher orders.

On the other hand, since the stress is proportional to the zeroth deriva-

tive of strain for solids and to the first derivative of strain for fluids, then

G.W. Scott Blair [25,26] proposed “intermediate” derivative models for such

“intermediate” materials

σ(t) = E0D
α
t ε(t), (1.7.1)

where α ∈ (0, 1) depends on the property of the material. Almost at the

same time, Gerasimov [88] employed the Caputo fractional derivative to get

the following model for 0 < α < 1,

σ(t) = κ−∞D
α
t ε(t). (1.7.2)

By using the fractional derivative, we can get the generalized Maxwell model,

Voigt model and Zener model. They are all special cases of the following

general high order model

n∑
k=0

akD
αkσ(t) =

m∑
k=0

bkD
βkε(t).

The fractional derivative is also successfully applied to statistics. Assume

that we need to model the impact of the hereditary effects in steel wires to

study the mechanical properties. To describe some basic disadvantages of

the classical polynomial regression models, we consider the two main stages

of the change of mechanical properties of such a steel wire. In the first

stage, within a period of time after the wire installation, the performance

enhancement can be observed, and in the second stage, then its performance

gradually declines, getting worse and worse, until breaks down. The period
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of performance enhancement is shorter than the period of decline, and the

process are generally asymmetric.

In the classical regressionmodel, the linear regression can well describe the

second stage, but can not well describe the stage of performance enhance-

ment. The second order regression provides symmetrical regression curve,

hence is not well consistent with its physical backgrounds of the process.

The high order polynomial regression can give better interpolation within the

time interval for which measurements are available, but cannot give a rea-

sonable prediction of performance change of the wire properties. Of course,

in practical problems, the exponential regression model, Logistic regression

model and other models can be used. Here we would like to introduce the

fractional derivative model.

Consider n experimental measured values y1, y2, · · · , yn, and assume that

the interpolated function y(t) satisfies the following fractional integral equa-

tion for α ∈ (0,m]

y(t) =

m−1∑
0

akt
k − am0D

−α
t y(t),

where α, ak, k = 0, · · · ,m, are parameters to be determined and m is the

smallest integer greater than or equal to α. Let z(t) = y(t)−
m−1∑
0

akt
k, then

z satisfies the following initial value problem [179]⎧⎪⎪⎨⎪⎪⎩
0D

α
t z(t) + amz(t) = −am

m−1∑
k=0

akt
k,

z(k)(0) = 0, k = 0, · · · ,m− 1.

(1.7.3)

Besides the fractional models introduced above, there are many other

important fractional models in various fields, some of which are listed below

without introducing their detailed physical background. We will list some

equations below which are actively studied.

1. Space-time fractional diffusion equation [139].

∂αu(x, t)

∂tα
= Dβ

xu(x, t), 0 � x � L, 0 < t � T,

u(x, 0) = f(x), 0 � x � L,

u(0, t) = u(L, t) = 0.

where Dβ
x(1 < β � 2) is the Riemann-Liouville fractional derivative
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Dβ
xu(x, t) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(2− β)
∂2

∂x2

∫ x

0

u(ξ, t)dξ

(x− ξ)β−1
, 1 < β < 2,

∂2u(x, t)

∂x2
, β = 2,

and ∂α/∂tα(0 < α � 1) is the Caputo fractional derivative

∂αu(x, t)

∂tα
=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1 − β)
∫ t

0

∂u(x, η)

∂η

dη

(t− η)α , 0 < α < 1,

∂u(x, t)

∂t
, α = 1.

When α = 1, β = 2, this equation is the classical diffusion equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
.

When α < 1, the solution of the equation is no longer a Markov process,

whose behavior will depend on the behaviors of the solution at all the previous

times.

2. Fractional Navier-Stokes equation [227].

∂tu+ (−Δ)βu+ (u ·∇)u−∇p = 0, in R1+d
+ ,

∇ · u = 0, in R1+d
+ ,

u|t=0 = u0, in Rd,

where β ∈ (1/2, 1). When the time fractional derivative is considered, the

following fractional Navier-Stokes equation can be obtained [169]

∂α

∂tα
u+ (u ·∇)u = −1

ρ
∇p+ νΔu,

∇ · u = 0,

where ∂α/∂tα(0 < α � 1) is the Caputo fractional derivative.

3. Fractional Burger’s equation [24]

ut + (−Δ)αu = −a ·∇(ur),

where a ∈ Rd, 0 < α � 2, r � 1.

4. The semi-linear fractional dissipative equation [164]

ut + (−Δ)αu = ±ν|u|bu.

5. Fractional conduction-diffusion equation [164]

ut + (−Δ)αu = a ·∇(|u|bu), a ∈ Rd/{0}.
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6. Fractional MHD equation [222, 229]⎧⎪⎨⎪⎩
∂tu+ u ·∇u− b ·∇b+∇P = −(−Δ)αu,

∂tb+ u ·∇b− b ·∇u = −(−Δ)βb,

∇ · u = ∇ · b = 0.
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Chapter 2

Fractional Calculus and Fractional

Differential Equations

This Chapter mainly introduces definitions and basic properties of frac-

tional derivatives, including Riemann-Liouville fractional derivative, Caputo

fractional derivative and fractional Laplace operator, etc. For the fractional

Laplace operator, some basic tools of partial differential equations are intro-

duced, such as pseudo-differential operators, fractional Sobolev spaces and

commutators estimates, etc. Also, some existence results of fractional ordi-

nary equations are obtained by iteration. For readers’ convenience, some

basics of Fourier transform, Laplace transform and Mittag-Leffler function

are given at the end of the chapter.

2.1 Fractional integrals and derivatives

2.1.1 Riemann-Liouville fractional integrals

To introduce R-L fractional integral, consider first the following iteration

integrals

D−1[f ](t) =

∫ t

0

f(τ)dτ,

D−2[f ](t) =

∫ t

0

dτ1

∫ τ1

0

f(τ)dτ,

· · ·

D−n[f ](t) =

∫ t

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

f(τ)dτ.

· · ·
These multiple iteration integrals can all be expressed as∫ t

0

Kn(t, τ)f(τ)dτ,

for a certain kernel function Kn(t, τ). Obviously, K1(t, τ) = 1. When n = 2,

then

34
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∫ t

0

dτ

∫ τ

0

f(τ1)dτ1 =

∫ t

0

f(τ)dτ

∫ t

τ

dτ1

=

∫ t

0

(t− τ)f(τ)dτ,

thus K1(t, τ) = (t− τ). When n = 3,∫ t

0

dτ

∫ τ

0

dτ1

∫ τ1

0

f(τ2)dτ2 =

∫ t

0

dτ

∫ τ

0

(τ − τ1)f(τ1)dτ1

=

∫ t

0

f(τ)dτ

∫ t

τ

(τ1 − τ)dτ1

=

∫ t

0

f(τ)
(t − τ)2

2
dτ,

hence K2(t, τ) = (t− τ)2/2. Generally, Kn(t, τ) = (t− τ)n−1/(n− 1)! by

induction, yielding

D−n[f ](t) =
1

Γ(n)

∫ t

0

(t− τ)n−1f(τ)dτ, (2.1.1)

where Γ(n) = (n−1)!. Assume f ∈ C[0, T ], the space of continuous functions
on [0, T ], then for arbitrary t ∈ [0, T ], the integral exists in the sense of

Riemann integral for any n � 1. Certainly, this idea can be extended to

the situation 0 < n < 1, where the integral exists as a generalized integral.

Extending n to a general complex number, one obtains the definition of the

R-L integral.

Definition 2.1.1 Suppose that f is piecewise continuous in (0,∞), and

integrable in any finite subinterval of [0,∞). For any t > 0 and any complex

number ν with Re ν > 0, the ν-th R-L fractional integral of f is defined by

0D
−ν
t f(t) =

1

Γ(ν)

∫ t

0

(t− τ)ν−1f(τ)dτ. (2.1.2)

Below, C will denote the class of functions of f such that (2.1.2) makes

sense.

Example 2.1.1 Let f(t) = tμ and μ > −1, then obviously f ∈ C. By

definition,

0D
−ν
t tμ =

1

Γ(ν)

∫ t

0

(t− τ)ν−1τμdτ

=
B(ν, μ+ 1)

Γ(ν)
tν+μ

=
Γ(μ+ 1)

Γ(μ+ ν + 1)
tμ+ν , Re ν > 0, t > 0,
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where B and Γ are the Beta function and the Gamma function, respectively.

When μ and ν are integers, it reduces to the classical situation, and is con-

sistent to the multiple iteration integrals above.

Now, we give several discussions on this definition.

1. The class C includes functions which behave asymptotically like ln t or

tμ near t = 0 for −1 < μ < 0, as well as functions like f(τ) = |τ − a|μ for

μ > −1 and 0 < a < t.

2. Rewrite the integral in (2.1.2) in the Stieltjes integral, we have

0D
−ν
t f(t) =

1

Γ(ν + 1)

∫ t

0

f(τ)dg(ξ),

where g(τ) = −(t − τ)ν is a monotone increasing function on the closed

interval [0, t]. If f is continuous in [0, t], then 0D
−ν
t f(t) =

1

Γ(ν + 1)
f(ξ)tν by

the mean value theorem for some ξ ∈ [0, t]. Therefore, limt→0 0D
−ν
t f(t) = 0.

If f ∈ C, such limit does not necessarily hold. Indeed, from Example 2.1.1,

when μ > −1 and ν > 0, there holds

lim
t→0

0D
−ν
t tμ =

⎧⎪⎨⎪⎩
0, μ+ ν > 0

Γ(μ+ 1), μ+ ν = 0

∞, μ+ ν < 0.

3. In the symbol 0D
−ν
t of the definition of the R-L fractional integral, the

left subscript 0 can be replaced by any constant c, leading to the following

definition

cD
−ν
t f(t) =

1

Γ(ν)

∫ t

c

(t− τ)ν−1f(τ)dτ.

We will use D−ν to denote the operator 0D
−ν
t for simplicity in the rest unless

otherwise stated.

4. Under certain assumptions

lim
ν→0

D−νf(t) = f(t), (2.1.3)

and hence one can regard

D0f(t) = f(t). (2.1.4)

When f is continuously differentiable, the conclusion obviously holds. Inte-

grating by parts, one has

D−νf(t) =
1

Γ(ν + 1)

∫ t

0

(t− τ)νf ′(τ)dτ + tνf(0)

Γ(ν + 1)
,
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and hence

lim
ν→0

D−νf(t) =

∫ t

0

f ′(τ)dτ + f(0) = f(t).

When f(t) is only continuous for t � 0, the proof will be somewhat

complicated. We should prove that for arbitrary ε > 0, there exists δ > 0

such that when 0 < ν < δ there holds |D−νf(t)−f(t)| < ε. For this purpose,
rewritting D−νf(t) as

D−νf(t) =
1

Γ(ν)

∫ t

0

(t− τ)ν−1(f(τ)− f(t))dτ + f(t)

Γ(ν)

∫ t

0

(t− τ)ν−1dτ

=
1

Γ(ν)

∫ t−η

0

(t− τ)ν−1(f(τ)− f(t))dτ

+
1

Γ(ν)

∫ t

t−η

(t− τ)ν−1(f(τ) − f(t))dτ + f(t)tν

Γ(ν + 1)
. (2.1.5)

Since f is continuous, for any ε̃ > 0, there exists δ̃ > 0, such that for |t−τ | <
δ̃, there holds |f(τ)−f(t)| < ε̃. Hence the second term of the right hand side

of (2.1.5) can be estimated as

|I2| < ε̃

Γ(ν)

∫ t

t−δ̃

(t− τ)ν−1dτ <
ε̃δ̃ν

Γ(ν + 1)
,

where we have used Γ(ν + 1) = νΓ(ν). Therefore, |I2| → 0 when ε̃→ 0.

Let ε > 0 be arbitrarily given. There always exists 0 < η < t such that

|I2| < ε/3 holds, for every ν > 0. Fixed η, then the first term of the right

hand side of (2.1.5) can be estimated as

|I1| � M

Γ(ν)

∫ t−η

0

(t− τ)ν−1dτ �
M

Γ(ν + 1)
(ην − tν).

For such a fixed η, when ν → 0, the right hand side tends to zero, i.e., there

exists δ1 > 0 such that for 0 < ν < δ1, one has |I1| < ε/3. For the third

term of the right hand side, |I3| � Mtν/Γ(ν + 1), and hence there exists

δ2 > 0, such that for 0 < ν < δ2 we have |I3| < ε/3. Summarizing we have

lim supν→0 |D−νf(t)− f(t)| = 0, completing the proof.

Theorem 2.1.1 Let f ∈ C([0,∞)) be a continuous function and μ, ν > 0.

Then, for any t > 0,

D−ν{D−μf(t)} = D−μ−νf(t) = D−μ[D−νf(t)].
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Proof By definition,

D−ν{D−μf(t)} = 1

Γ(ν)

∫ t

0

(t− x)ν−1

[
1

Γ(μ)

∫ x

0

(x− y)μ−1f(y)dy

]
dx

=
1

Γ(ν)Γ(μ)

∫ t

0

∫ t

y

(t− x)ν−1(x− y)μ−1dxf(y)dy.

Substituting x = (t− y)ξ + y, we have

D−ν [D−μf(t)] =
1

Γ(ν)Γ(μ)

∫ t

0

∫ 1

0

ξμ−1(1− ξ)ν−1dξ(t− y)ν+μ−1f(y)dy

=
B(μ, ν)

Γ(ν)Γ(μ)

∫ t

0

(t− y)ν+μ−1f(y)dy

=D−μ−νf(t),

where we have used B(ν, μ) = Γ(μ)Γ(ν)/Γ(ν + μ). The second equality is

proved similarly.

From above, one can see that when ν = n � 0 is an integer, D−nf(t)

represents the n-fold integral of f . For any real number μ = n + ν with

n � 0, one has from this theorem

D−μf(t) = D−n[D−νf(t)] = D−ν [D−nf(t)].

It shows that the μ-th (μ = n+ ν) R-L integral of f is equal to firstly taking

n-fold integral and then the ν-th R-L integral of f or firstly taking the ν-th

R-L integral and then the n-fold integral of f . Now consider the derivatives

of R-L fractional integrals and the R-L fractional integrals of derivatives.

Theorem 2.1.2 Let n be a positive integer, ν > 0 and Dnf ∈ C([0,∞)).

(1) When Dnf ∈ C, then

D−ν−n[Dnf(t)] = D−νf(t)−Rn(t, ν);

(2) When Dnf ∈ C([0,∞)), then for t > 0

Dn[D−νf(t)] = D−ν [Dnf(t)] +Rn(t, ν − n),

where Rn(t, ν) =
n−1∑
k=0

tν+kDkf(0)/Γ(ν + k + 1).

Proof First we prove (1). When n = 1, let η > 0, δ > 0, then (t− τ)ν−1 and

f(τ) are both continuous and differentiable in [δ, t− η]. Integrating by parts
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then yields ∫ t−η

δ

(t− τ)ν [Df(τ)]dτ

=ν

∫ t−η

δ

(t− τ)ν−1f(τ)dτ + ηνf(t− η)− (t− δ)νf(δ).

Letting δ, η tend to zero respectively, dividing both sides by Γ(ν + 1), and

using the property of Gamma function (2.7.1), one can prove the conclusion

(1) for n = 1. For a general n � 2, applying repeatedly the conclusion of the

case n = 1, we have

D−(ν+n−1)−1[D1Dn−1f(t)] =D−(ν+n−1)[Dn−1f(t)]− D
n−1f(0)

Γ(ν + n)
tν+n−1

=D−ν+n−2[Dn−2f(t)]

− Dn−2f(0)

Γ(ν + n− 1)
tν+n−2 − D

n−1f(0)

Γ(ν + n)
tν+n−1

= · · ·
=D−νf(t)−Rn(t, ν).

Hence the conclusion (1) holds for a general positive integer.

We prove the (2). Let τ = t− ξ1/ν to obtain

D−νf(t) =
1

Γ(ν + 1)

∫ tν

0

f(t− ξ1/ν)dξ.

Hence for t > 0,

D[D−νf(t)] =
1

Γ(ν + 1)

[
νtν−1f(0) +

∫ tν

0

f ′(t− ξ1/ν)dξ
]
.

Letting t − ξ1/ν = τ in the equation then completes the proof for (2) when

n = 1. For a general positive integer n � 2, one can complete proof by

induction similarly.

It shows that in general, Dn and D−ν do not commute. But we have the

following.

Corollary 2.1.1 Under the assumptions of Theorem 2.1.2, if moreover

Dkf(0) = 0 for all k = 0, 1, · · · , n− 1, then

D−ν−n[Dnf(t)] = D−νf(t)

and

Dn[D−νf(t)] = D−ν [Dnf(t)].
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Theorem 2.1.3 Let n be a positive integer, ν > n and Dnf be continuously

differentiable in [0,∞), then for arbitrary t ∈ [0,∞), we have

Dn[D−νf(t)] = D−(ν−n)f(t).

Proof Let ν > n. First, when n = 1 we have by definition Dn−1

[D−νf(t)] = D−(ν−1)−1f(t). Indeed, similar equality holds for a general

n � 2 with n < ν, i.e.,

Dn−1[D−νf(t)] = D−(ν−n)−1f(t).

We will show that this also holds when n−1 is replaced with n. Differentiating

the expression by D, we have

Dn[D−νf(t)] =D[D−(ν−n)−1f(t)]

=D−(ν−n)−1[Df(t)] +
f(0)

Γ(ν − n+ 1)
tν−n

=D−(ν−n)f(t),

where we have used (2) and (1) of Theorem 2.1.2 in the second and third

step, respectively.

Theorem 2.1.4 Let n andm be positive integers, ν, μ > 0 and ν−μ = m−n.
Assume f is r-th continuously differentiable in [0,∞), then for arbitrary t ∈
[0,∞)

D−ν [Dmf(t)] = D−μ[Dnf(t)] + sgn(n−m)
r−1∑
k=s

tν−m+kDkf(0)

Γ(ν −m+ k + 1)
, (2.1.6)

where r = max{m,n} and s = min{m,n}, and for arbitrary t ∈ (0,∞), there

holds

Dn[D−μf(t)] = Dm[D−νf(t)].

Proof If m = n, the theorem holds obviously. Now assume n > m and

denote σ = n−m, then using Theorem 2.1.2, we can see that

D−ν [Dmf(t)] = D−ν−σ[Dσ+mf(t)] +

σ−1∑
k=0

tν+kDk+mf(0)

Γ(ν + k + 1)
.

(2.1.6) then follows since ν+σ = μ and σ+m = n. On the other hand, from

Theorem 2.1.3, we have

Dσ[D−ν−σf(t)] = D−νf(t),

since ν > 0 here. Differentiating this formula m times then yields

Dm+σ[D−ν−σf(t)] = Dm[D−νf(t)].

This completes the proof.
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Let n � 1 be a positive integer, when f and g are n-th continuously

differentiable, the classical Leibniz rule holds

Dn(f(t)g(t)) =

n∑
k=0

Ck
nD

kf(t)Dn−kg(t).

To extend the Leibniz rule to the R-L fractional integrals, we first consider

the following example.

Example 2.1.2 Assume ν > 0 and f ∈ C, then

D−ν [tnf(t)] =

n∑
k=0

Ck
−νD

ktnD−ν−kf(t).

Indeed, by definition,

D−ν [tnf(t)] =
1

Γ(ν)

∫ t

0

(t− τ)ν−1[τnf(τ)]dτ.

Writting

τn = [t− (t− τ)]n =
n∑

k=0

(−1)kCk
nt

n−k(t− τ)k,

and applying the generalized binomial coefficients (2.7.2), we have

D−ν [tnf(t)] =
1

Γ(ν)

n∑
k=0

(−1)kCk
nt

n−k

∫ t

0

(t− τ)ν+k−1f(τ)dτ

=
1

Γ(ν)

n∑
k=0

(−1)kCk
nΓ(ν + k)t

n−kD−ν−kf(t)

=

n∑
k=0

Ck
−ν [D

ktn][D−ν−kf(t)],

where Ck
−ν = (−1)kΓ(k + ν)/k!Γ(ν).

Theorem 2.1.5 Suppose that f is continuous on [0, T ] and g is analytical

at t for arbitrary t ∈ [0, T ]. Then for any ν > 0 and 0 < t � T , there holds

D−ν [f(t)g(t)] =
∞∑
k=0

Ck
−ν [D

kg(t)][D−ν−kf(t)].

Proof The idea of proof is illustrated in the above example. From the

assumptions of f and g, we have fg ∈ C. Therefore, the fractional integral
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D−ν{f(t)g(t)} exists for arbitrary ν > 0. Since g is analytic, it can be

expanded in Taylor series

g(τ) = g(t) +

∞∑
k=1

Dkg(t)

k!
(τ − t)k,

which converges uniformly on τ ∈ [0, t]. Substituting this into the expression

of D−ν [f(t)g(t)], we have

D−ν [f(t)g(t)] =
1

Γ(ν)

∫ t

0

(t− τ)ν−1[f(τ)g(τ)]dτ

=g(t)D−νf(t) +
1

Γ(ν)

∫ t

0

(t− τ)νf(τ)[
∞∑
k=1

(−1)kD
kg(t)

k!
(τ − t)k−1

]
dτ.

Since f is continuous on [0, T ] and ν > 0, (t − τ)νf(τ) is bounded on [0, t],

and hence interchanging the order of integration and summation yields

D−ν [f(t)g(t)] =g(t)D−νf(t) +
∞∑
k=1

(−1)kΓ(ν + k)
k!Γ(ν)

[Dkg(t)][D−ν−kf(t)]

=

∞∑
k=0

Ck
−ν [D

kg(t)][D−ν−kf(t)].

This completes the proof.

2.1.2 R-L fractional derivatives

Based on the R-L fractional integral, the R-L derivative can be defined nat-

urally.

Definition 2.1.2 Let f ∈ C and μ > 0. Suppose that m is the smallest

integer greater than μ and m = μ+ ν for ν ∈ (0, 1]. Then the μ-th fractional

derivative of f is defined by

Dμf(t) = Dm[D−νf(t)], μ > 0, t > 0,

where Dm represents the traditional m-th derivative.

Consider the special case μ = n. In this case, m = n + 1, ν = 1 and by

definition

Dμf(t) = Dn+1[D−1f(t)] = Dnf(t),

where the right hand side is understood in the classical sense of derivatives.

Namely, when μ = 0, 1, 2, · · · are integers, the fractional derivative reduces to
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the conventional derivative. This is why it does not make confusions to use

the conventional derivative symbol D in fractional derivative. When μ = n is

an integer, the condition f ∈ C is not necessary for the existence of Dnf(t).

For example, f(t) = t−1 does not belong C, however Df(t) obviously exists.

Indeed, in this situation, f(t) has arbitrary integer-order derivatives.

To give some insight for the differences between the R-L fractional inte-

grals and the R-L fractional derivatives, we consider the following two exam-

ples.

Example 2.1.3 (Continuation of Example 2.1.1) Consider f(t) = tλ, λ >

−1, obviously, f ∈ C. Assume μ > 0 and m is the smallest integer greater

than μ, then by definition Dμ[tλ] = Dm[D−νtλ] for ν = m−μ > 0. But from

Example 2.1.1, we have

D−νtλ =
Γ(λ+ 1)

Γ(λ+ ν + 1)
tλ+ν , t > 0.

From this, we can see that

Dμtλ =
Γ(λ+ 1)

Γ(λ+ ν + 1)
Dmtλ+ν =

Γ(λ+ 1)

Γ(λ− μ+ 1)
tλ−μ, t > 0.

Comparing this example with Example 2.1.1, we see that the fractional

derivative of tλ of the order μ can be written in the form of a fractional inte-

gral in Example 2.1.1 by replacing the integrating order ν with −μ. Namely,

if D−νtλ represents the ν-th R-L integral of tλ, then the μ-th R-L derivative

Dμtλ of tλ can be expressed as Dμtλ = [D−νtλ]|ν=−μ and vice versa. How-

ever, it does not always hold for general functions in C. This is illustrated in

the following example.

Example 2.1.4 Consider f(t) = et, then by definition

Dνet = Dν
∞∑
k=0

tk

k!
=

∞∑
k=0

tk−ν

Γ(k − ν + 1)
. (2.1.7)

When ν = n is a positive integer, then Dnet = et, which is the correct answer.

But by definition of the R-L fractional integral,

D−1et =

∫ t

0

eτdτ = et − 1.

Therefore, we cannot find Det from D−1et and vice versa.

The following is a generalization of Theorem 2.1.2.
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Theorem 2.1.6 (1) Suppose that f ∈ C([0,∞)) and if p � q � 0, that

Dp−qf(t) exists, then

Dp[D−qf(t)] = Dp−qf(t). (2.1.8)

(2) When Dnf ∈ C([0,∞)) and 0 � k − 1 � q < k, then for all t > 0

D−p[Dqf(t)] = Dq−pf(t)−
k∑

j=1

tp−j

Γ(1 + p− j)D
q−jf(0). (2.1.9)

Proof First, we prove (2.1.8). When p = q = n � 1 are integers, the equality

holds obviously. Taking now k−1 � p < k and using Theorem 2.1.1, we have

D−kf(t) = D−(k−p)[D−pf(t)],

and therefore

Dp[D−pf(t)] = Dk{D−(k−p)[D−pf(t)]} = Dk[D−kf(t)] = f(t).

This proves the theorem for p = q. For general p, q, two cases must be

considered: q � p � 0 and p > q � 0. When q � p � 0, by Theorem 2.1.1,

we have

Dp[D−qf(t)] = Dp{D−p[D−(q−p)f(t)]} = D−(q−p)f(t) = Dp−qf(t).

When p > q � 0, let m,n be integers such that 0 � m − 1 � p < m and

0 � n− 1 � p− q < n. Obviously, n � m. By definition of the R-L fractional

derivative and Theorem 2.1.1,

Dp[D−qf(t)] =Dm{D−(m−p)[D−qf(t)]}
=Dm[Dp−q−mf(t)] = DnDm−n[Dp−q−mf(t)]

=Dn[Dp−q−nf(t)] = Dp−qf(t).

Here, in the first and the second equalities, we have used Theorem 2.1.2 and

the fact that m − p > 0, m > 0 and q > 0, respectively. The third step is

obvious since m and n are both integers. In the last two steps, we have used

Definition 2.1.2 for p − q − m < 0, m − n � 0 and p − q − n < 0, n � 1,

respectively.

To prove (2.1.9), we first consider the case when p = q. By assumption

0 � k − 1 � p < k. From the definition of R-L fractional integral,

D−p[Dpf(t)] =
1

Γ(p)

∫ t

0

(t− τ)p−1Dpf(τ)dτ

=D

[
1

Γ(p+ 1)

∫ t

0

(t− τ)pDpf(τ)dτ

]
.

(2.1.10)
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The integral of {· · · } is given by

1

Γ(p+ 1)

∫ t

0

(t− τ)pDpf(τ)dτ

=
1

Γ(p+ 1)

∫ t

0

(t− τ)pDk[D−(k−p)f(τ)]dτ

=
1

Γ(p− k + 1)

∫ t

0

(t− τ)p−kD−(k−p)f(τ)dτ

−
k∑

j=1

Dk−j [D−(k−p)f(τ)]|τ=0

Γ(p+ 2− j) tp−j+1

=D−(p−k+1)[D−(k−p)f(t)]−
k∑

j=1

Dp−jf(0)

Γ(p+ 2− j) t
p−j+1

=D−1f(t)−
k∑

j=1

Dp−jf(0)

Γ(p+ 2− j) t
p−j+1,

where we have used Definition 2.1.2 and k − p > 0 in the first equality,

integration by parts k times in the second inequality, Definition 2.1.2 in

the third inequality and finally Theorem 2.1.2 in the last inequality. Since

Dpf(t) is integrable, Dp−jf(t) is bounded at the endpoint t = 0 for each

j = 1, 2, · · · , k, and hence all the terms in the above formula exist. Using

(2.1.10), if the fractional derivative Dpf(t) of f(t) is integrable, then

D−p[Dpf(t)] = f(t)−
k∑

j=1

tp−j [Dp−jf(0)]

Γ(p− j + 1)
, (k − 1 � p < k).

When p 
= q, two cases must be considered: q < p and q > p. When

q < p, Theorem 2.1.1 can be applied. When q > p, (2.1.8) can then be

applied. Recalling Example 2.1.3, we have in both cases

D−p[Dqf(t)] =Dq−p{D−q[Dqf(t)]}

=Dq−p

⎧⎨⎩f(t)−
k∑

j=1

[Dq−jf(0)]

Γ(q − j + 1)
tq−j

⎫⎬⎭
=Dq−p

⎧⎨⎩f(t)−
k∑

j=1

[Dq−jf(0)]

Γ(p− j + 1)
tp−j

⎫⎬⎭ .
The proof is complete.

Comparing Theorem 2.1.6 with Theorem 2.1.2, we can see that (2.1.9)

reduces to (1) of Theorem 2.1.2 when q = n and p = ν + n and (2.1.8)
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reduces to (2) of Theorem 2.1.2 when q = ν and p = n. Comparing (2.1.8)

with (2.1.9), we can see that unless Dp−jf(0) = 0 for 0 � k− 1 � p < k, the

R-L fractional derivative Dp and integral D−q do not commute in general.

Similar to Corollary 2.1.1, the commutativity of fractional derivatives can be

considered. By definition of the fractional derivative, we have

Dn[Dk−αf(t)] =
Dn+k

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ

=Dn+k−αf(t), 0 < α � 1.

(2.1.11)

Denoting p = k−α leads to Dn[Dpf(t)] = Dn+pf(t). On the other hand, by

definition of the R-L fractional integral and integration by parts, we have

D−n[f (n)(t)] =
1

(n− 1)!

∫ t

0

(t− τ)n−1f (n)(τ)dτ

=f(t)−
n−1∑
j=0

f (j)(a)tj

Γ(j + 1)
.

Using the conclusion (1) of Theorem 2.1.6, one gets

Dp[f (n)(t)] =Dp+n{D−n[f (n)(t)]}

=Dp+n

⎡⎣f(t)− n−1∑
j=0

f (j)(0)tj

Γ(j + 1)

⎤⎦
=Dp+n

⎡⎣f(t)− n−1∑
j=0

f (j)(0)tj−p−n

Γ(j + 1− n− p)

⎤⎦ .
(2.1.12)

This shows that Dn and Dp do not commute in general, except f (k)(0) = 0,

k = 0, 1, · · · , n− 1.

Furthermore, we can consider the commutativity of the R-L fractional

derivatives Dp and Dq. Assume m− 1 � p < m and n− 1 � q < n, then by

definition of fractional derivative and (2.1.9), we have

Dp[Dqf(t)] =Dm{D−(m−p)[Dqf(t)]}

=Dm

⎡⎣Dp+q−m −
n∑

j=0

Dq−jf(0)tm−p−j

Γ(1 +m− p− j)

⎤⎦
=Dp+qf(t)−

n∑
j=0

Dq−jf(0)t−p−j

Γ(1− p− j) .

(2.1.13)
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Similarly, there holds

Dq[Dpf(t)] = Dp+qf(t)−
m∑
j=0

Dp−jf(0)t−q−j

Γ(1− q − j) . (2.1.14)

Comparing these two formulas, it can be seen that the R-L fractional deriva-

tive operators Dq and Dp do not commute except p = q or the summations

of (2.1.13) and (2.1.14) are zero, i.e.,

Dp−jf(0) = 0, j = 1, 2, · · · ,m,
Dq−jf(0) = 0, j = 1, 2, · · · , n.

We continue to introduce the Leibniz rule for the fractional derivatives.

For this purpose, we introduce the subclass C of C. We say that f ∈ C

if f ∈ C has both a fractional integral and a fractional derivative of any

order. Let η(t) be analytical in a neighborhood of the origin, the family of

functions C can be defined as the space of all functions of the form tλη(t)

and tλ(ln t)η(t) with λ > −1. For example, polynomials, exponentials, sine

and cosine functions all belong to C .

Consider a simple case below. Assume μ > 0 and n be a positive integer,

then the R-L fractional integral of tnf(t) exists if f ∈ C. Let m be the

smallest integer greater than μ, then by definition of fractional derivative

Dμ[tpf(t)] = Dm[D−m+μtnf(t)].

From Example 2.1.2, we have

D−(m−μ)[tnf(t)] =

n∑
k=0

Ck
ν−m[Dktn][Dμ−m−kf(t)]. (2.1.15)

We can show that if f ∈ C , then for arbitrary l = 0, 1, 2, · · · , there holds

Dl[Dμ−m−kf(t)] = Dl+μ−m−kf(t).

Hence, if f ∈ C ,

Dμ[tnf(t)] =

n∑
k=0

Ck
μ−mD

m
{
[Dktn][D−m+μ−kf(t)]

}
=

n∑
k=0

Ck
μ−m

m∑
j=0

Cj
m[Dj+ktn][Dμ−j−kf(t)].
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Denote r = j + k, s = k, then

Dμ[tnf(t)] =

n∑
r=0

(
r∑

s=0

Cs
μ−mC

r−s
m

)
[Drtn][Dμ−rf(t)]

=

n∑
r=0

Cr
μ[D

rtn][Dμ−rf(t)], μ > 0.

(2.1.16)

Theorem 2.1.7 Suppose that f ∈ C and g is analytical at t for arbitrary

t ∈ [0, T ]. Then for any ν > 0 and 0 < t � T , there holds

Dμ[f(t)g(t)] =

∞∑
k=0

Ck
ν [D

kg(t)][D−ν−kf(t)].

Proof The proof is similar to Theorem 2.1.5, and hence omitted.

2.1.3 Laplace transforms of R-L fractional derivatives

The Laplace transform L is an important tool in fractional calculus. Readers

may refer to Appendix B for the definitions and properties. The purpose of

this section is to apply Laplace transform to fractional integrals and deriva-

tives, and compare them with the conventional integrals and derivatives. Let

F (s) and G(s) are the Laplace transforms of f and g, respectively, then there

holds

L

{∫ t

0

f(t− τ)g(τ)dτ
}

= F (s)G(s). (2.1.17)

Let μ > 0. If f ∈ C, then the μ-th R-L fractional integral D−μf(t) is, by

definition, a convolution of the kernel functions tμ−1 and f . Hence, if f is at

most exponentially increasing, then

L [D−μf(t)] =
1

Γ(μ)
L [tμ−1]L [f(t)] = s−μF (s), (2.1.18)

where F (s) is the Laplace transform of f(t).

Example 2.1.5 The following Laplace transforms hold

L [D−μtν ] =
Γ(ν + 1)

sμ+ν+1
, μ > 0, ν > −1,

L [D−μeat] =
1

sμ(s− a) , μ > 0,

L [D−μ cos at] =
1

sμ−1(s2 + a2)
, μ > 0.
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Compare the Laplace transforms of the following two case. In the first

case, we first take the R-L fractional order derivative and then the conven-

tional derivative, while in the second case, we first take the conventional

derivative and then the R-L fractional derivative. Let f ∈ C([0,∞)) and

Df ∈ C grow at most exponentially, then using (2.1.18) and the properties

of Laplace transform, we have for μ > 0

L {D−μ[Df(t)]} = s−μ
L [Df(t)] = s−μ[sF (s)− f(0)], (2.1.19)

while using Theorem 2.1.2, we have

L {D[D−μf(t)]} =L {D−μ[Df(t)]}+ s(0)

Γ(μ)
L
[
tμ−1

]
=s−μ[sF (s)− f(0)] + s−μf(0)

=s1−μF (s). (2.1.20)

This shows that the Laplace transforms in the two cases are different. Fur-

thermore, when μ → 0, the right term of (2.1.19) tends to sF (s) − f(0),
while the right term of (2.1.20) tends to sF (s). The underlying reason may

be that limμ→0
tμ−1

Γ(μ)
= 0, but limμ→0 L

[
tμ−1/Γ(μ)

]
= 1. This shows that

the Laplace transform L and the limit operator lim do not commute. Further

distinguishes can be seen in forthcoming chapters and sections.

Now, consider the Laplace transform of the R-L fractional derivative. Let

f ∈ C be of the form

f(t) = tλ
∞∑
n=0

ant
n or tλ(ln t)

∞∑
n=0

ant
n, λ > −1.

For simplicity, we only consider f(t) = tλη(t). By definition, we have

Dμf(t) = tλ−μ
∞∑
n=0

an
Γ(n+ λ+ 1)

λ(n+ λ+ 1− μ) t
n.

If f grows at most exponentially, the Laplace transform F (s) exists and can

be written as

F (s) =
1

sλ+1

∞∑
n=0

anΓ(n+ λ+ 1)s−n.

Moreover, if λ− μ > −1, then the Laplace transform of Dμf(t) exists and

L [Dμf(t)] =

∞∑
n=0

an
Γ(n+ λ+ 1)

sn+λ−μ+1
.
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Comparing these two formulas, one can see that L [Dμf(t)] = sμF (s) for

μ < λ + 1. When μ � 0, it reduces to the R-L fractional integral (refer to

(2.1.18)). When μ > 0, let m be the smallest integer greater than μ, then

μ−m � 0. If f ∈ C , by definition of the R-L fractional derivative, Dμf(t) =

Dm[D−(m−μ)f(t)] exists. Using the properties of Laplace transform, we have

L [Dμf(t)] =L {Dm[D−(m−μ)f(t)]}

=smL [D−(m−μ)f(t)]−
m−1∑
k=0

sm−k−1Dk[D−(m−μ)f(t)]|t=0

=sm[s−(m−μ)F (s)]−
m−1∑
k=0

sm−k−1Dk−(m−μ)f(0)

=sμF (s)−
m−1∑
k=0

sm−k−1Dk−(m−μ)f(0),

where m − 1 < μ � m. This is the Laplace transform of the R-L fractional

derivative. By comparing this formula to (2.1.18), we can see the differ-

ences and similarities between the R-L fractional integrals and R-L fractional

derivatives. In particular, we can compare the fractional order case with the

integer order case. When μ is an integer, this reduces to the situation of

integer order case.

2.1.4 Caputo’s definitions of fractional derivatives

Caputo’s fractional derivative is another method for computing fractional

derivatives. It was introduced by M. Caputo in his paper [35]. See also

[35, 36, 78, 79]. The μ-th Caputo’ fractional derivative of f is defined by

C
aD

μ
t f(t) =

1

Γ(n− μ)
∫ t

a

f (n)(τ)

(t− τ)μ+1−n
dτ, (n− 1 < μ < n). (2.1.21)

Here, we denote the Caputo’s fractional derivative by C
aD

μ
t to distinguish it

from the R-L fractional derivative. Without confusions, the R-L fractional

derivative is still denoted by D. When a = 0, the μ-th Caputo’s fractional

derivative is simplified as CDμ. The obvious difference between the R-L frac-

tional derivative and the Caputo’s fractional derivative is the order of differ-

entiation. In the R-L fractional derivative, it first takes the fractional order

and then the integer order conventional derivative, while in the Caputo’s

fractional derivative, it first takes the integer order conventional derivative

and then the fractional order derivative.

First, we observe that when μ → n, the Caputo’s fractional derivative

reduces to the n-the derivative in the classical sense. Indeed, assume that
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0 � n− 1 < μ < n and f is a n+1 times continuously differentiable function

in [0, T ], then by definition and integration by parts, we have

CDμf(t) =
f (n)(0)tn−μ

Γ(n− μ+ 1)
+

∫ t

0

(t− τ)n−μf (n+1)(τ)

Γ(n− μ+ 1)
dτ.

By dominated convergence, taking μ→ n then yields

lim
μ→n

CDμf(t) = f (n)(0) +

∫ t

0

f (n+1)(τ)dτ = f (n)(t), n = 1, 2, · · · .

This shows that, similar to the R-L approaches, the Caputo approach also

provides an interpolation between the integer order derivatives.

Now, we make a simple comparison between the Riemann-Liouville frac-

tional derivative and the Caputo’s fractional derivative. The R-L fractional

derivative and Caputo’s fractional derivative can both be expressed by the

R-L fractional integrals. The ν-th R-L fractional integral can be written as

D−νf(t) =
1

Γ(ν)

∫ t

0

f(τ)dτ

(t− τ)1−ν
, ν > 0.

By R-L fractional integral D−ν , the R-L fractional derivative can be written

as

RL
0 D

μ
t f(t) =

1

Γ(ν)

dn

dtn

∫ t

0

f(τ)dτ

(t− τ)1−ν
=

dn

dtn
[D−νf(t)],

for ν = n − μ > 0. Similarly, for ν = n − μ > 0, by the R-L integral D−ν ,

the Caputo’s fractional derivative can be written as

C
0D

μ
t f(t) =

1

Γ(ν)

∫ t

0

f (n)dτ

(t− τ)1−ν
= D−ν

[
dn

dtn
f(t)

]
.

Therefore, the R-L fractional derivative takes a fractional integral first and

then integer order derivatives, while the Caputo fractional derivative takes

an integer order derivative first and then fractional integral. They are related

by

RL
0 D

μ
t f(t) =

C
0D

μ
t f(t) +

n−1∑
k=0

tk−μ

Γ(k − μ+ 1)
f (k)(0),

for t > 0 and μ ∈ (n−1, n]. The right hand side is equivalent to the Grunwald-

Letnikov definition of fractional derivative, which requires that the function

f(t) be n times continuously differentiable. But the Riemann-Liouville def-

inition provides an excellent opportunity to weaken the conditions on the
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function f(t). It is enough to require that f(t) is integrable, then (2.1.2)

exists for all t > 0 and can be differentiated k times.

Although the R-L fractional derivative weakens the conditions on the

function f(t), Caputo’s fractional derivatives are more widely used in initial

values problems of differential equations and have stronger physical inter-

pretations. This can be illustrated via the Laplace transform. The Laplace

transform of the R-L fractional derivative is from the last section

L
[
RL
0 D

μ
t f(t)

]
(s) = sμF (s)−

n−1∑
k=0

(RL
0 D

μ−k−1
t f(t))|t=0 · sk. (2.1.22)

Hence in general, to solve a initial value problem of a fractional differen-

tial equation, we have to know the fractional initial conditions (RL
0 D

μ−k−1
t

f(t))|t=0, k = 0, · · · , n− 1 of f(t). Although the initial value problems with

such fractional initial conditions can be solved mathematically, their solu-

tions are practically useless, since there is no known physical interpretation

for such types of initial conditions. For a specific physical system, the initial

conditions are the measurable conditions of a system but not the fractional

derivative conditions. On the other hand, the Laplace transform of the Ca-

puto’s fractional derivative is (cf. [35])

L [C0D
μ
t f(t)](s) = s

μF (s)−
n−1∑
k=0

sμ−k−1(Dk
t f(t))|t=0. (2.1.23)

To solve an initial value problem of the Caputo type, like the integer order dif-

ferential equations, only initial values of integer order derivatives of unknown

functions at the initial time required. The Caputo fractional derivative can

better reconcile the well-established and polished mathematical theory with

practical needs.

2.1.5 Weyl’s definition for fractional derivatives

The Weyl fractional calculus was first introduced by Weyl in [219]. Let f be

of the Schwartz class, the μ-th Weyl fractional integral of f is defined as

tW
−μ
∞ f(t) =

1

Γ(μ)

∫ ∞

t

(τ − t)μ−1f(τ)dτ, Reμ > 0, t > 0. (2.1.24)

Usually, we use to W−μ to simplify tW
−μ
∞ . Let τ = t+ ξ, then

W−νf(t) =
1

Γ(ν)

∫ ∞

0

ξν−1f(t+ ξ)dξ,



February 6, 2015 16:42 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-1-2 page 53

2.1 Fractional integrals and derivatives 53

and hence

D[W−νf(t)] =D

[
1

Γ(ν)

∫ ∞

0

ξν−1f(t+ ξ)dξ

]
=

1

Γ(ν)

∫ ∞

0

ξν−1 ∂

∂t
f(t+ ξ)dξ

=
1

Γ(ν)

∫ ∞

0

ξν−1Df(t+ ξ)dξ

=W−ν [Df(t)].

Similarly, for a general positive integer n, one obtains

Dn[W−νf(t)] = W−ν [Dnf(t)]. (2.1.25)

Now we consider the composition of two Weyl integral operators. If f is

rapidly decreasing, then W−μf(t) is also rapidly decreasing, hence for any

arbitrary ν > 0

W−ν
[
W−μf(t)

]
=

1

Γ(μ)
W−ν

[∫ ∞

t

(τ − t)μ−1f(τ)dτ

]
=

1

Γ(μ)Γ(ν)

∫ ∞

t

(ξ − t)ν−1dξ

[∫ ∞

ξ

(τ − ξ)μ−1f(τ)dτ

]
.

By definition of the Beta function, we have

W−ν
[
W−μf(t)

]
=
B(μ, ν)

Γ(μ)Γ(ν)

∫ ∞

t

(τ − t)μ+ν−1f(τ)dτ,

yielding that

W−νW−μ =W−(μ+ν). (2.1.26)

The Weyl fractional derivative is defined by the Weyl fractional integral,

just like the R-L fractional derivative is defined from the R-L fractional in-

tegral. Let L = −D, then (2.1.25) can be written as

LnW−ν =W−νLn. (2.1.27)

For a rapidly decreasing function f , by integration by parts and (2.1.27), we

have

W−μf(t) =
1

Γ(μ)

∫ ∞

t

(τ − t)μ−1f(τ)dτ

=W−(μ+n)[Lnf(t)]

=Ln[W−(μ+n)f(t)].

Applying the operator Lm at both sides then yields

Lm[W−μf(t)] = Lm+n[W−(μ+n)f(t)]. (2.1.28)
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Definition 2.1.3 Let μ > 0 and n = [μ] + 1 be the smallest integer greater

than μ. Denote ν = n−μ, assume the −ν-th Weyl integral of the function f

exists and is n-times continuously differentiable, then the μ-th Weyl derivative

of f is defined as

Wμf(t) = Ln[W−(n−μ)f(t)]. (2.1.29)

Example 2.1.6 We give two examples here.

1. Let μ > 0 and a > 0, then by definition, we have W−μe−at = a−μe−at.

Let n = [μ] + 1 be the smallest integer greater than μ and ν = n− μ. First,

by definition of the Gamma function

W−νe−at =
1

Γ(ν)

∫ ∞

t

(τ − t)ν−1e−aτdτ

=a−νe−atΓ(ν)

∫ ∞

0

tν−1e−tdt

=a−νe−at.

The result then follows from (2.1.29).

2. Let λ > ν > 0, then by definition of the Weyl integral, definition of the

Beta function, change of variable and B(ν, λ − ν) = Γ(ν)Γ(λ − ν)/Γ(λ), we
then have W−νt−λ = Γ(λ− ν)tν−λ/Γ(λ). Let n be such that 0 < n− μ < λ,
then by (2.1.29), the μ-th Weyl derivative of t−λ is given by

W μt−λ = Ln[W−(n−μ)t−λ] = Γ(λ+ μ)t−μ−λ/Γ(λ).

Proposition 2.1.1 For any arbitrary μ, there holds W−μWμ = I =

WμW−μ.

Proof First, when μ = n is a positive integer, by integration by parts n-times,

we have

W−n[Lnf(t)] =
1

Γ(n)

∫ ∞

t

(τ − t)n−1Lnf(τ)dτ = f(t),

yielding the result. More generally, let n = [μ] + 1 be the smallest positive

integer greater than μ. Using (2.1.26), we know

Wμ
[
W−μf(t)

]
=Ln{W−(n−μ)[W−μf(t)]}
=Ln[W−nf(t)]

=f(t).
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Similarly, by definition, (2.1.29), (2.1.27) and (2.1.26), we have

W−μ [Wμf(t)] =W−μ
[
LnW−(n−μ)f(t)

]
=Ln

[
W−μW−(n−μ)f(t)

]
=Ln

[
W−nf(t)

]
=f(t).

This completes the proof.

Similarly to (2.1.26), we can prove the law of exponents of the Weyl

fractional derivative. We shall define W 0 = I, the identity operator.

Proposition 2.1.2 Let μ and ν be real numbers, then the Weyl fractional

derivative satisfies the following exponential relation

W μW ν =Wμ+ν .

Proof The proof is omitted.

Finally, we consider the Leibniz rule of the Weyl fractional integral. To

illustrate, we first consider W−μ{tnf(t)} and note

τn = [(τ − t) + t]n =

n∑
k=1

Ck
n(τ − t)ktn−k.

Therefore,

W−μ[tnf(t)] =
1

Γ(μ)

n∑
k=0

Ck
nt

n−k

∫ ∞

t

(τ − t)μ−1(τ − t)kf(τ)dτ

=

n∑
k=0

Γ(μ+ k)

Γ(μ)
Ck

nt
n−kW−μ−kf(t)

=
n∑

k=0

Γ(μ+ k)

Γ(μ)k!
[Dktn][W−μ−kf(t)].

By using the generalized binomial formula, we then arrive at the more familiar

form

W−μ[tnf(t)] =
n∑

k=0

Ck
−μ[L

ktn][W−μ−kf(t)]. (2.1.30)

More generally, similarly to Theorem 2.1.5, we have
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Theorem 2.1.8 Let f and g are two rapidly decreasing functions, and g is

an entire function, then for arbitrary μ > 0,

W−μ[f(t)g(t)] =
∞∑
k=0

Ck
−ν [L

kg(t)][W−ν−kf(t)].

Proof The proof is omitted for simplicity.

2.2 Fractional Laplacian

As is well known, the standard Laplace operator (Laplacian) Δ = ∂2x1
+ · · ·+

∂2xd
in a d-dimensional domain possess an explanation in terms of the dif-

fusion and Brownian motion. This explanation has enormous success both

in Mathematics and Physics. In recent years, there has been a plenty of

work on anomalous diffusion, with standard Laplace operator replaced by the

so-called fractional Laplace operator, with the aim of extending the diffusion

theory by taking into account the long range interactions. As we will see,

such a Laplacian is non-local and do not act by pointwise differentiation but

by a global integration with respect to a singular kernel. This section consists

of the definition and basic properties of the fractional Laplacian, pseudodif-

ferential operator, Riesz and Bessel potentials and fractional Sobolev spaces,

and finally commutator estimates for the fractional Laplacian. These are

very fundamental topics in analysis and partial differential equations with

fractional Laplcian.

2.2.1 Definition and properties

Let f ∈ S(Rd) be a function in the Schwartz class, then −Δf = F−1(|ξ|2Fu).
The (−Δ)α/2f can be defined naturally via Fourier transform

̂(−Δ)α/2f(ξ) = |ξ|αf̂(ξ).

The fractional Laplacian on a torus can be similarly defined. The interest in

these fractional Laplacian operators has a long history in probability since

the fractional Laplacian (−Δ)α for α ∈ (0, 2) are infinitesimal generators

of stable Lévy processes. Indeed, let X = {Xt : t � 0,Px, x ∈ Rd} be a

rotational invariant α-stable process in Rd, then X is a Lévy process, and

for arbitrary x ∈ Rd and ξ ∈ Rd, Ex

[
eiξ·(Xt−X0)

]
= e−t|ξ|α . For such a

process, the generator is −(−Δ)α, and can be represented by

− (−Δ)α/2f(x) = cd,α lim
ε↓0

∫
|y−x|>ε

f(y)− f(x)
|x− y|d+α

dy, (2.2.1)
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where cd,α =
2α−1αΓ((d + α)/2)

π
d/2Γ(1− α/2) is a normalization constant. By a change

of variable, this is equivalent to

−(−Δ)α/2f(x) =
1

2
cd,α lim

ε↓0

∫
|y−x|>ε

f(x+ y) + f(x− y)− 2f(x)

|y|d+α
dy.

This formula is very useful in studying local properties of equations involv-

ing the fractional Laplacian and regularity for critical semilinear problems.

When α ∈ (0, 2), the operators (−Δ)−α/2 is defined to be the inverse of

(−Δ)α/2 and are given by the standard convolution

(−Δ)−α/2f(x) = cd,−α

∫
Rd

|x− y|−d+αf(y)dy, (2.2.2)

in terms of the Riesz potential, where cd,−α =
Γ((d− α)/2)
π
d/22αΓ(α/2)

.

In what follows, we consider some properties of the fractional Laplacian,

which proves very useful in partial differential equations. For notational

simplicity, we denote Λ = (−Δ)
1
2 and hence Λα = (−Δ)α/2. The following

discussion is based on R2 or T2, but can be extended to Rd or Td without

essential difficulties. First we prove (2.2.1) from the Riesz potential (2.2.2).

The following several theorems are modified from [58].

Proposition 2.2.1 Let 0 < α < 2, x ∈ R2, and f ∈ S is a function in the

Schwartz class, then

Λαf(x) = cαP.V.

∫
R2

f(x)− f(y)
|x− y|2+α

dy, (2.2.3)

where cα > 0 is a constant.

Proof By definition of the Riesz’s potential, Λα can be expressed

Λαf(x) =Λα−2(−Δf) = cα
∫
R2

−Δf(y)
|x− y|α dy

=cα

∫
R2

Δy[f(x)− f(y)]
|x− y|α dy

= lim
ε→0

cα

∫
|x−y|�ε

Δy[f(x)− f(y)]
|x− y|α dy

= : lim
ε→0

cαΛ
α
ε θ,
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where cα =
Γ
(α
2

)
π22−αΓ

(
1− α

2

) . By Green’s formula, we have

Λα
ε f(x) =c̃α

∫
|x−y|�ε

f(x)− f(y)
|x− y|2+α

dy

+

∫
|x−y|=ε

[f(x)− f(y)]
∂

1

|x− y|α
∂n

dSy

−
∫
|x−y|=ε

1

|x− y|α
∂(f(x)− f(y))

∂n
dSy

=I1 + I2 + I3,

where c̃α > 0 is a constant and n is the unit external normal vector. When

ε→ 0,

I2 =
1

εα+1

∫
|x−y|=ε

[f(x)− f(y)]dSy = O(ε2−α)→ 0,

I3 =
1

εα

∫
|x−y|=ε

∂[f(x)− f(y)]
∂n

dSy = O(ε2−α)→ 0,

and I1 is what we want, yielding the result.

Proposition 2.2.2 Let 0 < α < 2, x ∈ T2 and f ∈ S be a Schwartz

function, then

Λαf(x) = cα
∑
k∈Z2

P.V.

∫
T2

f(x)− f(y)
|x− y − k|2+α

dy, (2.2.4)

where cα > 0 is a constant.

Proof From the definition,

Λαf(x) =
∑
|k|>0

|k|αf̂(k)eik·x = −
∑
|k|>0

|k|αΔ̂f(k)eik·x.

Let χ ∈ C∞ be a truncated function

χ(x) =

{
0, when |x| � 1

1, when |x| � 2,

and ϕε(x) = ε
−2ϕ(x

ε
) be a standard approximation of the identity with

0 � ϕ � C∞, suppϕ ⊂ B1 and

∫
ϕ = 1.
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Let Φε(x) = (|x|α−2)ε ∗ ϕε(x), where (|x|α−2)ε = |x|α−2 ∗ χ
( |x|
ε

)
, then

Λαf(x) =− lim
ε→0

∑
Φε(k)Δ̂f(k)e

ik·x

=− lim
ε→0

(∑
Φε(k)e

ik·x
)
∗
(∑

Δ̂f(k)eik·x
)
.

Taking Poisson summation then yields

Λαf(x) =− lim
ε→0

(∑
Φ̂ε(x− k)

)
∗Δf(x)

= lim
ε→0

∑∫
T2

Φ̂ε(x − y − k)Δ(f(x) − f(y))dy

= lim
ε→0

∑∫
T2

Δ(Φ̂ε)(x− y − k)(f(x)− f(y))dy. (2.2.5)

Noting

Φ̂ε(η) =(|̂x|α−2)ε(η) · ϕ̂ε(η) = (|̂x|α−2)ε(η) · ϕ̂(εη),
ΔΦ̂ε(η) =Δ((|̂x|α−2)ε)(η) · ϕ̂(εη) +O(ε),

(|̂x|α−2)ε(η) =
cα
|η|α −

∫
e−iη·x|x|α−2

(
1− χ

( |x|
ε

))
dx,

Δ((|̂x|α−2)ε)(η) =
c̃α
|η|α+2

−
∫

e−iη·x|x|α
(
1− χ

( |x|
ε

))
dx,

there exists δ > 0 such that∑
k

Δ(Φ̂ε)(y − k) = c̃α
∑
k

1

|y − k|α+2
+O

(∑
k

1

|y − k|2+δ
O(εδ)

)
.

Substituting this formula into (2.2.5) completes the proof.

The positive property is often useful in PDEs, which was firstly presented

by A. Cordoba and D. Cordoba [58], and then extended to the general situa-

tion by Ju [120]. See also [57]. First consider the Laplacian Δ = (∂2x1
+ ∂2x2

)

in R2, using the chain rule, we obtain

Δ(f2)− 2fΔf = 2|∇f |2 � 0, (2.2.6)

which can also be rewritten in the following form

2f(−Δ)f � (−Δ)(f2(x)).

This pointwise positivity plays an important role in a priori estimates of

PDEs, and is often essential. The results derived from Cordoba-Cordoba

and Ju extend (2.2.6) to fractional Laplacian.
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Lemma 2.2.1 Let 0 < α < 2, x ∈ R2 or T2 and f ∈ S be a Schwartz

function, then there holds the following pointwise estimate

2fΛαf(x) � Λα(f2)(x). (2.2.7)

Proof From Proposition 2.2.1, we have

2fΛαf(x) =2cαP.V.

∫
[f2(x)− f(y)f(x)]
|x− y|α+2

dy

=cαP.V.

∫
[f(x) − f(y)]2
|x− y|α+2

dy + cαP.V.

∫
[f2(x)− f2(y)]
|x− y|α+2

dy

�Λα(f2)(x).

This completes the proof.

Proposition 2.2.3 Let 0 < α < 2, x ∈ R2 or T2 and f,Λαf ∈ Lp for

p = 2n, then there holds∫
|f |p−2fΛαfdx �

1

p

∫
|Λα

2 (f
p
2 )|2dx. (2.2.8)

Proof The situations for α = 0 and α = 2 obviously hold. When 0 <

α < 2, repeatedly using (2.2.7), we have∫
|f |p−2fΛαfdx �

1

2

∫
|f |p−2Λαf2dx =

1

2

∫
|f |p−4f2Λαf2dx

�
1

4

∫
|f |p−4Λαf4dx � · · · � 1

2n−1

∫
|f |2n−1

Λαf2
n−1

dx.

Using the Parseval’s identity, one completes the proof.

Because of the restriction p = 2n, this theorem can not be well applied to

many situations. To generalize this result to arbitrary p � 2, we first prove

the following lemma, which can be regarded as a generalization of Lemma

2.2.1. See [120].

Lemma 2.2.2 Assume α ∈ [0, 2], β + 1 � 0 and f ∈ S, then there holds

|f(x)|βf(x)Λαf(x) �
1

β + 2
Λα|f(x)|β+2. (2.2.9)

Proof We consider the case α ∈ (0, 2). Similar to the proof of Lemma

2.2.1, by the Riesz potential, we have

Λαf(x) = cαP.V.

∫
f(x)− f(y)
|x− y|2+α

dy,



February 6, 2015 16:42 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-1-2 page 61

2.2 Fractional Laplacian 61

which yields

|f(x)|βf(x)Λαf(x) = cαP.V.

∫ |f(x)|β+2 − |f(y)|βf(x)f(y)
|x− y|2+α

dy. (2.2.10)

When β + 1 > 0, by using the Young’s inequality,

|f(y)|βf(x)f(y) � |f(x)|β+1|f(y)| � β + 1

β + 2
|f(x)|β+2 +

1

β
|f(y)|β+2,

hence

|f(x)|βf(x)Λαf(x) �cα
1

β + 2
P.V.

∫ |f(x)|β+2 − |f(y)|β+2

|x− y|2+α
dy

=
1

β + 2
Λα|f(x)|β+2.

When β + 1 = 0, directly estimating (2.2.10) yields the conclusion.

Remark 2.2.1 When α ∈ [0, 2], β, γ > 0, if f ∈ S and f � 0, then there

holds the pointwise estimate

fβ(x)Λαfγ(x) �
γ

β + γ
Λαfβ+γ(x). (2.2.11)

Theorem 2.2.1 Let α ∈ [0, 2] and f,Λαf ∈ Lp, then for any arbitrary

p � 2, there holds ∫
|f |p−2fΛαfdx �

2

p

∫ (
Λ

α
2 |f | p2

)2
dx.

Proof When α = 0 or α = 2, and p = 2, the theorem obviously holds.

Let p > 2 and α ∈ (0, 2), and assume f ∈ S. Let β =
p

2
− 1, then β + 1 > 0,

using the lemma above, we obtain∫
|f(x)|p−2f(x)Λαf(x)dx =

∫
|f(x)| p2 |f(x)|βf(x)Λαf(x)dx

�

∫
2

p
|f(x)| p2Λα|f(x)| p2 dx

=
2

p

∫ (
Λ

α
2 |f | p2

)2
dx.

The proof is complete.

These estimates can be developed for complex functions, which are very

useful for complex partial differential equations, such as Ginzburg-landau

equation and nonlinear Schrödinger equation.
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Proposition 2.2.4 Let α ∈ [0, 2] and f ∈ S be complex, then there holds

the following pointwise estimate

f∗(x)Λαf(x) + f(x)Λαf∗(x) � Λα|f |2(x).

Proof We only consider the case α ∈ (0, 2). From the definition, we have

Λαf(x) = cα P.V.

∫
Rd

f(x)− f(y)
|x− y|d+α

dy, (2.2.12)

hence

f ∗(x)Λαf(x) + f(x)Λαf∗(x)

=cα P.V.

∫
Rd

(f(x)− f(y))f∗(x) + (f∗(x) − f∗(y))f(x)
|x− y|d+α

dy

�cα P.V.

∫
Rd

|f(x)|2 − |f(y)|2
|x− y|d+α

dy

=Λα|f |2(x).
Moreover, this theorem obviously holds for α = 0, 2.

Proposition 2.2.5 Let α ∈ [0, 2], β + 1 � 0 and f ∈ S, then there holds

the pointwise estimate

|f(x)|β(f∗(x)Λαf(x) + f(x)Λαf∗(x)) �
2

β + 2
Λα|f(x)|β+2.

Proof Using (2.2.12) and the Young’s inequality

|f(x)|βf∗(x)f(y) � β + 1

β + 2
|f(x)|β+2 +

1

β + 2
|f(y)|β+2,

one obtains

|f(x)|β(f∗(x)Λαf(x) + f(x)Λαf∗(x))

=cα P.V.

∫
Rd

2|f(x)|β+2 − |f(x)|β(f∗(x)f(y) + f(x)f∗(y))
|x− y|d+α

dy

�
2

β + 2
cα P.V.

∫
Rd

|f(x)|β+2 − |f(y)|β+2

|x− y|d+α
dy

=
2

β + 2
Λα|f |β+2(x).

When α = 0, 2 or β = 0, the conclusion obviously holds.

Lemma 2.2.3 Let α ∈ [0, 2], p � 2, f,Λαf ∈ Lp, then∫
|f |p−2(f∗Λαf + fΛαf∗)dx �

4

p

∫
(Λ

α
2 |f | p2 )2dx.
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Proof When p > 2 and α ∈ (0, 2),∫
|f(x)|p−2(f∗Λαf + fΛαf∗)dx =

∫
|f(x)| p2 |f(x)| p2−2(f∗Λαf + fΛαf∗)dx

�
4

p

∫
|f(x)| p2 Λα|f | p2 (x)dx

=
4

p

∫
(|Λα

2 |f | p2 )2dx.

For α = 0, 2 or p = 2, the theorem obviously holds.

2.2.2 Pseudo-differential operator

The research of pseudo-differential operators (PsDO) started with the work

of Kohn and Nirenberg in 1960s, cf. [127]. Before this, the work on PsDO

focused on singular integral and Fourier analysis; after this, the PsDO are

widely popularized, among which, Hörmander’s work is striking. At present,

the theory of PsDO becomes a powerful tool in partial differential equations

with variable coefficients and distributions of singularity set, especially in the

field of PDEs. This section simply introduces some concepts and properties

of PsDO. For more details, readers are referred to monographs [9,85,113,114,

186, 204, 212].

The function a ∈ C∞ is called a slowly increasing function, if there holds

∀α ∈ (N)d, ∃Mα ∈ N, ∃Cα > 0, s.t.|∂αa(x)| � Cα(1 + |x|)Mα , ∀x ∈ Rd.

For a slowly increasing function a(ξ), define the operator a(D) in S′(Rd) by
̂(a(D)u)(ξ) = a(ξ)û(ξ), where a(ξ) is called the symbol of the operator a(D).

Using the Fourier transform, for u ∈ S, one gets

(a(D)u)(x) =
1

(2π)d

∫
eix·ξa(ξ)û(ξ)dξ.

Taking into account the inverse Fourier transform, one can see that, at the

frequency ξ, the effect of a(D) is multiplying the complex amplitude û(ξ) by

the coefficient a(ξ) in the phase space. More generally, one can generalize a(ξ)

to a function a(x, ξ) depending on x, and leads to the following definition.

Definition 2.2.1 The PsDO is defined as a mapping u �→ Tau by the

following

(Tau)(x) = a(x,D)u(x) =
1

(2π)d

∫
Rd

eix·ξa(x, ξ)û(ξ)dξ, (2.2.13)

where

û(ξ) =

∫
Rd

u(x)e−ix·ξdx
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is the Fourier transform of u and a(x, ξ) is called the symbol of the operator

a(x,D).

For the definition above, generally, some additional conditions should be

included for a(x, ξ), which leads to the definition of the symbol class, denoted

by Sm.

Definition 2.2.2 Let m ∈ R, a function a belongs to Sm and is said to be of

order m, if a(x, ξ) ∈ C∞(Rd ×Rd) and satisfies the differential inequalities

|∂αx ∂βξ a(x, ξ)| � Cα,β(1 + |ξ|)m−|β|, (2.2.14)

for all multi-indices α and β. Define S−∞ =
⋂

m S
m.

Remark 2.2.2 We can also define a more general symbol class Sm
ρ,δ. Let

ρ, δ ∈ [0, 1],m ∈ R, Sm
ρ,δ is defined as the set of functions C∞ satisfying

|∂αx ∂βξ a(x, ξ)| � Cα,β〈ξ〉em−ρ|β|+δα,

for all multi-indices α and β, where 〈ξ〉 = (1 + |ξ|2)1/2.
Example 2.2.1 1. The symbol of the Laplacian operator Δ = ∂21 + · · ·+ ∂2d
is a(ξ) = −|ξ|2;

2. The symbol of the fractional Laplacian operator (−Δ)α/2 is a(ξ) = |ξ|α;
3. The symbol of partial differential operator L =

∑
|α|�m

aα(x)∂
α
x for aα ∈

C∞(Rd) is a(x, ξ) =
∑
|α|�m

aα(x)(iξ)
α, and a is called a differential symbol.

4. If ϕ ∈ S, then ϕ(ξ) ∈ S−∞;

5. The function a(x, ξ) = eix·ξ is not a symbol.

It is easy to see that the symbol of the differential operator L is the char-

acteristic polynomials of L. In particular, if a(x, ξ) = a1(ξ) does not depend

on x, then a(x,D) = a(D) is a multiplier operator â(D)u(ξ) = a1(ξ)û(ξ). If

a(x, ξ) = a2(x) does not depend on ξ, then a(x,D) is reduced to a multipli-

cation operator (a2(x,D)u)(x) = a2(x)u(x).

For a given symbol a ∈ Sm, it is not difficult to show that the operator

Ta maps S to itself. Firstly, if u ∈ S, then the integral (2.2.13) is absolutely

convergent, and Tau is infinitely differentiable. In fact, Tau is also rapidly

decreasing. Noting that (I − Δξ)e
ix·ξ = (1 + |x|2)eix·ξ, one can define an

invariant derivative operator Lξ = (1+|x|2)−1(I−Δξ) such that (Lξ)
Neix·ξ =

eix·ξ. Substituting this formula into (2.2.13), and integrating by parts, we

have

(Tau)(x) =
1

(2π)d

∫
(Lξ)

N [a(x, ξ)û(ξ)]eix·ξ.
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Hence Tau is rapidly decreasing. From this, one can show that Ta maps S to

itself, and the mapping is continuous. Indeed, if {ak} satisfies the inequality

(2.2.14) uniformly and is pointwise convergent to the symbol a ∈ Sm in Sm,

then Tak
(u)→ Ta(u) is convergent in S, where u ∈ S.

We also hope that Ta can be extended to more wide function class S′.
The definition (2.2.13) can be rewritten in the following form

(Tau)(x) =
1

(2π)d

∫∫
a(x, ξ)eiξ·(x−y)u(y)dydξ. (2.2.15)

However, even if f ∈ S, this integral is not necessarily absolutely convergent.

To avoid such a situation, we can use symbols with compact support to

approximate a general symbol. Fix γ ∈ C∞c (Rd ×Rd), and γ(0, 0) = 1. Let

aε(x, ξ) = a(x, ξ)γ(εx, εξ), then if a ∈ Sm, we have aε ∈ Sm and satisfies

the inequality (2.2.14) uniformly for 0 < ε � 1. On the other hand, from

the definition of Tau, Taε(u) → Ta(u) in S as ε → 0 for arbitrary u ∈ S,
denoted by Taε → Ta. In this case, for the symbol a with compact support,

the integral (2.2.15) is absolutely convergent, and

(Tau)(x) = lim
ε→0

1

(2π)d

∫∫
aε(x, ξ)e

iξ·(x−y)u(y)dydξ.

Consider the integral expression of a PsDO. The purpose is to derive the

kernel function of a PsDO. First assume a ∈ S−∞, one obtains for u ∈ S

(Tau)(x) =
1

(2π)d

∫∫
a(x, ξ)eiξ·(x−y)u(y)dydξ

=
1

(2π)d

∫
u(y)dy

∫
eiξ·(x−y)a(x, ξ)dξ.

The kernel function K of the operator Ta can then be given by the following

oscillatory integral

K(x, y) =
1

(2π)d

∫
eiξ·(x−y)a(x, ξ)dξ = (F−1

ξ a)(x− y),

where F−1
ξ represents the inverse Fourier transform with respect to ξ. K(x, y)

is called the Schwartz kernel of the operator Ta = a(x,D).

Proposition 2.2.6 K(x, y) is smooth away from the diagonal Δ = {(x, y) ∈
Rd ×Rd : x = y} and

|K(x, y)| � AN |x− y|−N , ∀|x− y| � 1, ∀N > 0. (2.2.16)
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Proof For any arbitrary α � 0,

(x− y)αK(x, y) =
1

(2π)d

∫
eiξ·(x−y)Dα

ξ a(x, ξ)dξ,

where Dα = Dα1
1 · · ·Dαd

d , Dj = −i∂xj . From the definition of the symbol

class Sm, we can see that when |α| > m + d, this integral is absolutely

convergent, hence (x−y)αK is continuous. Similarly, evaluate j-th derivative

of the formula above, as long as |α| � m + j + d, and then the integral is

absolutely convergent, and (x− y)αK ∈ Cj(Rd×Rd). Simultaneously, there

exists a constantAα > 0 such that |x−y|α|K(x−y)| � Aα, where |α| > m+d.

In particular, (2.2.16) holds.

For a operator A mapping S to itself, we can define an operator A∗

mapping S to itself, such that 〈Au, v〉 = 〈u,A∗v〉 for all u, v ∈ S. By density

argument, one can see that if A∗ exists, then it is unique. Such an operator

A∗ is called the adjoint operator of A. In the situation of the PsDO defined

by (2.2.13), the dual operator of Ta can be defined as the operator T ∗a such

that

〈Tau, v〉 = 〈u, T ∗a v〉, ∀u, v ∈ S. (2.2.17)

Noting that 〈u, v〉 = ∫ u(x)v(x)dx, one immediately has

(T ∗a v)(y) = lim
ε→0

1

(2π)d

∫ ∫
aε(x, ξ)e

i(y−x)·ξv(x)dxdξ.

Using the invariant derivative, it is not difficult to verify T ∗a maps S to itself.

Hence, using the duality (2.2.17), one can extend Ta to a continuous mapping

which maps S ′ to itself S′.
The boundness estimate of operators is a key problem in the theory of

PDEs, many important results of which ultimately attribute to the boundness

of an operator in a certain norm.

Theorem 2.2.2 Let a ∈ S0, then the PsDO Ta = a(x,D) satisfies

‖Ta(u)‖L2 � A‖u‖L2, ∀u ∈ S. (2.2.18)

Hence Ta can be extended to a bound operator mapping L2 to itself.

Proof The proof is divided into three steps. First, assume a(x, ξ) is compactly

supported in x. Integrating by parts yields

(iλ)αâ(λ, ξ) =

∫
Rd

∂αx a(x, ξ)e
−ix·λdx
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and |(iλ)αâ(λ, ξ)| � Cα uniformly in ξ. Therefore for arbitrary N � 0,

sup
ξ
|â(λ, ξ)| � AN (1 + |λ|)−N . (2.2.19)

On the other hand,

(Tau)(x) =(2π)−d

∫
a(x, ξ)eix·ξû(ξ)dξ

=(2π)−2d

∫ ∫
â(λ, ξ)eiλ·xeix·ξû(ξ)dλdξ

=

∫
(T λu)(x)dλ,

where (T λu)(x) = (2π)−deiλ·x(Tâ(λ,ξ)u)(x). For a fixed λ, Tâ(λ,ξ) is a multi-

plier operator, yielding from the Plancherel’s theorem

‖Tâ(λ,ξ)u‖L2 � sup
ξ
|â(λ, ξ)| · ‖û‖L2 = (2π)d sup

ξ
|â(λ, ξ)| · ‖u‖L2.

Using (2.2.19), we have ‖T λ‖ � (2π)dAN (1 + |λ|)−N . From Ta =

∫
T λdλ,

letting N > d yields

‖Ta‖ � AN

∫
(1 + |λ|)−Ndλ <∞.

Secondly, we show the following auxiliary conclusion. For arbitrary x0 ∈
Rd,∫

|x−x0|�1

|(Tau)(x)|2dx � AN

∫
Rd

|u(x)|2
(1 + |x− x0|)N dx, ∀N � 0. (2.2.20)

Let x0 = 0 and B(r) = B(0, r) be the ball of radius r, centered at the

origin in Rd. Decompose u = u1 + u2 such that supp(u1) ⊂ B(3) and

supp(u2) ⊂ B(2)c, for smooth functions u1 and u2 with |u1|, |u2| � |u|. Fix

η ∈ C∞c such that η ≡ 1 in B(1), then ηTa(u1) = Tηa(u1) in B(1) and

η(x)a(x, ξ) has compact support in x. Using the results of the first step, one

has ∫
B(1)

|Tau1|2 �

∫
Rd

|Tηau1|2 � A

∫
Rd

|u1|2 � A

∫
B(3)

|u|2. (2.2.21)

For u2, using the Schwartz kernel to obtain

(Tau2)(x) =

∫
B(2)c

K(x, y)u2(y)dy.
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When x ∈ B(1), we have |x− y| � 1 for y ∈ B(2)c and hence there exists a

constant such that |x− y| � c(1 + |y|). Using Proposition 2.2.6, we obtain

|(Tau2)(x)| �A
∫
B(2)c

|u(y)||x− y|−Ndy

�AN

∫
|u(y)|(1 + |y|)−Ndy.

Letting N > n and using the Schwartz’s inequality to obtain∫
B(1)

|(Tau2)(x)|2dx � A

∫ |u(x)|2
(1 + |x|)N dx. (2.2.22)

Combining (2.2.21) and (2.2.22), (2.2.20) holds when x0 = 0.

When x0 
= 0, let τh be the translation operator such that (τhu)(x) =

u(x−h) for h ∈ Rd. Then it is easy to verify τhTaτ−h = Tah
, where ah(x, ξ) =

a(x− h, ξ). Since ah and a satisfy the same estimate in (2.2.14) independent

of h, (2.2.20) also holds for ah independent of h. Setting h = x0, we see that

(2.2.20) holds and the coefficient AN is independent of x0.

Finally, we prove (2.2.18) without assuming that a(x, ξ) is compactly sup-

ported in x. Integrating (2.2.20) in Rd with respective to x0 and exchanging

the orders of integration, one obtains

|B(1)|
∫
|(Tau)(x)|2dx � AN

∫∫ |u(x)|2
(1 + |x− x0|)N dxdx0 � A‖u‖2L2,

i.e.,

‖Tau‖L2 � A‖u‖L2,

completing the proof of the theorem.

Theorem 2.2.3 If a1 ∈ Sm1 , a2 ∈ Sm2, then there exists a symbol b ∈
Sm1+m2 such that Tb = Ta1 ◦ Ta2 , and b ∼

∑
α

1

α!
∂ξa1∂

α
x a2.

The proof is omitted here. After a simple calculation, b can be given by

( [212, Vol.II])

b(x, ξ) = (2π)−d

∫
e−i(x−y)(ξ−η)a1(x, η)a2(y, ξ)dydη.

From the boundness of S0 in L2, it is easy to show

Corollary 2.2.1 Let a ∈ Sm, then Ta = a(x,D) : Hs(Rd) → Hs−m(Rd)

defined by a is a bounded linear operator.
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Proof By definition, the symbol of Jm = (I −Δ)−m/2 is 〈ξ〉e−m ∈ S−m and

J −m : Hs(Rd) → Hs−m(Rd) is a bounded linear operator. By symbolic

calculus, there exists b ∈ S0 such that Tb = Ta ◦ Jm : Hs−m → Hs−m is a

bounded linear operator. Hence Ta = Tb ◦ J−m : Hs → Hs−m is a bounded

linear operator.

From the theory of singular integral, the following conclusions can be

drawn, cf. [204, 212].

Theorem 2.2.4 Let a ∈ S0, then Ta can be extended to a bounded linear

operator from Lp(1 < p < ∞) to itself. Similarly, if a ∈ Sm, then Ta :

W s,p →W s−m,p is a bounded linear operator.

Theorem 2.2.5 Let σ ∈ C∞(Rd ×Rd − (0, 0)) satisfy

|∂αξ ∂βη σ(ξ, η)| � Cα,β(|ξ|+ |η|)−(|α|−|β|), ∀(ξ, η) 
= (0, 0), α, β ∈ (Z+)d.

(2.2.23)

Let σ(D) be the following bilinear operator

σ(D)(a, h)(x) =

∫∫
ei〈x,ξ+η〉σ(ξ, η)â(ξ)ĥ(η)dξdη,

then

‖σ(D)(a, h)‖2 � C‖a‖∞‖h‖2.
Remark 2.2.3 For the proof of this theorem, readers can refer to [48, p.154].

The result can also be generalized to Lp(1 < p < ∞), see the literature [62,

p.382]. Indeed, they verified that when a(·) is fixed, the linear operator T (·)=
σ(D)(a, ·) is a Calderon-Zygmund operator, and the norm can be bounded

by C‖a‖∞. In this theorem, we only need to assume (2.2.23) for |α|, |β|� k,
where k only depends on m, q. Without loss of generality, we can assume k�m.

2.2.3 Riesz potential and Bessel potential

Both Riesz potential and Bessel potential are often used in PDEs. For the

sake of completeness, we simply introduce Riesz potential and Bessel poten-

tial in the case of Rd, for the further discussion, One can refer to Stein’s

monograph [203] and Miao’s monograph [59]. Denote Id = (−Δ)−
1
2 and

Jd = (I −Δ)−
1
2 .

Definition 2.2.3 The Riesz potential of f can be defined as

Iαd f = (−Δ)−
α
2 f(x) =

1

γ(α)

∫
Rd

|x− y|−d+αf(y)dy, n > α > 0, (2.2.24)

where

γ(α) = πd/22αΓ
(α
2

)
/Γ

(
d

2
− α

2

)
.
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The Bessel potential of f can be defined as

J α
d f = (I −Δ)−

α
2 f(x) = Gα ∗ f =

∫
Rd

Gα(x− y)f(y)dy, α > 0,

where

Gα(x) =
1

(4π)α/2
1

Γ(α/2)

∫ ∞

0

e−π|x|
2/δe−δ/(4π)δ

−d+α
2

dδ

δ
.

Theorem 2.2.6 Let 0 < α < d, then

1. for any arbitrary ϕ ∈ S(Rd), we have∫
Rd

|x|−d+αϕ(x)dx =

∫
Rd

γ(α)(2π|x|)−α ¯̂ϕ(x)dx.

Namely, in the sense of S′, F(|x|−d+α) = γ(α)(2π)−α|x|−α

2. for any arbitrary f, g ∈ S(Rd), then∫
Rd

Iαd (f)ḡ(x)dx =

∫
Rd

(2π|x|)−αf̂(x)¯̂g(x)dx.

Namely in the sense of S′, Îαd f(x) = (2π)−α|x|−αf̂(x).

From the theorem, the following two further identities can be obtained,

which reflect essential properties of the Riesz operator Iαd ,

Iαd (Iβd f) = Iα+β
d f, ∀f ∈ S, α > 0, β > 0, α+ β < d,

Δ(Iαd f) = Iαd (Δf) = −Iα−2
d (f), ∀f ∈ S, d > 3, 2 � α � d.

Theorem 2.2.7 Let 0 < α < d, 1 � p � q <∞, 1/q = 1/p− α/d, then
1. if f ∈ Lp(Rd), then the integral defined by (2.2.24) is absolutely con-

vergent for a.e. x ∈ Rd,

2. if 1 < p, then

‖Iαd (f)‖q � Cp,q‖f‖p, (2.2.25)

3. if f ∈ L1(Rd), then m{x : |Iαd | > λ} �

(
C‖f‖1

λ

)q
holds for any

arbitrary λ > 0. Namely Iαd is of weak type (1, q).

The condition 1/q = 1/p−α/d can be obtained by scaling, the treatment

can be referred to Appendix A. In fact, if (2.2.25) holds for f , then this

formula also holds for g(x) = f(x/δ) and

‖Iαd (g)‖q � Cp,q‖g‖p. (2.2.26)

However, in this case

‖g‖p = δ
d
p ‖f‖p, ‖Iαd (g)‖q = δα+

d
q ‖Iαd (f)‖q,

hence the necessary condition for (2.2.26) is 1/q = 1/p−α/d. The inequality
(2.2.25) is also called the Hardy-Littlewood-Sobolev (HLS) inequality [204].
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2.2.4 Fractional Sobolev space

Let Ω ⊂ Rd be a smooth domain of Rd, define the Sobolev norm ‖ · ‖m,p as

follows. When 1 � p <∞, we define

‖u‖m,p :=

⎛⎝ ∑
0�|α|�m

‖Dαu‖pp

⎞⎠1/p

and when p =∞, we define

‖u‖m,∞ := max
0�|α|�m

‖Dαu‖∞,

where m is a positive integer and ‖u‖p is the Lp norm of u. For arbitrary

positive integer m and 1 � p �∞, Wm,p is defined by

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀ 0 � |α| � m}, (2.2.27)

where D represents the weak derivative. The space Wm,p is a Banach space

under the norm ‖ · ‖m,p. When p = 2, Wm,p is a separable Hilbert space

under the inner product

(u, v)m =
∑

0�|α|�m

(Dαu,Dαv),

where (u, v) :=

∫
Ω

u(x)v(x)dx is the inner product on L2(Ω).

Another approach to introduce Sobolev space is to consider the com-

pleteness of the class of smooth functions under certain norm. For arbitrary

positive integer m and 1 � p � ∞, define Hm,p to be the completeness of

the space C∞(Ω) under the norm ‖ · ‖m,p. However, we can prove that when

1 � p < ∞, Hm,p = Wm,p, cf. Meyers and Serrin [163]. It also shows that

the space C∞(Ω) is dense inWm,p(Ω). In particular, when Ω = Rd, C∞c (Rd)

is still dense in Wm,p(Rd).

It is worth noting that, this conclusion does not hold when p = ∞. A

simple example is given in [3]. Let Ω = {x ∈ R,−1 < x < 1} and u(x) = |x|.
In this case, when x 
= 0, u′(x) = x/|x|, hence u ∈ W 1,∞. However, such u

does not belong to H1,∞. In fact, for arbitrary 0 < ε <
1

2
, there does not

exist φ ∈ C∞ such that ‖φ′ − u′‖∞ < ε, since L∞ is not separable.

The Sobolev space satisfies the following embedding theorem, which plays

an important role in PDEs, whose proof can be found in [3, 203]. For more

details on embedding theorems and embedding inequalities, one may refer

to [3, 89, 214, 232].
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Theorem 2.2.8 Let m be a positive integer, and 1/q = 1/p−m/d, then
1. if q <∞, then Wm,p(Rd) ↪→ Lq(Rd) continuously.

2. if q =∞, then the restrictions on any arbitrary compact set Rd of the

functions in Wm,p all belong to Lr(Rd) for all r <∞.

3. if p >
d

k
, then after possibly modifying the function on a null set,

f ∈Wm,p(Rd) is a continuous function.

We consider the Fourier characterization of functions in H1(Rd) = W 1,2

(Rd). Let f̂ be the Fourier transform of f ∈ L2(Rd), then f ∈ H1(Rd) if

and only if |ξ|f̂(ξ) ∈ L2(Rd). In this case, ∇̂f(ξ) = iξf̂(ξ) holds and

‖f‖2H1(Rd) ∼
∫
Rd

(1 + |ξ|2)|f̂(ξ)|2dξ. (2.2.28)

Indeed, if f ∈ H1, there exists a sequence of functions {fk}∞k=1 in C∞c
such that fk converges to f in H1. For fk, integrating by parts, we have

∇̂fk(ξ) = iξf̂k(ξ). From the Plancherel’s theorem, we can see that f̂k and

∇̂fk converge to f̂ and ∇̂f in L2, respectively. On the other hand, up to a

subsequence, ξf̂k(ξ) and iξf̂k(ξ) converge to ξf̂(ξ) and ∇̂f(ξ) a.e.. Therefore,

∇̂f(ξ) = iξf̂(ξ). By Plancherel theorem, (2.2.28) is obviously established.

The Fourier transform can also well depict the integer order Sobolev space.

It is easy to show that the following two norms are equivalent⎡⎣ ∑
|α|�m

‖∂αf‖2L2

⎤⎦1/2

∼
[∫

(1 + |ξ|2)m|f̂(ξ)|2dξ
]1/2

.

Hence f ∈ Hm(Rd) if and only if (1 + | · |2)m
2 f̂(·) ∈ L2(Rd). In another

perspective, Hm(Rd) is nothing but L2(Rd) with the usual Lebesgue mea-

sure replaced by (1 + |ξ|2)mdξ. Using Fourier transform, it is easy to define

fractional Sobolev space. When p = 2, the Sobolev space Hs of order s can

be defined as

Hs = Hs(Rd) = {f ∈ S′(Rd) : f̂ is a function and ‖f‖2Hs <∞}, (2.2.29)

where

‖f‖2Hs :=

∫
Rd

(1 + |ξ|2)s|f̂(ξ)|2dξ <∞.

Obviously H0 = L2. It is easy to verify that Hs is a Banach space as well as

a Hilbert space under the inner product

〈f, g〉 =
∫
f̂(ξ)ĝ(ξ)(1 + |ξ|2)sdξ.
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When p 
= 2, the definition of W s,p space is more complex. When Ω is a

smooth domain of Rd, W s,p is defined by complex interpolation. Let s > 0,

m = [s] + 1 be the smallest integer greater than s, define

W s,p(Ω) = [Lp(Ω),Wm,p(Ω)]s/m .

We have the following description. Let s = [s] + λ with 0 < λ < 1, the

fractional Sobolev space can be defined as the completion of the set{
u ∈ C∞(Ω) :

|∂α(u(x) − u(y))|
|x− y| dp+λ

∈ Lp(Ω× Ω), ∀α ∈ (Z ∪ {0})n, |α| = [s]

}

under the norm

‖u‖W s,p(Ω) = ‖u‖W [s,p](Ω) +

⎛⎝ ∑
|α|=[s]

∫
Ω×Ω

|∂α(u(x)− u(y))|p
|x− y|d+pλ

dxdy

⎞⎠1/p

.

When s = m is a positive integer, suchW s,p(Ω) and the integer order Sobolev

space Wm,p defined by (2.2.27) is equivalent.

When Ω = Rd, the fractional Sobolev space W s,p is defined as

W s,p := {f ∈ S′ : there exists g ∈ Lp(Rd) such that (1+|·|2)s/2f̂(·) = ĝ(·)},

with norm ‖f‖W s,p = ‖(I − Δ)s/2f‖Lp . Such a space is also called Bessel

potential space. When s = m is a positive integer, this definition reduces to

the ordinary Sobolev space. When p = 2, it reduces to the fractional Sobolev

space defined by (2.2.29).

The norm ‖ · ‖W s,p is well-defined. For this purpose, we only need to

show that if J s
d (g1) = J s

d (g2), then g1 = g2. In fact, for arbitrary ϕ ∈ S, by
Fubini’s theorem∫

J s
d (g)ϕ(x)dx =

∫∫
Gs(x− y)g(y)ϕ(x)dxdy =

∫
gJ s

d (ϕ)dx.

On the other hand, the map J s
d : S → S is surjective. For a given ψ ∈

S, let ϕ̂(ξ) = ψ̂(ξ)(1 + |ξ|2)−s/2, then ϕ̂ ∈ S, hence ϕ ∈ S. Noting that

ψ̂(ξ) = (1 + |ξ|2)s/2ϕ̂(ξ), we immediately have ψ = J s
d (ϕ). Finally, since

J s
d (g1) = J s

d (g2), we then have

∫
(g1 − g2)J s

d (ϕ) = 0. Therefore g1 = g2

from the surjectivity.

Such defined space W s,p is a Banach space. Assume fn is a Cauchy

sequence of W s,p, then there exists gn ∈ Lp such that fn = J s
d gn. By

definition, gn is a Cauchy sequence in Lp and hence there exists g ∈ Lp such
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that gn → g and ‖fn−J sg‖s,p = ‖J−sfn−g‖p → 0 as n→∞. Let f = J sg,

then obviously f ∈ W s,p, completing the proof.

It follows from the theory of Fourier multiplier, when 0 � β � α,

Wα,p ↪→ W β,p, and‖f‖Wβ,p � ‖f‖Wα,p.

When β � α � 0, J β−α
d is an isomorphism from Wα,p to Wβ,p.

Similarly, when we consider Riesz potential, it leads to the definition of

homogeneous fractional Sobolev space Ẇ s,p. When p = 2 and s ∈ R, then

for a tempered distribution f on Rd, we define the norm ‖ · ‖̇s,2 := ‖ · ‖Ẇ s,2

as

‖f‖Ẇ s,2 = ‖Λsf‖L2 =

(∫
Rd

|ξ|2s|f̂(ξ)|2dξ
)1/2

.

The homogeneous fractional Sobolev space can then be defined by

Ẇ s,2 = {f ∈ S′ : ‖f‖Ẇ s,2 <∞}.

When 1 � p �∞ and s ∈ R, the space Ẇ s,p can also be defined as

Ẇ s,p := {f ∈ S ′ : there exists g ∈ Lp(Rd) such that | · |sf̂(·) = ĝ(·)}.

The ‖ · ‖̇s,p := ‖ · ‖Ẇ s,p norm of f is defined by ‖f ‖̇s,p = ‖Λsf‖p. For p = 2,

we denote Ḣs = Ẇ s,2.

In summary, for s ∈ R, the nonhomogeneous and homogeneous fractional

Sobolev space can be defined byW s,p = J s
d (L

p(Rd)) and Ẇ s,p = Isd(Lp(Rd))

by Bessel potential J s
d = (I − Δ)−s/2 and Riesz potential Isd = (−Δ)−s/2,

respectively. When s = m is an integer, they reduce to the integer order

Sobolev spaces.

Lemma 2.2.4 Let 1 < p < ∞, s � 0. Then f ∈ W s,p(Rd) if and only if

f ∈ Lp(Rd) and I−s
d f ∈ Lp(Rd). The norm ‖ · ‖s,p and ‖f‖p + ‖f ‖̇s,p are

equivalent.

Proof The inequality ‖f‖p + ‖f ‖̇s,p � c‖f‖s,p obviously holds from 1 +

|ξ|2s � (1 + |ξ|2)s. On the other hand, for (1 + |ξ|2)s/2/(1 + |ξ|s), using the

Mihlin’s multiplier theorem, the reverse inequality holds.

In particular, when s � 0 and 1 < p < ∞, W s,p = Lp ∩ Ẇ s,p, cf. [21].

We can extend the interpolation theory and embedding theorem of Sobolev

space to the fractional Sobolev space. For the proof and further discussions,

readers are referred to [3, 21, 212, 214].
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Lemma 2.2.5 Let s ∈ R, θ ∈ (0, 1) and p ∈ (1,∞), then

[Lp(Rd),W s,p(Rd)]θ =W θs,p(Rd).

More generally, for s1, s2 ∈ R, θ ∈ (0, 1) and p ∈ (1,∞), there holds

[W s1,p(Rd),W s2,p(Rd)]θ =W (1−θ)s1+θs2,p(Rd).

Theorem 2.2.9 Let 1 < p <∞, −∞ < s <∞, then

1. W s,p is a Banach space;

2. S ⊂W s,p ⊂ S ′;
3. W s+ε,p ↪→ W s,p(ε > 0);

4. W s,p(Rd) ↪→ L dp
d−sp (Rd), s < d/p;

5. W s,p(Rd) ↪→ C(Rd) ↪→ L∞(Rd), s > d/p.

At the end of this section, we simply discuss the relationship between the

space H1/2 and the operator Λ = (−Δ)1/2. For this purpose, we consider

the definition domain of the operator Λ = (−Δ)1/2. If T is a distribution,

it is infinitely differentiable in the sense of weak derivatives. Hence, for a

distribution T , it makes sense to discuss ΔT . However, to ensure ΛT makes

sense, only requiring T to be a distribution is not adequate. To illustrate

this, we first recall come concepts about distribution. Let C∞c (Rd) be the

space of infinitely differential complex valued functions compactly supported

in Rd. The space of D(Rd) of test functions is defined to be C∞c (Rd) with

the topology induced by the limit of a sequence of elements in D(Rd). A

sequence φk ∈ C∞c (Rd) is said to be convergent to φ ∈ C∞c (Rd) in D if and

only if there exists a given compact set K ⊂ Rd, such that for arbitrary

k, ∪suppφk ⊂ K and for arbitrary multi-index α, Dαφk → Dαφ uniformly

as k → ∞. Under this topology, D(Rd) becomes a complete locally convex

topological vector space satisfying the Heine-Borel property. A distribution

T is a continuous linear functional in D. Here, the continuity means if φk → φ
in D, then T (φk)→ T (φ). The space of all distributions on Rd is denoted by

D′(Rd). Equivalently, the vector space D′ is the continuous dual space of the
topological vector space D. If Tj ∈ D′, we call Tj → T ∈ D′ if Tj(φ)→ T (φ)
for any φ ∈ D.

The meaning of the product of two distributions is not clear. However,

distributions can be multiplied by and taken convolution with C∞ functions.

Consider T ∈ D′ and ψ ∈ D, then the product of them ψT is defined by

ψT (φ) := T (ψφ). Such a ψT is a distribution. In fact, if φ ∈ C∞c , then

ψφ ∈ C∞c . In addition, if φk → φ inD, then ψφk → ψφ inD. The convolution
of the distribution T with a C∞c function j is defined by (j ∗T )(φ) := T (jR ∗
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φ) = T

(∫
Rd

j(y)φ(·+ y)dy
)

for all φ ∈ D, where jR(x) = j(−x). Here, j

is required to be compactly supported. Otherwise jR ∗ φ is not compactly

supported and fails to define a distribution.

Now we turn to discuss ΛT . By definition, ΛT is defined by

(ΛT )(φ) := T (Λφ), ∀φ ∈ D(Rd). (2.2.30)

Since Λ is a nonlocal operator, Λφ is not compactly supported in general and

hence ΛT is not a distribution. However, when T is a distribution defined

by a function, then (2.2.30) defines a distribution. Indeed, as long as f ∈
H1/2(Rd), then Λf is a distribution, i.e., the mapping

φ �→ Λf(φ) :=

∫
Rd

|ξ|f̂(ξ)φ̂(−ξ)dξ

makes sense. In this case, we have |ξ|1/2f̂ ∈ L2(Rd) and the mapping is

continuous in D. Let φk → φ in D, then from the Schwartz’s inequality and

the Plancherel’s theorem,

|Λf(φk − φ)| �c‖f̂‖2
(∫

Rd

|ξ|2|φ̂k(ξ)− φ̂(ξ)|2dξ
)1/2

=c‖f‖2‖∇(φk − φ)‖2.
It follows when k → ∞, ‖∇(φk − φ)‖2 → 0 and Λf(φk − φ) → 0, showing

Λf ∈ D′(Rd) is a distribution.

2.2.5 Commutator estimates

In this section, we consider the commutator estimates of the fractional Lapla-

cian. For this purpose, we first consider the following proposition.

Lemma 2.2.6 Let k be an integer, and β, γ be multi-indices. If |β|+|γ| = k,
then for arbitrary f, g ∈ C0(R

d) ∩Hp(Rd), there holds

‖(Dβf)(Dγg)‖L2 � C‖f‖L∞‖g‖Hk + C‖f‖Hk‖g‖L∞.
Proof Let |β| = l, |γ| = m, then l + m = k. Using the interpolation

estimates yields

‖Dlu‖L2k/l � C‖u‖1−l/k
L∞ ‖Dk‖l/kL2 . (2.2.31)

It follows from Hölder inequality that

‖(Dβf)(Dγg)‖L2 �‖Dβf‖L2k/l‖Dγg‖L2k/m

�C‖f‖1−l/k
L∞ ‖f‖l/k

Hk‖g‖1−m/k
L∞ ‖g‖m/k

Hk .

Noting that 1− l/k = m/k, the result follows from Young’s inequality.
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Theorem 2.2.10 Let k be an integer and f, g ∈ L∞ ∩Hk, then there holds

‖fg‖Hk � C‖f‖L∞‖g‖Hk + C‖f‖Hk‖g‖L∞,
and for arbitrary multi-index α with |α| � k, then

‖Dα(fg)− fDαg‖L2 � C‖∇f‖Hk−1‖g‖L∞ + C‖∇f‖L∞‖g‖Hk−1 .

Proof From Lemma 2.2.6, it follows the first inequality. For the second

one, from Leibniz formula

Dα(fg) =
∑

β+γ=α

Cβ
α(D

βf)(Dγg).

Hence, if α = k,

Dα(fg)− fDαg =
∑

β+γ=α,β>0

Cβ
α(D

βf)(Dγg)

=
∑

|β|+|γ|=k−1

Cjβγ(D
βDjf)(D

γg),

where Cjβγ is a constant only depending on j, β, γ. Let u = Djf , then the

second inequality follows from Proposition 2.2.6.

Lemma 2.2.7 Let f = (f1. · · · , fμ) ∈ L∞∩Hk, then if |β1|+ · · ·+ |βμ| = k,
there holds

‖Dβ1f1 · · ·Dβμfμ‖L2 � C
∑
ν

(
‖f1‖L∞ · · · ‖̂fν‖L∞ · · · ‖fμ‖L∞

)
‖f‖Hk ,

where, ·̂ represents that the term is deleted from the expression.

Proof From the generalized Hölder inequality, it follows

‖Dβ1f1 · · ·Dβμfμ‖L2 � ‖Dβ1f1‖L2k/|β1| · · · ‖Dβμfμ‖L2k/|βμ| .

Then from the interpolation inequality (2.2.31),

‖Dβ1f1 · · ·Dβμfμ‖L2 � C‖f1‖1−|β1|/k
L∞ ‖f1‖|β1|/k

Hk · · · ‖fμ‖1−|βμ|/k
L∞ ‖fμ‖|βμ|/k

Hk .

Noting that |β1|+ · · ·+ |βμ| = k, we have from the Young’s inequality that

‖f1‖|β1|/k

Hk · · · ‖fμ‖|βμ|/k

Hk � ‖f1‖Hk + · · ·+ ‖fμ‖Hk ,

and by repeatedly using the Young’s inequality

‖f1‖1−|β1|/k
L∞ · · · ‖fμ‖1−|βμ|/k

L∞ � C
∑
ν

(
‖f1‖L∞ · · · ‖̂fν‖L∞ · · · ‖fμ‖L∞

)
.

This completes the proof.
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Proposition 2.2.7 Let F be a smooth function, and F (0) = 0. Then for

arbitrary u ∈ Hk ∩ L∞, there holds

‖F (u)‖Hk � Ck(‖u‖L∞)(1 + ‖u‖Hk).

Proof It follows from the chain rule

DαF (u) =
∑

β1+···+βμ=α

CβD
β1u · · ·DβμuF (μ)(u).

By Hölder inequality, there holds

‖DkF (u)‖L2 � Ck(‖u‖L∞)
∑
‖Dβ1u · · ·Dβμu‖.

The result follows from Proposition 2.2.7.

In what follows, we will generalize the inequalities to a more general

fractional operator.

Theorem 2.2.11 Let s > 0 and 1 < p <∞, then

‖J s(fg)− f(J sg)‖Lp � c(‖∇f‖L∞‖J s−1g‖Lp + ‖J sf‖Lp‖g‖L∞). (2.2.32)
Proof Define the real valued C∞ functions Φj in R such that

0 � Φj � 1, j = 1, 2, 3, Φ1 +Φ2 +Φ3 = 1,

and

suppΦ1 ⊂
[
−1

3
,
1

3

]
, suppΦ2 ⊂

[
1

4
, 4

]
, suppΦ3 ⊂ [3,∞).

Then by definition of the operator J s, one obtains

[J s(fg)− f(J sg)](x)

=c

∫ ∫
ei〈x,ξ+η〉{(1 + |ξ + η|2) s

2 − (1 + |η|2) s
2 }f̂(ξ)ĝ(η)dξdη

=c

3∑
j=1

σj(D)(f, g)(x),

where

σj(ξ, η) = [(1 + |ξ + η|2) s
2 − (1 + |η|2) s

2 ]Φj(|ξ|/|η|).
First, we consider σ1(D)(f, g). Rewrite the formula as

σ1(ξ, η) =(1 + |η|2) s
2

{
[1 + (1 + |η|2)−1〈ξ, ξ + 2η〉] s2 − 1

}
Φ1(|ξ|/|η|)

=c1(1 + |η|2) s
2−1〈ξ, ξ + 2η〉Φ1

+ c2(1 + |η|2) s
2−2〈ξ, ξ + 2η〉e2Φ1 + · · ·

+ cr(1 + |η|2) s
2−r〈ξ, ξ + 2η〉erΦ1 + · · · . (2.2.33)
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After multiplied by f̂(ξ)ĝ(ξ), the r-th term can be written as

〈σ1,r(ξ, η), ̂((∇/i)f)(ξ)〉 ̂(J s−1g)(η),

where

σ1,r(ξ, η) = cr(1 + |η|2)−r+ 1
2 〈ξ, ξ + 2η〉r−1(ξ + 2η)Φ1 ∈ Rd.

It is easy to see that σ1,r satisfies the condition (2.2.23) of Theorem 2.2.5.

Also if Φ 
= 0, then we require |ξ| � |η|/3 to ensure convergence of the series

(2.2.33). Then Theorem 2.2.5 yields

‖σ1(D)(f, g)‖p � c‖∇f‖∞‖J s−1g‖p. (2.2.34)

Secondly, we consider σ3(D)(f, g). Let σ3 = σ3,1 − σ3,2 with

σ3,1(ξ, η) = [(1 + |ξ + η|2)s/2 − 1]Φ3,

and

σ3,1(ξ, η) = [(1 + |η|2)s/2 − 1]Φ3,

then

σ3,1(ξ, η)f̂(ξ)ĝ(η) = (1 + |ξ|2)−s/2[(1 + |ξ + η|2)s/2 − 1](̂J sf)(ξ)ĝ(η)Φ3.

Since Φ3 
= 0 only if |ξ| � 3|η| and σ3,1 satisfies the condition (2.2.23) of

Theorem 2.2.5, one has

‖σ3,1(D)(f, g)‖p � c‖J sf‖p‖g‖∞. (2.2.35)

Define the operator G, such that

(̂Gh)(η) = η|η|−2(1 + |η|2) 1
2−

s
2 [(1 + |η|2) s

2 − 1]ĥ(η).

Then using the Mihlin’s multiplier theorem, we can see that G is a bounded

operator in Lp, cf. [21]. In this case, σ3,2 can be expressed as

σ3,2(ξ, η)f̂ (ξ)ĝ(η) = |ξ|2〈ξ, (̂∇f)(ξ)〉〈η, ̂(GJ s−1g)(η)〉Φ3,

which, since |ξ|2ξjηkΦ3 satisfies the condition (2.2.23), has the bound

‖σ3,2(D)(f, g)‖p � c‖∇f‖∞‖J s−1g‖p. (2.2.36)

Finally, we estimate σ2(D)(f, g). Since ξ + η may be zero, any negative

powers of 1+ |ξ+ η| fails to satisfy the condition (2.2.23). Divide σ2 into two

parts σ2 = σ2,1 − σ2,2, where σ2,1(ξ, η) = (1 + |ξ + η|2) s
2Φ2 and σ2,2(ξ, η) =

(1 + |η|2) s
2Φ2. Since

σ2,2(ξ, η)f̂ (ξ)ĝ(η) = (1 + |η|2)s/2(1 + |ξ|2)−s/2 (̂J sf)(ξ)ĝ(η)Φ2,
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the assumption of Theorem 2.2.5 is satisfied and hence

‖σ2,2(D)(f, g)‖p � c‖J sf‖p‖g‖∞. (2.2.37)

For σ2,1, it can be rewritten as

σ2,1(ξ, η)f̂(ξ)ĝ(η) = (1 + |ξ + η|2)s/2(1 + |ξ|2)−s/2 (̂J sf)(ξ)ĝ(η)Φ2.

Denote σ̃2,1(ξ, η) = (1 + |ξ + η|2)s/2(1 + |ξ|2)−s/2Φ2, hence |σ̃2,1| � C. Fur-

thermore, when s > 2, from the definition of Φ2, one has

|∂ησ̃2,1(ξ, η)| � (1 + |ξ + η|2)s/2−1|η|
(1 + |ξ|2)s/2−1(1 + |ξ|2) �

c|η|
1 + |ξ|2 .

Also from the definition of Φ2, |η|2 � c|ξ|2 holds, hence

|∂ησ̃2,1(ξ, η)| � c|η|
1 + |ξ|2 �

c

|ξ|+ |η| , (2.2.38)

satisfying the condition of Theorem 2.2.5. In fact, as long as s is big enough

such that and negative powers of 1 + |ξ + η|2 do not appear in (2.2.38), then

the discussion above is applicable. From Remark 2.2.3, when s is big enough

such that s � k(m, p), the estimate (2.2.37) still holds.

When s is not big enough, the discussion above is not applicable. To

overcome this problem, we need to extend σ2,1(ξ, η) to the complex valued

case σs2,1(ξ, η) for a complex s with 0 � Re s � k, and then apply the complex

interpolation theory. When s = k + it, t ∈ R, Remark 2.2.3 still applies to

yield

‖σk+it
2,1 (D)(f, g)‖p � C(t)‖J sf‖p‖g‖∞, (2.2.39)

where C(t) depends on t. Since |α|, |β| � k in (2.2.23), we know C(t) = O(tk).

To apply the complex interpolation theory, we need to handle the case when

s = it. For this purpose, first note

J s(fg) =
3∑

j=1

σsj,1(D)(f, g), (2.2.40)

for σsj,1 = (1+ |ξ+ η|2)s/2Φj . When j = 1, 3, by definition of Φ1 and Φ3, the

condition (2.2.23) is easily verified, yielding

‖σitj,1(D)(f, g)‖p � C(t)‖f‖p‖g‖∞, j = 1, 3. (2.2.41)

Moreover, from the Mihlin’s theorem [21], one has

‖J it(fg)‖p � C(t)‖fg‖p � C(t)‖f‖p‖g‖∞, (2.2.42)
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where C(t) = O(tk). Using (2.2.40)-(2.2.42), we have

‖σit2,1(D)(f, g)‖p � C(t)‖f‖p‖g‖∞. (2.2.43)

Using the complex interpolation theory between (2.2.39) and (2.2.43), we can

see that the similar estimate holds for arbitrary s(0 � s � k). Since we have

proved that the conclusion holds when s � k, therefore

‖σ2,1(D)(f, g)‖p � c‖J sf‖p‖g‖∞. (2.2.44)

Combining the estimates (2.2.34), (2.2.35), (2.2.36), (2.2.37) and (2.2.44),

we complete the proof.

Theorem 2.2.12 When s > 0, 1 < p < ∞, Lp
s ∩ L∞ is an algebra. In

particular, we have

‖fg‖s,p � c(‖f‖∞‖g‖s,p + ‖f‖s,p‖g‖∞). (2.2.45)

Proof The proof is similar to the proof of the theorem above, hence we

omit it here.

Remark 2.2.4 When s is a positive integer, the results (2.2.32) and (2.2.45)

are well known, and can be proved by applying the Leibniz rule and the

Gagliardo-Nirenberg inequality. When
d

p
< s < 1, the proof can be referred

to Strichartz [207].

Theorem 2.2.13 Let s > 0, p ∈ (1,∞). If f, g ∈ S, then

‖J s(fg)− f(J sg)‖p � C{‖∇f‖p1‖‖g‖s−1,p2 + ‖f‖s,p3‖g‖p4}, (2.2.46)

and

‖J s(fg)‖p � C{‖f‖p1‖g‖s,p2 + ‖f‖s,p3‖g‖p4}, (2.2.47)

where p2, p3 ∈ (1,+∞) satisfies

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

This theorem follows by using the approach of the theorem above. When

p1 = p4 = ∞, this theorem reduces to Theorem 2.2.11 and 2.2.12. For the

homogeneous operator Λ, we have

Theorem 2.2.14 Let s > 0, p ∈ (1,∞). If f, g ∈ S, then that

‖Λs(fg)−f(Λsg)‖Lp � C{‖∇f‖Lp1‖g‖Ẇ s−1,p2 +‖f‖Ẇs,p3‖g‖Lp4}, (2.2.48)
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and the following product estimate holds

‖Λs(fg)‖Lp � C{‖f‖Lp1‖g‖Ẇ s,p2 + ‖f‖Ẇ s,p3‖g‖Lp4},

where p2, p3 ∈ (1,+∞) satisfies

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Proof We only need to apply Theorem 2.2.13 to fε(x) = f(x/ε) and

gε = g(x/ε) and then let ε→ 0.

Theorem 2.2.15 Let sj < d/p(j = 1, 2), s1 + s2 = s +
d

p
, 0 < s �

min{s1, s2}, then
‖fg‖W s,p � c‖f‖W s1,p‖g‖W s2,p .

Similarly, in the homogeneous case, there holds

‖fg‖Ẇ s,p � c‖f‖Ẇs1,p‖g‖Ẇ s2,p .

Proof Let
d

p2
= s1 =

d

p
− s2 + s and d

p2
=
d

p
− s1, then 1

p1
+

1

p2
=

1

p
. Using

the Sobolev’s embedding theorem, we have

‖g‖W s,p2 � c‖g‖W s2,p and ‖f‖Lp2 � c‖f‖W s1,p .

The proposition then follows by interchanging f and g and using the result

of (2.2.47). The homogeneous case also holds by Theorem 2.2.14.

Theorem 2.2.16 Let q > 1, p ∈ [q,+∞), and
1

p
+
σ

d
=

1

q
, then there exists

a constant C > 0 such that for any f ∈ S′ and f̂ is a function, then

‖f‖Lp � C‖Λσf‖Lq .

Proof When q = 2, the proof is given by [197]. Since f̂ is a function,

f̂(ξ) = |ξ|−σ|ξ|σ f̂(ξ) holds. Using the inverse Fourier transform, we can see

that f = Iσd (Λσf), where Iσd is a Riesz potential operator. The proposition

then follows from the boundedness of the Riesz operator Iσd in Theorem 2.2.7.

2.3 An existence theorem

We consider the following fractional ordinary differential equation

Dμy(t) = f(t, y), μ ∈ (n− 1, n], t ∈ (0, t], (2.3.1)
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where n � 1 is an integer and Dμ represents either the Riemann-Liouville

derivative RL
0D

μ
t or the Caputo derivative C

0D
μ
t . To solve (2.3.1), we need

to prescribe n initial data for the unknown function y(t) at initial time t = 0.

With different choice of the derivative, the initial data is different. From

(2.1.22) and (2.1.23), we see that, when Dμ = RL
0D

μ
t , the fractional deriva-

tives of y(t) at time t = 0 should be prescribed, while when Dμ = C
0D

μ
t , the

integer order derivatives of y(t) at time t = 0 should be prescribed.

Before we state and prove the existence theory for (2.3.1), we consider

the following two examples when Dμ = RL
0D

μ
t . In the first example, f(t, y)

depends only on y linearly{
Dμy(t) = λy(t)

Dμ−n+ky(t) = bk+1, k = 0, · · · , n− 1,
(2.3.2)

where λ is a complex number and b1, · · · , bn are known initial data. By the

Laplace transform (2.1.22), we have

sμY (s)−
n−1∑
k=0

skbn−k = λY (s),

where Y (s) is the Laplace transform of y(t). Therefore,

Y (s) =

n∑
j=1

bjs
n−j s

n−μ−j

1− λ/sμ

=

n∑
j=1

bj

∞∑
k=0

λks−kμsn−μ−j .

Taking inverse Laplace transform, we have

y(t) =

n∑
j=1

bj

∞∑
k=0

λktkμ+(μ−n+j)−1

Γ(kμ+(μ−n+j))

=

n∑
j=1

bjt
(μ−n+j)−1Eμ,μ−n+j(λt

μ),

where Eμ,μ−n+j(·) is the two-parameter Mittag-Leffler function. In partic-

ular, when μ = n = 1, we obtain y(t) = b1E1,1(λt) = b1e
λt, which is well-

known. Similar results can be obtained when Dμ = RL
0D

μ
t and initial data

in (2.3.2) should be replaced with y(k) = bk+1 for k = 0, · · · , n− 1.

In the second example, we consider{
Dμy(t) = f(t)

Dμ−n+ky(t) = bk+1, k = 0, · · · , n− 1,
(2.3.3)
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where b1, · · · , bn are known initial data. By Laplace transform, we obtain

Y (s) = s−μF (s) +

n−1∑
k=0

bn−ks
k−μ.

By taking inverse Laplace transform, we obtain

y(t) =
1

Γ(μ)

∫ t

0

(t− τ)μ−1f(τ)dτ +
n−1∑
k=0

bn−k

Γ(μ− k) t
μ−k−1. (2.3.4)

It is important to note that from Example 2.1.3

Dμ−k

(
tμ−l−1

Γ(μ− l)
)

=

{
tk−l−1/Γ(k − l), k > l

0 k � l,

and

Dμ−k−1

(
tμ−l−1

Γ(μ− l)
)

=

⎧⎪⎨⎪⎩
tk−l/Γ(1 + k − l), k > l

1 k = l

0 k < l.

We see (2.3.4) is indeed a solution satisfying the initial data. Furthermore,

by a simple argument, the solution can be shown unique in L1(0, T ) for a

given T > 0.

We now state an existence and uniqueness theorem for the fractional ordi-

nary differential equation with Rieman-Liouville derivative. Similar theorem

for the case of Caputo derivative can be obtained, which is omitted for sim-

plicity. In this R-L derivative case, the initial value problem is proposed as

finding y(t) on [0, T ] such that{
Dμy(t) = f(t, y), μ ∈ (n− 1, n], 0 < t < T <∞,
Dμ−(n−k)−1y(t)|t=0 = bk, k = 1, · · · , n. (2.3.5)

Assume that f(t, y) is defined in a domain G of a plane (t, y), and let

R(h,K) ⊂ G be a region such that

0 < t < h,

∣∣∣∣∣t1−σ1y(t)−
n∑

i=1

bi
tσi−σ1

Γ(σi)

∣∣∣∣∣ � K,
for some constants h and K.

Theorem 2.3.1 Let f(t, y) be a real-valued continuous function, defined in

the domain G, satisfying the Lipshitz condition with respect to y, i.e.,

|f(t, y1)− f(t, y2)| � L|y1 − y2|,
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such that

|f(t, y)| �M <∞, ∀(t, y) ∈ G.

Let K �
Mhn

Γ(1 + μ)
, then there exists a unique and continuous solution y(t)

in the region R(h,K) of the problem (2.3.5). Furthermore, if ỹ is a solution

of (2.3.5) satisfying the initial conditions

Dμ−(n−k)−1ỹ(t)|t=0 = b̃k = bk + δk, k = 1, · · · , n, (2.3.6)

where δk(k = 1, 2, · · · , n) are small constants, then for 0 < t � h there holds

|y(t)− ỹ(t)| �
n∑

i=1

|δi|tμ−(n−i)−1Eμ,μ−(n−i)(Lt
μ),

where Eα,β(z) is the Mittag-Leffler function.

Proof By applying (2.3.4), we reduce (2.3.5) to the following equivalent

integral equation

y(t) =
1

Γ(μ)

∫ t

0

(t− τ)μ−1f(τ, y(τ))dτ +
n∑

i=1

bit
μ−(n−i)−1

Γ(μ− (n− i)) . (2.3.7)

Consider the iterative sequence

y0(t) =

n∑
i=1

bit
μ−(n−i)−1

Γ(μ− (n− i)) ,

ym(t) =

n∑
i=1

bit
μ−(n−i)−1

Γ(μ−(n− i))+
1

Γ(μ)

∫ t

0

(t−τ)μ−1f(τ, ym−1(τ))dτ, m=1, 2, · · · .

(2.3.8)

We need to show that limm→∞ ym(t) exists and it is the solution of equation

(2.3.7). First, for 0 < t � h, we obviously have (t, ym(t)) ∈ R(h,K) for all

m. Indeed,∣∣∣∣∣tn−μym(t)−
n∑

i=1

bit
i−1

Γ(μ− (n− i))

∣∣∣∣∣ �
∣∣∣∣ tn−μ

Γ(μ)

∫ t

0

(t− τ)μ−1f(τ, ym−1(τ))dτ

∣∣∣∣
�

Mtn

Γ(1 + μ)
�

Mhn

Γ(1 + μ)
� K, (2.3.9)

and similarly∣∣∣∣∣tn−μy1(t)−
n∑

i=1

bit
i−1

Γ(μ− (n− i))

∣∣∣∣∣ � Mhn

Γ(1 + μ)
� K.
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Next, we show by induction that for all m

|ym(t)− ym−1(t)| � MLm−1tmμ

Γ(1 +mμ)
. (2.3.10)

When m = 1, this holds since from (2.3.9), we have

|y1(t)− y0(t)| � Mtμ

Γ(1 + μ)
, 0 < t � h.

Assume that (2.3.10) holds for m− 1, we will show that it also holds for m.

Using (2.3.8) and Example 2.1.3, we obtain

|ym(t)− ym−1(t)| � L

Γ(μ)

∫ t

0

(t− τ)μ |ym−1(τ) − ym−2(τ)| dτ

�
MLm−1

Γ(1 + (m− 1)μ)

1

Γ(μ)

∫ t

0

(t− τ)μ−1τ (m−1)μdτ

=
MLm−1

Γ(1 + (m− 1)μ)
D−μ

t t(m−1)μ

=
MLm−1

Γ(1 +mμ)
.

Consider the series

y∗(t) = lim
m→∞

(ym(t)− y0(t)) =
∞∑
j=1

(yj(t)− yj−1(t)) . (2.3.11)

By definition of the Mittag-Leffler function,

M
∞∑
j=1

Lj−1hjμ

Γ(1 + jμ)
=
M

L
(Eμ,1(Lh

mu)− 1) .

Applying the estimate (2.3.10), it is obvious that (2.3.11) converges uniformly

for 0 < t � h. Since each term of the series is continuous for [0, h], y∗(t) is

a continuous function for t ∈ [0, h]. Let y(t) = y0(t) + y
∗(t), then y(t) is

continuous. Letting m→∞ in (2.3.8) then yilds (2.3.7).

Uniqueness follows from the Lipschitz condition of f in y. Let y(t) and

ỹ(t) be two continuous solutions, then z(t) = y(t)− ỹ(t) satisfies

z(t) =
1

Γ(μ)

∫ t

0

(t− τ)μ−1[f(τ, y(τ))− f(τ, ỹ(τ))]dτ.

Since z(t) is continuous for [0, h], then |z(t)| � B for some positive constant

B and hence

|z(t)| � BLtμ

Γ(1 + μ)
, 0 � t � h.
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By iteration, one has

|z(t)| � BLjtjμ

Γ(μ)
, j = 1, 2, · · · ,

where the bound is the nothing but j-th term of the Mittag-Leffler function

Eμ,1(Lt
μ), and hence for all t ∈ [0, h], there holds limj→∞ L

jtjμ/Γ(1 + jμ) =

0. Uniqueness then follows.

Next we prove the continuous dependence part of the theorem. This is

proved by induction since

y(t) = lim
m→∞

ym(t), ỹ(t) = lim
m→∞

ỹm(t),

where ym and ỹm are the iterative processes of y and ỹ, respectively. When

m = 0, it is easy to know

|y0(t)− ỹ0(t)| �
n∑

i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i)) .

When m = 1, by definition of the Riemann-Liouville derivative and the

Lipshitz condition of f(t, y), there holds

|y1(t)− ỹ1(t)|

=

∣∣∣∣∣
n∑

i=1

δi
tμ−(n−i)−1

Γ(μ− (n− i)) +
1

Γ(μ)

∫ t

0

(t− τ)μ−1{f(τ, y0(τ)) − f(τ, ỹ0(τ))}
∣∣∣∣∣

�

n∑
i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i)) +
L

Γ(μ)

∫ t

0

(t− τ)μ−1|y0(τ) − ỹ0(τ)|dτ

�

n∑
i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i)) +
L

Γ(μ)

∫ t

0

(t− τ)μ−1

{
n∑

i=1

|δi| τ
μ−(n−i)−1

Γ(μ− (n− i))

}
dτ

�

n∑
i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i)) + LD
−μ

{
n∑

i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i))

}

=

n∑
i=1

|δi| t
μ−(n−i)−1

Γ(μ− (n− i)) + L
n∑

i=1

|δi| t
2μ−(n−i)−1

Γ(2μ− (n− i))

=

n∑
i=1

|δi|tμ−(n−i)−1

{
1∑

k=0

Lktkμ

Γ(kμ+ μ− (n− i))

}
.

Similarly, according to the induction, we obtain

|ym(t)− ỹm(t)| �
n∑

i=1

|δi|tμ−(n−i)−1

{
m∑

k=0

Lktkμ

Γ((k + 1)μ− (n− i))

}
.
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Letting m→∞ then yields

|y(t)− ỹ(t)| �
n∑

i=1

|δi|tμ−(n−i)−1

{
∞∑
k=0

Lktkμ

Γ((k + 1)μ− (n− i))

}

=
n∑

i=1

|δi|tμ−(n−i)−1Eμ,μ−(n−i)(Lt
μ),

completing the proof.

Furthermore, Let us consider example from partial differential equation

Example 2.3.1 Let α ∈ (0, 1). Consider the following fractional diffusion

equation{
0D

α
t u(x, t) = λ

2∂2xu(x, t), t > 0,−∞ < x <∞,
0D

α−1
t y(t)|t=0 = ϕ(x), limx→±∞ u(x, t) = 0.

(2.3.12)

Taking into account the boundary conditions at infinity and applying the

Fourier transform with respect to variable x, one obtains{
0D

α
t û(ξ, t) + λ

2ξ2û(ξ, t) = 0

0D
α−1
t û(ξ, t)|t=0 = ϕ̂(ξ).

Upon the Laplace transform, one has

U(ξ, s) =
ϕ̂(ξ)

sα + λ2ξ2
,

where U(ξ, s) is the Laplace transform for û(ξ, t). Applying the inverse

Laplace transform to obtain

û(ξ, t) = ϕ̂(ξ)tα−1Eα,α(−λ2ξ2tα),

and then the inverse Fourier transform to obtain a solution of the problem

(2.3.12)

u(x, t) =

∫ ∞

−∞

G(x− x′, t)ϕ(x′)dx′,

where

G(x, t) =
1

π

∫ ∞

0

tα−1Eα,α(−λ2ξ2tα) cos ξxdξ.

After careful calculations, we have [179]

G(x, t) =
1

2λ
t
α
2−1W (−z;−ρ, ρ), z =

|x|
λtα/2

,
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where W (z;λ, μ) is the Wright function

W (z;α, β) =

∞∑
k=0

zk

k!Γ(αk + β)
.

In particular, when α = 1, the fractional Green function reduces to

G(x, t) =
1

2λ
√
πt

e−
x2

4λ2t .

2.4 Distributed order differential equations

In this section, we introduce some fractional differential equations of dis-

tributed order. The study of properties of distributed order differential equa-

tions and their applications has been developed extensively in recent years,

although the idea of fractional differential equations with distributed order

was first introduced by Caputo [36] and solved by him later in 1995 [37]. The

distributed order differential equations have been used to model the input-

output relationship of linear time-invariant system, to study the rheological

properties of composite materials, to model the dissipation in seismology and

in metallurgy and to model ultraslow and lateral processes. See, for exam-

ple, [14, 15, 42, 142, 171].

We still use C
0 D

μ
t to denote the Riemann-Liouville. Integrating C

0 D
μ
t f(t)

w.r.t. μ, the order of differentiation, we obtain the distributed-order differ-

ential operator

0D
φ
t f(t) =

∫ η

λ

φ(μ)C0 D
μ
t f(t)dμ,

where φ is a continuous function in [λ, η] ⊂ [0, k] for k ∈ N and φ = 0

outside of [λ, η]. In the definition, we can replace the Caputo derivative with

the Riemann-Liouville derivative in applications. This definition can also

be generalized to the case when φ is a E ′(R) distribution, where E ′(R) is

the space of compactly supported distributions on the space E(R) of smooth

functions. When φ ∈ E ′(R), suppφ ⊂ [0, k], 0D
φ
t f is defined as an element of

S ′+(R) by〈∫
suppφ

φ(μ)C0 D
μ
t f(t)dμ, ψ(t)

〉
=
〈
φ(μ),

〈
C
0 D

μ
t f(t), ψ(t)

〉〉
, ψ ∈ S(R).

Here, h ∈ S′+(R) if h ∈ S ′(R) and supph ⊂ [0,∞), where S′(R) is the

space of tempered distributions, i.e., the dual of the space S(R) of rapidly

decreasing smooth functions. For a detailed analysis, we refer the authors
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to [12]. By using the Laplace transformation for the Caputo derivative, we

have for Re s > 0,

L [0D
φ
t f(t)] = L [f ](s)

∫ k

0

φ(μ)sμdμ−
k−1∑
l=0

u(l)(t)|t=0

sl+1

∫ k

l

φ(μ)sμdμ. (2.4.1)

Example 2.4.1 Let f ∈ AC2
loc([0,∞)), i.e., f is continuous and f ′ is

absolutely continuous on [0, T ] for any T > 0. When k = 2 and φ(μ) =
k∑

j=1

ajδ(μ− μj) for aj ∈ R and μj ∈ [0, 2], we have

0D
φ
t f(t) =

k∑
j=1

aj
C
0 D

μj

t f(t), t > 0,

which reduces to a linear combination of Caputo derivatives of different or-

ders. In this case, we have for Re s > 0,

L [0D
φ
t f(t)] = L [f ](s)

k∑
j=1

ajs
μj− f(t)|t=0

s

k∑
j=1

ajs
μj− f

′(t)|t=0

s2

∑
1<μj�2

ajs
μj .

Besides the time-fractional differential equation of distributed order, one

may also consider the space-fractional differential derivatives. For example,

we may consider ∫ 2

0

a(α)(−Δ)α/2u(t, x)dα,

for some positively integrable function a(·), and accordingly consider the

distributed-order space-fractional differential equations

∂

∂t
u(t, x) =

∫ 2

0

a(α)(−Δ)α/2u(t, x)dα, t > 0, x ∈ Rd. (2.4.2)

A distribution G(t, x), which satisfies the equation (2.4.2) in the weak sense

with initial data

G(0, x) = δ(x), x ∈ Rd (2.4.3)

is called a fundamental solution of the Cauchy problem (2.4.2) and (2.4.3).

Let B(ξ) = −
∫ 2

0

a(α)|ξ|αdα, then G(t, x) is given by

G(t, x) = F−1(etB(ξ)). (2.4.4)
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In the particular case of a(α) = δ(α−2), we have the classical heat equation,

whose fundamental solution is given by

G2(t, x) =
1

(4πt)d/2
e−

|x|2

4t , (2.4.5)

while in the case of a(α) = δ(α − 1), the fundamental solution corresponds

to the Cauchy-Poisson probability density

G1(t, x) =
Γ(d+ 1/2)

π
(d+1)/2

1

(|x|2 + t2)(d+1)/2
. (2.4.6)

For a general case of a(α) = δ(α−α0), 0 < α0 < 2, the fundamental solution

is the Lévy α0-stable probability density

Gα0(t, x) =
1

(2π)d

∫
Rd

e−t|ξ|α0
eix·ξdξ. (2.4.7)

Remark 2.4.1 One may also consider the distributed order fractional deriva-

tives when the Lebesgue measure is replaced by a general finite Borel measure.

Let ν be a finite Borel measure with ν(0, k) > 0, one may define

0D
ν
t f(t) =

∫ k

0

C
0 D

μ
t f(t)ν(dμ).

2.4.1 Distributed order diffusion-wave equation

We now consider the following time-fractional differential equations of dis-

tributed order

0D
φ
t u(x, t)−Δu(x, t) = f(t, x), x ∈ Rd, t ∈ [0,∞). (2.4.8)

Here, we assume that φ(μ) � 0 and is not zero everywhere. The equation

(2.4.8) is a generalization of the fractional differential equations and is impor-

tant from the viewpoint of applications. When φ(μ) = δ(μ− μ1), we obtain

the fractional differential equation

C
0 D

μ1

t u = Δu+ f.

In particular, when μ1 = 1 (resp. μ1 = 2), we obtain the heat equation

(resp. wave equation) in Rd. When φ(μ) = a1δ(μ− μ1) + a2δ(μ − μ2) with
0 < μ1 < μ2 � 1, a1 > 0, a2 > 0, a1 + a2 = 1, we obtain

a1
C
0 D

μ1
t u+ a2

C
0 D

μ2
t u = Δu+ f,

which describes a sub-diffusion process with retardation [42].
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We consider the more general equation (2.4.8) with initial data

u(l)(0, x) = ul(x), x ∈ Rd, l = 0, 1, · · · , k − 1. (2.4.9)

By linear superposition principle, we may divide the equation (2.4.8) and

(2.4.9) into the following several equations satisfied by uj , j = 0, 1, · · · , k.
Let uj , j = 0, · · · , k − 1 satisfy⎧⎪⎨⎪⎩

0D
φ
t u(x, t)−Δu(x, t) = 0, x ∈ Rd, t ∈ [0,∞),

u(j)(0, x) = uj(x);

u(l)(0, x) = 0, l ∈ {0, 1, · · · , k − 1}, l 
= j, x ∈ Rd.

(2.4.10)

and uk satisfy{
0D

φ
t u−Δu = f,

u(l)(0, x) = 0, l ∈ {0, 1, · · · , k − 1}, x ∈ Rd.
(2.4.11)

Then the solution of (2.4.8) and (2.4.9) is given by u =
k∑

j=0

uj(t, x). We will

use the Laplace transform method to find a solution of the equations (2.4.8)

and (2.4.9). Applying the Laplace transformation, we obtain

ũ

∫ k

0

φ(μ)sμdμ−
k−1∑
l=0

ul(x)

sl+1

∫ k

l

φ(μ)sμdμ = Δũ+ f̃ , (2.4.12)

where ũ(s, x) = L [u](s, x) is the Laplace transform of the u and f̃ is the

Laplace transform of f in the variable t. Let B̃l(s) :=

∫ k

l

φ(μ)sμdμ 
= 0, we

can write the equation in the new form

ũ =
u0(x)

s
+

k−1∑
l=1

ul(x)

sl+1

B̃l(s)

B̃0(s)
+

f̃

B̃0(s)
+

1

B̃0(s)
Δũ. (2.4.13)

In particular,

ũj =
uj(x)

sj+1

B̃j(s)

B̃0(s)
+

1

B̃0(s)
Δũj, k = 0, 1, · · · , k − 1, (2.4.14)

and

ũk =
f̃

B̃0(s)
+

1

B̃0(s)
Δũk. (2.4.15)

By taking inverse Laplace transform, we obtain from (2.4.13)

u(t, x) = u0(x) +

k−1∑
l=1

ul(x)

Γ(l + 1)
tl ∗t bl(t) ∗t b0(t) + f(t, x) ∗t b0(t) + b0(t) ∗t Δu,

(2.4.16)
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where b0(t) = L
−1[1/B̃0(s)](t), bl(t) = L

−1[B̃l(s)](t) and ∗t denotes the

convolution in the t variable. Equation (2.4.13) and (2.4.14) are of the form

of an abstract Volterra equation

x(t) = w(t) + b(t) ∗ Ax(t), t ∈ J,
where b(t) is the scalar kernel, w ∈ C(J,X) is a continuous function from

interval J to space X and A is an unbounded operator on a dense set of

XA equipped with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖. Resolvents for such
problems and their applications to well-posedness are introduced in [181], for

example.

One remark should be placed here. From (2.4.13) and (2.4.14), we know

that between two consecutive integers, it does not matter how many differ-

ent fractional orders are taken in the given equation. For the initial value

problem, we need only to give the initial values of the unknown solution just

for the integer order derivatives less than k. As for the number of initial

conditions, it depends on the support of the weight function φ. If for some

least k > 0, such that suppφ ⊂ [0, k], then k initial conditions should be

placed on the unknown function. Indeed, if suppφ ⊂ [0, k − 1], then the

Cauchy problem with k given initial data becomes ill-posed. In such a case,

B̃k−1(s) = 0, and then uk−1 satisfies

ũj =
1

B̃0(s)
Δũj ,

whose solution vanishes in Rd.

Special attention is focused on the cases when k = 1 and k = 2. The

equation (2.4.8) is then completed by the following initial conditions{
u(x, 0) = u0(x), if suppφ ⊂ [0, 1]

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), if suppφ ⊂ [0, 2].
(2.4.17)

Then u is a solution to the initial value problem (2.4.8) and (2.4.17) with

suitable assumptions on u0 and u1, if u ∈ AC1
loc([0,∞);H2(Rd)), i.e., u

is locally absolutely continuous in time on [0,∞) with values in H2(Rd)

when suppφ ⊂ [0, 1] and u ∈ AC2
loc([0,∞);H2(Rd)) when suppφ ⊂ [0, 2],

respectively, and satisfies (2.4.8) and (2.4.17). According to the support of

φ, we can divide (2.4.8) into the following three cases:

1. distributed-order diffusion-wave equation, if 0 � a � 1 < b � 2;

2. distributed-order diffusion equation, if b � 1; and

3. distributed-order wave equation, if a > 1.

For more detailed studies for the cases k = 1 or k = 2 can be found in recent

papers by Atanackovic et al [11, 12].
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2.4.2 Initial boundary value problem of distributed order

In the following, we consider a initial boundary value problem of the dis-

tributed order time-fractional differential equation of the form∫ 1

0

φ(μ)C0 D
μ
t u(t)dμ =

∂2

∂x2
u (2.4.18)

with the following initial and boundary conditions{
u(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0.
(2.4.19)

Here, f(x) denotes the initial distribution of the temperature. We employ the

separation of variables method to find out a solutions (2.4.18) and (2.4.24).

Let u(t, x) = X(x)T (t), then we obtain from (2.4.18)

1

T (t)

∫ 1

0

φ(μ)C0D
μ
t T (t)dμ =

1

X
X ′′ = −λ.

Consider the eigenvalue problem for X :{
X ′′ + λX = 0,

X(0) = X(1) = 0.

By standard ODE theory, we know λ has discrete eigenvalues λn = n2π2

with eigenfunction Xn(x) = sin(nπx). Fixing λn, we solve the equation of T

by Laplace transform. Let T̃n(s) denote the Laplace transform of Tn(t) and

Tn(0) = 1, then we have

T̃n(s)B̃0(s)− 1

s
B̃0(s) + (nπ)2T̃n(s) = 0,

which yields

T̃n(s) =

∫ 1

0

φ(μ)sμ−1dμ

B̃0(s) + (nπ)2
.

To find the inverse Laplace transform for T̃n(s), we consider

T̃n(μ, s) =
sμ−1

B̃0(s) + (nπ)2
,

whose inverse transform is given by Tn(μ, t) and the solution Tn(t) can thus

be expressed as

Tn(t) =

∫ 1

0

φ(μ)Tn(μ, t)dμ.
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By the complex inversion formula

Tn(μ, t) =
1

2πi

∫ γ+i∞

γ−i∞

T̃n(μ, s)e
stds, (t > 0),

where s is taken to be complex and γ is an arbitrary real number which lies

to the right of all poles and branch points in the integral. Due to sμ−1 in the

numerator and sμ in the denominator, the integral has a branch point. Any

poles will be simple and are zeros of g(s) := B̃0(s) + (nπ)2. The function

g(s) is analytic in any region not containing the origin, so any poles will be

isolated. Since φ(μ) � 0 for all μ ∈ [0, 1] and not zero everywhere, it can be

proved that all the zeros of g(s) lie on the negative real axis. The inverse

transform Tn(μ, t) can be computed using residues. Due to the branch point

at the origin, the usual Bromwich contour cannot be used. In essence, a path

of integration is then chosen that excludes the branch points. This is referred

to as a Hankel contour. We let ΓR,ε =
5∑

k=0

Γ
(k)
R,r, with Γ

(0)
R,ε = {γ + iη : −R �

η � R}, Γ(1)
R,ε = {γ +Reiθ : π/2 � θ � π}, Γ(2)

R,ε = {reπi : −R+ γ � r � −ε},
Γ
(3)
R,ε = {εe−iθ : −π � θ � π}, Γ

(4)
R,ε = {−re−πi : ε � r � R − γ} and

Γ
(5)
R,ε = {γ + Reiθ : π/2 � θ � 3π/2}, where ε > 0 is sufficient small and

R > 0 is sufficiently large. By using the residue formula, we have

1

2πi

∫
ΓR,ε

estsμ−1

B̃0(s) + (nπ)2
ds = Res

(
estsμ−1

B̃0(s) + (nπ)2

)
. (2.4.20)

By letting R→∞ and ε→ 0, we obtain

Tn(μ, t) =Res

(
estsμ−1

B̃0(s) + (nπ)2

)
− 1

2πi
lim

R→∞,ε→0

[∫
Γ

(2)
R,ε

+

∫
Γ
(4)
R,ε

estsμ−1

B̃0(s) + (nπ)2
ds

]
, (2.4.21)

since the contributions along Γ
(1)
R,ε, Γ

(3)
R,ε, Γ

(5)
R,ε vanish as R → ∞ and ε → 0.

Since the only possible poles are on the negative real axis, the contribution

from the residue part also vanishes. This leaves only the contributions along

the integral path −∞→ 0 and 0→ −∞, which yield

Tn(μ, t) = − 1

2πi
lim

R→∞,ε→0

[∫
Γ
(2)
R,ε

+

∫
Γ
(4)
R,ε

estsμ−1

B̃0(s) + (nπ)2
ds

]
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=
1

2πi

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0

e−rtrμ−1eiπμdr∫ 1

0

φ(μ)rμeiπμdμ+ (nπ)2
−
∫ ∞

0

e−rtrμ−1e−iπμdr∫ 1

0

φ(μ)rμe−iπμdμ+ (nπ)2

⎫⎪⎪⎬⎪⎪⎭
=
1

π

�

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0

e−rtrμ−1eiπμdr∫ 1

0

φ(μ)rμeiπμdμ+ (nπ)2

⎫⎪⎪⎬⎪⎪⎭ .
(2.4.22)

The solution to (2.4.18) and (2.4.24) is given by

u(t, x) =

∞∑
n=1

anTn(t) sin(nπx), (2.4.23)

where {an}∞n=1 are the Fourier coefficients of u0(x), i.e., an = 2

∫ 1

0

u0(x) sin

(nπx)dx.

Remark 2.4.2 The equation (2.4.18) with the following initial and Neu-

mann boundary condition{
u(0, x) = u0(x),

∂xu(t, 0) = ∂xu(t, 1) = 0
(2.4.24)

can be similarly handled and we finally obtain

u(t, x) =

∞∑
n=0

anBn(t) cos(nπx),

where {an}∞n=0 are the coefficients of u0(x).

2.5 Appendix A: the Fourier transform

The Fourier transform is a powerful tool in the analysis, one of whose advan-

tages is to transform the differentiation operation and convolution into the

product operation in phase space. In this section, the Fourier transform and

its basic properties are introduced. For further knowledge about the Fourier

transform, readers may refer to, for example, [204-206].

What follows is divided into several parts. First, we introduce the defini-

tion of the Fourier transform in L1, and by applying the continuity method we

extend the Fourier transform to L2. The key point is the Plancherel identity.

Next introduce the Fourier transform in Lp for 1 < p < 2 by applying the
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interpolation and Hausdorff-Young inequality. To extend the Fourier trans-

form to distributions, we first consider the Fourier transform in the Schwartz

space and then use the duality method. For the sake of convenience, some

properties of the Fourier transform are listed in Table 2.5.1 below.

Definition 2.5.1 If f(x) ∈ L1(Rd), the Fourier transform of f is defined

by

Ff(ξ) = f̂(ξ) =
∫
Rd

f(x)e−ix·ξdx, (2.5.1)

where x · ξ is the inner product in Rd.

By this definition, as long as f ∈ L1(Rd), Ff(ξ) makes sense. First of

all, we give two useful theorems, cf. [228].

Theorem 2.5.1 Let f̂ ∈ L1(Rd), then f̂(ξ) is a uniformly continuous

function on Rd.

Theorem 2.5.2 (Riemann-Lebesgue Lemma) Suppose f̂ ∈ L1(Rd), then

lim|ξ|→∞ f̂(ξ) = 0.

In addition, there holds the following properties for f ∈ L1(Rd).

(1) F is a linear operator on L1(Rd), and

‖Ff‖L∞ � ‖f‖L1.

Furthermore, if f(x) � 0, then ‖Ff‖L∞ = ‖f‖L1 = f̂(0).

(2) Let τa as translation operator such that τaf(·) = f(· − a), then

F(τaf)(ξ) = e−iaξFf(ξ).

(3) Let δλ be the scaling operator such that (δλf)(x) = f(x/λ), then

δ̂λf(ξ) = λ
df̂(λξ), λ > 0.

(4) Let xk be the k-th coordinate of x and xkf ∈ L1(Rd), then

∂f̂(ξ)

∂ξ
= ̂(−ixkf)(ξ).

If f,
∂f

∂x
∈ L1(Rd), then

F
(
∂f

∂xk

)
(ξ) = iξk f̂(ξ).
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(5) If f, g ∈ L1, then f̂ ∗ g = f̂ ĝ. Indeed, when f, g ∈ L1, then f ∗ g ∈
L1(Rd) by Fubini Theorem and

f̂ ∗ g(ξ) =
∫∫

e−ix·ξf(x− y)g(y)dydx

=

∫∫
e−i(x−y)·ξf(x− y)e−iy·ξg(y)dxdy

=f̂(ξ)ĝ(ξ).

(6) Multiplication formula. Let f, g ∈ L1, then∫
Rd

f̂(x)g(x)dx =

∫
Rd

f(x)ĝ(x)dx.

In this case, since f, g ∈ L1, then f̂ , ĝ ∈ L∞, and the integrals of both sides

makes sense.

The above properties show that the Fourier transform maps L1 into L∞.

However, not every L∞ function is a Fourier transform of an L1 function,

such as the constant function. However, we have the following (cf. [118])

Theorem 2.5.3 Let f ∈ L1(Rd) ∩ C1(Rd), then

lim
N→∞

1

(2π)d

∫ N

−N

f̂(ξ)eix·ξdξ = f(x),

where the left hand side denotes the Cauchy principal value integral.

This theorem states that any function f ∈ L1(Rd) ∩ C1(Rd) can be

decomposed into a superposition of simple harmonic waves eix·ξ while f̂(ξ)

denotes the complex amplitude of harmonic waves at frequency ξ. Therefore,

f̂ is also called the spectrum of f in applied sciences. This leads to the

definition of the inverse Fourier transform. Let g(ξ) ∈ L1(Rd), then

F−1f(x) =
1

(2π)d

∫
Rd

g(ξ)eix·ξdξ (2.5.2)

is called the inverse Fourier transform of g.

Theorem 2.5.4 Let f ∈ L1(Rd), f̂ ∈ L1(Rd), then

F−1(Ff)(x) = F(F−1f)(x) = f(x), a.e. x ∈ Rd.

Under the conditions of this theorem, we know that F−1(Ff)(x) is uni-

formly continuous and tends to zero as |x| → ∞ according to Theorem 2.5.1

and Theorem2.5.2. Furthermore, there is always a continuous function f̃(x)
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in the equivalence class of f such that F−1(F f̃)(x) = f̃(x) for any x ∈ Rd.

The Fourier transform and the inverse Fourier transform are generalizations

of the Fourier series. Here we draw an analogy between the Fourier trans-

form and the Fourier series of periodic function f(x) in (−l, l). In the one

dimensional case, f is expanded in Fourier series,

f(x) =

∞∑
n=−∞

cne
inπx/l,

with

cn =
1

2l

∫ l

−l

f(x)e−inπx/ldx

being the Fourier coefficient. The coefficients cn can be viewed as a discrete

Fourier transform, and the Fourier series expansion of f can be thought of as

discrete inverse Fourier transform. In fact, letting l→∞ we can get formally

the Fourier transform in Definition 2.5.1.

We now introduce the Fourier transform of periodic functions. Let a1,

a2, · · · , an are positive integers, and Td
a be the d-dimensional periodic box

with the period in the ith direction being 2πai. Let also Zd
a = Z/a1 × · · · ×

Z/aN be the dual lattice of Td
a. For function u in Td

a, it can be expressed in

terms of Fourier series

u(x) =
∑
ξ∈Zd

a

ûξe
iξ·x,

where

ûξ :=
1

|Td
a|
∫
Td

a

e−iξ·yu(y)dy, ξ ∈ Zd
a.

The property (5) of the Fourier transform of functions in L1 can be general-

ized as follows

(5’) Let f̂(n) and ĝ(n) denote the Fourier transform of f and g, respec-

tively, then

f̂ g(n) =
∑

n1+n2=n

f̂(n1)ĝ(n2).

After discussing the Fourier transform in L1(Rd), we consider the Fourier

transform on L2. For f ∈ L2(Rd), the integral in the definition 2.5.1 is not

necessarily convergent. However, its Fourier transform can be defined by the

continuity method, which requires the following Plancherel identity. Since

L1
⋂
L2 is a dense linear subspace in L2, the Fourier transform is firstly

defined in L1
⋂
L2, and then extend to L2 by the Hahn-Banach extension

theorem.
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Lemma 2.5.1 Let f ∈ L1
⋂
L2, then f̂ ∈ L2(Rd) and ‖f̂‖L2 = (2π)d‖f‖L2.

Proof The proof can be found in [60, 228].

The coefficient(2π)d is caused by the definition of the Fourier transform

and appropriately modifying the definition can eliminate this coefficient. Ac-

cording to Lemma 2.5.1, F is a bounded linear operator on L1
⋂
L2 → L2,

hence by Hahn-Banach theorem there exists a unique bounded extension F̃
on L2(Rd) such that F̃ |L1

⋂
L2f = Ff for all f ∈ L1

⋂
L2 and ‖F̃‖ � ‖F‖.

The extension is called the Fourier transform on L2(Rd), still denoted by

F . Indeed, for f ∈ L2(Rd), there exists a sequence fk in L2
⋂
L1 such that

fk → f in L2 as k →∞. It follows from Lemma 2.5.1 that ‖f̂k − f̂l‖L2 → 0

and hence there exists a function f̂ in L2 such that f̂k → f̂ as k →∞. Then

the Fourier transform on f ∈ L2 is defined to be f̂ . As will be shown in

the following theorem, mapping f �→ f̂ is not only isometric in the sense of

Lemma 2.5.1, but also unitary. I.e., F is a invertible isometric transformation

in L2.

Theorem 2.5.5 F is a unitary transformation on L2(Rd).

Proof Since F is a isometric linear operator on L2 by Lemma 2.5.1, we

only need to show F is surjective. Since F is isometric and L2 is closed, the

rangeR(F) is a closed subspace of L2. Let ϕ ∈ L2 such that

∫
Rd

f̂(ξ)ϕ(ξ)dξ =

0 for all f ∈ L2. Applying product formula then yields

∫
Rd

f(x) ˆ̄ϕ(x)dx = 0

for all f ∈ L2. Direct calculation shows that ˆ̄ϕ(x) = ϕ̂(−x), and
∫
Rd

f(x)

ϕ̂(−x)dx = 0 for all f ∈ L2. In particular, taking f(x) = ϕ̂(−x) yields

‖ϕ‖L2 = 0. This shows that F is surjective, and hence F is unitary on L2.

This theorem is called Plancherel theorem and the product formula is

called Plancherel identity. Analogously, applying polarization identity

(f, g) =
1

2

{‖f + g‖2L2 − i‖f + ig‖2L2 − (1− i)‖f‖2L2 − (1− i)‖g‖2L2

}
,

one obtains the following Parseval identity

(f, g) =

∫
Rd

f(x)g(x)dx =
1

(2π)d

∫
Rd

f̂(ξ)ĝ(ξ)dξ =
1

(2π)d
(f̂ , ĝ).

After discussing the Fourier transform in L1 and L2, we generalize the

Fourier transform to Lp(Rd).
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Theorem 2.5.6 Let 1 < p < 2, f ∈ Lp(Rd)∩L1(Rd) and
1

p
+

1

q
= 1, then

Ff ∈ Lq(Rd) and

‖Ff‖Lq � Cn
p ‖f‖Lp. (2.5.3)

The inequality (2.5.3) is called the Hausdorff-Young inequality. The proof

of this theorem can be found in [131], and the proof of inequality (2.5.3)

employs the Riesz-Thorin interpolation theorem. Details can be found in

[59, 189]. As a remarkable note, the necessary and sufficient condition for

the equality in (2.5.3) holds is that f is a Gauss function of the form f(x) =

Ae−〈x,Mx〉 + Bx, where A ∈ C, M is an arbitrary real symmetric positive

definite matrix and B is an arbitrary vector in Cn.

Since Lp ∩ L1 is a sublinear space of L1, we can also define the Fourier

transform on Lp(Rd) for 1 < p < 2 by continuity method. Let f ∈ Lp(Rd) for

1 < p < 2, the Fourier transform of f is denoted by f̂ belonging to ∈ Lq(Rd)

and satisfies (2.5.3). However, unlike the case of p = 2, F : Lp → Lq is not

surjective, so the Fourier transform F : Lp → Lq is not invertible.

On the other hand, Theorem 2.5.6 shows that the index q in (2.5.3) is not

arbitrary, which should be the conjugate index of p, i.e.,
1

p
+

1

q
= 1. This can

be also seen from scaling. Let f ∈ Lp, then g(x) = (δλf)(x) = f(x/λ) ∈ Lp

for all λ > 0 and hence ‖ĝ‖Lq � Cn
p ‖g‖Lp with the same constant Cn

p as in

(2.5.3). This is equivalent to the inequality in terms of f

λd−
d
q ‖f̂‖Lq � Cn

p λ
d
p ‖f‖Lp, ∀λ > 0.

Since λ > 0 is arbitrary, it follows that d − d
q

=
d

p
. Otherwise, the ratio

‖f̂‖Lq/‖f‖Lp can be taken arbitrarily large. Similar to the property (5), we

can show

(5”) Let f ∈ Lp(Rd), g ∈ Lq(Rd) and 1+
1

r
=

1

p
+

1

q
with 1 � p, q, r � 2,

then

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

Proof It follows f ∗ g ∈ Lr(Rd) from Young’s inequality of convolution.

Hence the Fourier transform of f ∗g makes sense and f̂ ∗ g ∈ Lr′(Rd). On the

other hand, from (2.5.3), it follows that f̂ ∈ Lp′(Rd) and ĝ ∈ Lq′(Rd) and

hence f̂ ĝ ∈ Lr′(Rd) by Hölder inequality. Therefore, both sides in (2.5) make

sense. When both f and g belong to L1(Rd), (5”) reduces to (5). Otherwise

by an approximation process, one can also establishes (5”).
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However, there are counter examples showing that inequalities similar to

(2.5.3) when p > 2 does not exist. Therefore, the continuity method fails

when p > 2. When regarded as a distribution, functions in Lp(Rd) can

also be defined, as discussed in what follows. We first consider the Fourier

transform of functions in Schwartz class.

Definition 2.5.2 The Schwartz class of functions S is defined as

S = {φ : φ ∈ C∞(Rd), sup
x∈Rd

|xα∂βφ| <∞, ∀α, β ∈ Nd}.

Note that under the usual scalar multiplication and addition operations, S
is a vector space, which is also called the calss of rapidly decreasing functions.

It turns out to be a Hausdorff locally convex topological space under the

family of seminorms

ρα,β = sup
x∈Rd

|xα∂βφ|, ∀α, β ∈ Nd.

A sequence {φν(x)} ∈ S is said to converge to zero if xα∂βφν(x) → 0 uni-

formly as ν →∞ for any multi-indices α, β.

Definition 2.5.3 The space S ′ of tempered distributions is defined as the

space consisting of continuous linear functionals on the Schwartz space S.

In other words, F is a tempered distribution if and only if limν→∞ F (φν) =

0 whenever limν→∞ ρα,β(φν) = 0 for all multi-indices α and β. F (φ) is also

denoted as 〈φ, F 〉.
Example 2.5.1 1. φ(x) = e−x2 ∈ S is a rapidly decreasing function.

2. δ(x) ∈ S′ is a tempered distribution.

3. 〈φ, δ〉 = ∫
Rd δ(x)φ(x)dx = φ(0).

Theorem 2.5.7 If φ ∈ S, then Fφ ∈ S.
Proof Indeed, F is a continuous linear operator from S to itself. Lin-

earity is obvious. Next we show that Fφ ∈ S. For any multi-indices α, β, it

follows by definition of Fourier transform that

(iξ)α∂β φ̂(ξ) = F(∂α((−ix)βφ))(ξ),

and hence

sup
y∈Rd

|(iξ)α∂βφ̂(ξ)| �
∫
Rd

∣∣∂α(ix)βφ(x)∣∣ dx <∞.
Finally, for any multi-indices α, β, there holds
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sup
y∈Rd

|(iξ)α∂βφ̂(ξ)| �
∫
Rd

(1 + |x|2)d|∂α(ix)βφ(x)|
(1 + |x|2)d dx

�C sup
x∈Rd

∣∣(1 + |x|2)d|∂α(ix)βφ(x)|∣∣
�C

∑
|β̃|�|β|+2d,|α̃|�|α|

sup
x∈Rd

∣∣∣xβ̃∂α̃φ(x)∣∣∣ .
This shows that for any multi-indices α, β, ξα∂β φ̂(ξ) is bounded and hence

belongs to S. It is also shown that φ̂ν → 0 in S as φν → 0 in S. Similarly, we

can show that F−1 is a continuous linear mapping from S to itself. Therefore,

S is indeed an isomorphism on S(Rd).

Now we turn to consider the Fourier transform on S ′.
Definition 2.5.4 Let T be a tempered distribution, T̂ is called the Fourier

transform of T and denoted as FT = T̂ , if there exists a tempered distribution

T̂ on S ′ such that 〈T̂ , φ〉 = 〈T,Fφ〉 for all φ ∈ S.
Theorem 2.5.7 shows that if φ ∈ S, then Fφ ∈ S, thus 〈T̂ , φ〉 = 〈T,Fφ〉

in the definition makes sense. Furthermore, if φν → 0 in S, then Fφν → 0.

Similarly, the inverse Fourier transform F−1T of a tempered distribution T

is defined as F−1T such that 〈F−1T, φ〉 = 〈T,F−1φ〉 for all φ ∈ S. Let

T be an absolutely integrable function on Rd. Regarding T as a tempered

distribution, then for any φ ∈ S there holds

〈FT, φ〉 =〈T,Fφ〉

=

∫
Rd

(∫
Rd

φ(ξ)e−ix·ξdξ

)
T (x)dx

=

∫
Rd

(∫
Rd

T (x)e−ix·ξdx

)
φ(ξ)dξ.

Thus FT =

∫
Rd

T (x)e−ix·ξdx reduces to the classical Fourier transform in

L1(Rd).

If T is a tempered distribution and ψ is a slowly increasing infinitely

differentiable function on Rd, i.e., all derivatives of ψ grow at most as fast

as polynomials, then Tψ is a tempered distribution and F(Tψ) = FT ∗ Fψ.
In particular, the Fourier transform of the constant function ψ(x) = (2π)−d

is the delta distribution. Indeed, by Cauchy integral theorem, we have

F(e−x2/2m) = md/2(2π)d/2e−mξ2/2.

When m→∞, we have e−x2/2m → 1 and md/2e−mξ2/2 → (2π)d/2δ(x) in S ′,
hence by continuity, we have F(1)(ξ) = (2π)dδ(ξ).
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Example 2.5.2 1. F [e−x2

] =
√
πe−ξ2/4.

2. F [δ(x)] = 1(ξ).

3. F(1)(ξ) = (2π)dδ(ξ).

We end the introduction of Fourier transform by the following table, which

lists some Fourier transforms of some functions or distributions and the re-

lated properties.

Table 2.5.1 Fourier transform and the related properties

Primitive functionf(x) The Fourier transformf̂(ξ) Function(f, g) Transform(f̂(ξ), ĝ(ξ))

δ(x) 1 af(x) + bg(x) af̂(ξ) + bĝ(ξ)

e−a|x| 2a

a2 + ξ2
df

dx
iξf̂(ξ)

H(x) πδ(ξ) +
1

iξ
xf(x) i

df̂

dξ

H(a − |x|) 2

ξ
sin aξ f(x− a) e−iaξ f̂(ξ)

1 2πδ(ξ) eiaxf(x) f̂(ξ − a)

e−x2/2
√
2πe−ξ2/2 f(ax)

1

a
f̂

(
ξ

a

)

2.6 Appendix B: Laplace transform

As we have already shown, when f ∈ L1(R) then its Fourier transform

exists in the classical sense. However, many simple functions cannot sat-

isfy this strict requirement to be integrable. To remedy this drawback, the

Laplace transform is proposed, which can be regarded as a generalization of

the Fourier transform.

Definition 2.6.1 Let f be a function defined in R+. If

F (s) = L [f ](s) =

∫ +∞

0

f(t)e−stdt, s ∈ C (2.6.1)

is convergent in a certain region of C, then F is called the Laplace transform

of f and f is called the inverse Laplace transform of F , denoted as f =

L −1[F ].

It can be seen from the definition that the requirement of the function

in the Laplace transform is much weaker that in the Fourier transform. For

example, the Fourier transform of a Heaviside function H does not exist in

the classic sense, but its Laplace transform does and

L [H ](s) =

∫ +∞

0

e−stdt =
1

s
, Re s > 0,
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whereH(t) = 0 for t � 0 and H(t) = 0 otherwise. A function f grows at most

exponentially, if there existM > 0 and σ > 0 such that |f(t)| �Meσt for any

t � 0. It can be shown that if f grows at most exponentially and is piecewise

continuous on any finite interval of [0,∞), then the Laplace transform of f

exists for Σ = {Re s � σ1 > σ}, the integral (2.6.1) converges absolutely and

uniformly in Σ and F (s) is an analytical function.

In practical problems, we usually need to find f when its Laplace trans-

form F is given. In general, this is not an easy task. It generally reduces

to the following complex integral, This integral is also called the Bromwich

integral, Fourier-Mellin integral or the Mellin’s inverse integral,

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

F (s)estds, t > 0,

where the path of integration is a vertical line parallel to the imaginary axis

such that γ is greater than the real part of all singularities of F (s). This

ensures that the path is in the region of convergence. In particular, when all

the singularities are in the left half plane, we can take γ = 0, and the integral

reduces to the inverse Fourier transform of F . In practice, when F (s) satisfies

certain conditions, the inverse Laplace function can be obtained by Cauchy

residue theorem in the complex integration theory and the residue formula

is useful in computing such a integral.

The table lists some Laplace transforms of some frequently used functions

and some properties of the Laplace transform.

Table 2.6.1 Laplace transform and the related properties

Function f(t) Transform F(s) Function Transform

tm−1eat
Γ(m)

(s− a)m
(m > 0) af(t) + bg(t) aF (s) + bG(s)

cosωt
s

s2 + ω2

∫ t

0
dτ · · ·

∫ τ

0
f(τ ′)dτ ′

︸ ︷︷ ︸
norders

s−nF (s)

sinωt
ω

s2 + ω2
fn(t) snF (s)−

n−1∑
j=0

sn−1−jfj(0)

tm(m > −1) Γ(m + 1)

sm+1
,Re s > 0 f(ct)

1

c
F (s/c)

δ(t − a) e−as tf(t) −dF

df

H(t − a)
1

s
e−as f(t)

t

∫ ∞

s
F (s′)ds′

(πt)
1
2 e−a2/4t 1√

s
e−a

√
s

∫ t

0
g(t − τ)f(τ)dτ F (s)G(s)
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2.7 Appendix C: Mittag-Leffler function

2.7.1 Gamma function and Beta function

Let z be a complex number with Re z > 0, then the integral

Γ(z) =

∫ ∞

0

e−ttz−1dt

converges absolutely and is known as the Gamma function or the Euler in-

tegral of the second kind. It is obvious that Γ(1) = 1. Using integration by

parts, one obtains∫ ∞

0

e−ttzdt = −e−ttz|t=∞t=0 + z

∫ ∞

0

e−ttz−1dt,

yielding a fundamental property of the Gamma function

Γ(z + 1) = zΓ(z). (2.7.1)

By employing this property, the Γ function can be generalize into the case

Re z < 0. When −m < Re z � −m+ 1, we define

Γ(z) =
Γ(z +m)

z(z + 1) · · · (z +m− 1)
.

Proposition 2.7.1 Γ(n+ 1) = n!, ∀n ∈ N.

Proposition 2.7.2 There holds the Euler’s reflection formula Γ(z)Γ(1−z) =
π

sin(πz)
for any z with Re z 
∈ Z.

Corollary 2.7.1 Γ(1/2) =
√
π.

Definition 2.7.1 The Beta function, also called the Euler integral of the

first kind, is a special function defined by

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, Re z > 0,Rew > 0.

By definition, it is obvious that B(z, w) = B(w, z). The Beta function is

related to the Gamma function by the formula B(z, w) = Γ(z)Γ(w)/Γ(z+w)

for Re z,Rew > 0.

Proposition 2.7.3 The Gamma function satisfies the Legendre formula

Γ(z)Γ

(
z +

1

2

)
=
√
π21−2zΓ(2z).
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Proof Indeed, consider the identity for Re z > 0 that

B(z, z) =

∫ 1

0

(t(1 − t))z−1dt.

Let s = 4t(1− t), then

B(z, z) =2

∫ 1/2

0

(t(1 − t))z−1dt

=
1

22z−1

∫ 1

0

sz−1(1− s)−1/2ds = 21−2zB(z, 1/2),

yielding the Legendre formula.

Employing the Beta function, the classical binomial coefficient

Ck
n =

n!

k!(n− k)! =
Γ(1 + n)

Γ(1 + k)Γ(1 + n− k)
can be generalized into

Cμ
−ν =

Γ(1 − ν)
Γ(1 + μ)Γ(1 − ν − μ) , (2.7.2)

where the μ, ν are complex numbers. Specially, when μ = k is a positive

integer, Proposition 2.7.2 then implies

Ck
−ν =

Γ(1− ν)
k!Γ(1 − ν − k) = (−1)kΓ(k + ν)

k!Γ(ν)
= (−1)kCk

ν+k−1.

2.7.2 Mittag-Leffler function

The Mittag-Leffler function with two parameters is a special function defined

by

Eα,β(z) =
∞∑
k=1

zk

Γ(kα+ β)
, Reα > 0.

This function is named after Magnus Gustaf (Gösta) Mittag-Leffler, a Swedish

mathematician. When β = 1, we usually denote Eα(z) = Eα,1(z) to be the

Mittag-Leffler function with one parameter α. When α, β are real and pos-

itive, this series converges for all z and hence the Mittag-Leffler function is

an entire function.

Consider the fractional linear differential equation C
0 D

ν
t y = σy, ν ∈ (0, 1],

with initial data y|t=0 = y0. Denote Y (s) = L [y](s). Taking the Laplace

transform of the above equation yields

sνY (s)− sν−1y0 = σY (s).
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Therefore, one obtains

Y (s) =
sν−1y0
sν − σ = y0

∞∑
k=0

σk

s1+νk
.

Then taking the inverse Laplace transform, we get the solution in terms of

the Mittag-Leffler function

y(t) = y0

∞∑
k=0

σktνk

Γ(νk + 1)
= y0Eν(σt

ν).

When σ in this example is replaced with σiν , then the solution is given

by y(t) = y0Eν(σi
ν tν). When σ = 1, C

0 D
1
t reduces to the classical derivative

d/dt, and the solution is given by y(t) = y0e
σt = y0E1(σt).
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Chapter 3

Fractional Partial Differential

Equations

3.1 Fractional diffusion equation

This section mainly discusses the estimates of fractional dissipative equa-

tion with Fractional Laplacian. Consider the following fractional diffusion

equation {
ut + (−Δ)αu = 0, (t, x) ∈ (0,∞)×Rd,

u(0) = ϕ(x), x ∈ Rd.
(3.1.1)

The solution of this equation can be obtained by the semigroup method

u(t) = Sα(t)ϕ = e−t(−Δ)αϕ.

Next, we will prove the kernel function derived from Sα(t) is a bounded linear

operator on Lp(Rd) for 1 � p �∞.

Applying the Fourier transform, the solution of equation (3.1.1) can be

written as

u(t, x) = F−1(e−t|ξ|2α ϕ̂(ξ)) = F−1(e−t|ξ|2α) ∗ ϕ(x) = Kt ∗ ϕ, (3.1.2)

where

Kt(x) =
1

(2π)d

∫
Rd

eix·ξe−t|ξ|2αdξ.

Clearly, when α = 1, Kt(x) is the Gaussian kernel function and when α =
1

2
,

Kt(x) is the Poisson kernel function.

According to (3.1.2) and using Young’s convolution inequality, one obtains

‖f ∗ g‖Lp � ‖f‖L1‖g‖Lp, ∀f ∈ L1(Rd), g ∈ Lp(Rd), ∀p ∈ [1,∞].

It is clear that to obtain the (p, p) type estimate, we need only the L1 estimate

109
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of the kernel function Kt(x). To this end, we first notice that by scaling

Kt(x) =
1

(2π)d
t−

d
2α

∫
Rd

e
i x

t1/2α
·η
e−|η|

2α

dη

= : t−
d
2αK

(
x

t1/2α

)
.

Hence, we need only to consider the property of the kernel function K(x)

K(x) = (2π)−d

∫
Rd

eix·ξe−|ξ|
2α

dξ.

Noticing e−|ξ|
2α ∈ L1(Rd) and taking advantage of the properties of

Fourier transform, we knowK ∈ L∞(Rd)∩C(Rd). According to the Riemann-

Lebesgue lemma, lim|x|→∞K(x) = 0, i.e., K ∈ L∞(Rd) ∩ C0(R
d). Here

C0(R
d) is the continuous function that tends to zero at infinity. Similarly,

since |ξ|νe−|ξ|2α ∈ L1(Rd), then for any ν > 0 one has (−Δ)ν/2K ∈ L∞(Rd)∩
C0(R

d). Since iξe−|ξ|
2α ∈ (L1(Rd))d, one has ∇K ∈ L∞(Rd) ∩ C0(R

d). In-

deed, the function e−|ξ|
2α ∈ S(Rd), the Schwartz space of rapidly decreasing

functions, hence K ∈ S(Rd) from the properties of Fourier transform.

Lemma 3.1.1 The kernel function K(x) satisfies the pointwise estimate

|K(x)| � C(1 + |x|)−d−2α, x ∈ Rd, α > 0,

thus K ∈ Lp(Rd) for all p ∈ [1,∞].

Proof Introducing the invariant derivative L(x,D) = x ·D/|x|2 = x · ∇ξ/i|x|2,
then L(x,D)eix·ξ = eix·ξ. Its conjugate operator is defined by L∗(x,D) =

−x ·∇ξ/i|x|2. Introducing the truncation of C∞(Rd) function χ(ξ) such

that χ(ξ) = 1 when |ξ| � 1 and χ(ξ) = 0 when |ξ| > 2, the kernel function

can be written as

K(x) =(2π)−d

∫
Rd

eix·ξL∗(e−|ξ|
2α

)dξ

=(2π)−d

∫
Rd

eix·ξχ(ξ/δ)L∗(e−|ξ|
2α

)dξ

+ (2π)−d

∫
Rd

eix·ξ(1− χ(ξ/δ))L∗(e−|ξ|2α)dξ =: I + II,

where δ > 0 is to be determined. Obviously

|I| � C

|x|
∫
|ξ|�2δ

|ξ|2α−1dξ � C|x|−1δ2α+d−1.
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For sufficiently large N (e.g., N > [2α]+d), by integration by parts, we know

|II| �(2π)−d

∫
Rd

∣∣∣eix·ξ(L∗)N−1(1− χ(ξ/δ))L∗(e−|ξ|2α)
∣∣∣dξ

�C|x|−N

∫
|ξ|�δ

N∑
j=1

|ξ|2jα−N e−|ξ|
2α

dξ

+ C|x|−N
N−1∑
k=1

Ckδ
−k

∫
δ�|ξ|�2δ

N−k∑
l=1

Cl|ξ|2jα−N+ke−|ξ|
2α

dξ

�C|x|−N
∫
|ξ|�δ

|ξ|2α−Ne−|ξ|
2α

dξ+C|x|−N
∫
|ξ|�δ

|ξ|2α−N |ξ|2α(N−1)e−|ξ|2αdξ

+ C|x|−N
N−1∑
k=1

∫
δ�|ξ|�2δ

(|ξ|2α−Ne−|ξ|
2α

+ |ξ|2α(N−k)−Ne−|ξ|
2α

)dξ.

For arbitrary k = 1, 2, · · · , N − 1, one has |ξ|2α(N−1)e−|ξ|
2α

� C and

|ξ|2α(N−k−1)e−|ξ|
2α

� C, yielding

|II| � C|ξ|−N

(∫
|ξ|�δ

|ξ|2α−Ndξ +

∫
δ�|ξ|�δ

|ξ|2α−Ndξ

)
� C|x|−N δ2α−N+d.

Therefore, we obtain the estimate

|K(x)| � C|x|−1δ2α+d−1 + C|x|−N δ2α−N+d.

Choosing δ = |x|−1 then completes the proof.

The above technique is frequently used in the analysis of the theory of

harmonic analysis and partial differential equations. Similarly, this technique

can also be used to prove the following.

Lemma 3.1.2 For arbitrary ν > 0, there exists C > 0 such that for any

x ∈ Rd,

|(−Δ)ν/2K(x)| � C(1 + |x|)−d−ν .

Thus (−Δ)νK ∈ Lp(Rd) for arbitrary 1 � p �∞.

Remark 3.1.1 1. Similarly, there holds the estimate |∇K(x)| � C(1 +

|x|)−d−1, and hence ∇K ∈ Lp(Rd)(1 � p �∞).

2. According to the above lemma, for arbitrary p ∈ [1,∞], 0 < t < ∞,

the kernel function Kt(x) satisfies

Kt ∈ Lp(Rd), (−Δ)ν/2Kt ∈ Lp(Rd), ∇Kt ∈ Lp(Rd).
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Proposition 3.1.1 Let α > 0, and the initial value ϕ ∈ L1(Rd), then there

hold the following estimates

lim
t→∞

t
d
2α ‖u(·, t)‖2L2 � A(d, α)‖ϕ‖2L1 ; (3.1.3)

lim
t→∞

t
d+2
2α ‖∇u(·, t)‖2L2 � B(d, α)‖ϕ‖2L1 , (3.1.4)

where constants A(d, α) =

∫ d

R

e−2|η|2αdη and B(d, α) =

∫ d

R

|η|2e−2|η|2αdη.

Proof Using the Plancherel theorem and changing of variables, we have

lim
t→∞

t
d
2α ‖u(·, t)‖2L2 = lim

t→∞
t

d
2α ‖û(·, t)‖2L2

= lim
t→∞

t
d
2α

∫ d

R

e−2|ξ|2αt|ϕ̂(ξ)|2dξ = lim
t→∞

∫ d

R

e−2|η|2α |ϕ̂(ηt− 1
2α )|2dη.

For arbitrary t ∈ [0,∞), since∫ d

R

e−2|η|2α |ϕ̂(ηt− 1
2α )|2dη � ‖ϕ̂‖2L∞

∫ d

R

e−2|η|2αdη � A(d, α)‖ϕ‖2L1 ,

using the dominated convergence theorem then leads to (3.1.3).

Similarly, using the Plancherel theorem, we have

lim
t→∞

t
d+2
2α ‖∇u(·, t)‖2L2 = lim

t→∞
t
d+2
2α

∫ d

R

|ξ|2e−2|ξ|2αt|ϕ̂(ξ)|2dξ

= lim
t→∞

∫ d

R

|η|2e−2|η|2α |ϕ̂(ηt− 1
2α )|2dη � B(d, α)‖ϕ‖2L1 .

We complete the proof.

Proposition 3.1.2 Let α ∈ (0, 1] and the initial data ϕ ∈ L2(Rd), then the

solution u of (3.1.1) satisfies the estimate

‖∇u(t)‖2L∞ � Ct−
d+2
4α .

Proof From (3.1.2) and K̂t(ξ) = e−|ξ|
2αt, one has

‖∇u‖L∞ �

∫
Rd

|ξ||û(ξ)|dξ =
∫
Rd

|ξ|e−|ξ|2αt|ϕ̂(ξ)|dξ

�‖ϕ‖L2

(∫
Rd

|ξ|2e−2|ξ|2αtdξ

)1/2

� C

(∫ ∞

0

rd+1e−2r2αtdr

)
� Ct−

d+2
4α .
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3.2 Fractional nonlinear Schrödinger equation

This section mainly considers fractional nonlinear Schrödinger equation, which

is divided into two parts. The first one considers the space fractional nonlin-

ear schrödinger equation, while the second one concerns the time fractional

nonlinear Schrödinger equation.

3.2.1 Space fractional nonlinear Schrödinger equation

Now we consider the following fractional nonlinear Schrödinger equation with

periodic boundary conditions⎧⎪⎨⎪⎩
iut + (−Δ)αu+ β|u|ρu = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn,

u(x+ 2πei, t) = u(x, t), x ∈ Rn, t > 0,

(3.2.1)

where, ei = (0, · · · , 0, 1, 0, · · · , 0), i = 1, · · · , n is an orthonormal basis in Rn,

i =
√−1 is the imaginary unit, α ∈ (0, 1), β ∈ R, β 
= 0 and ρ > 0 is a real

number. For convenience, we denote Ω = (0, 2π)× · · · (0, 2π) ⊂ Rn.

When α = 1, equation (3.2.1) is the classical nonlinear Schrödinger equa-

tion, and has been extensively studied in recent decades. The existence and

uniqueness of weak solutions for the initial-boundary value problems can be

referred to [135]. The global existence of smooth solutions can be found

in [101]. In this section, we mainly take advantage of the energy method

to study the existence and uniqueness of smooth solution of the fractional

nonlinear Schrödinger equation. Specifically, we will prove the following

thereom [103]

Theorem 3.2.1 Let α >
n

2
. If ρ is an even number, suppose that ρ > 0

when β > 0 and 0 < ρ <
4α

n
when β < 0. If ρ is not a even number, suppose

that ρ > 2[α] + 1 when β > 0 and 2[α] + 1 < ρ <
4α

n
when β < 0. Then, for

arbitrary u0 ∈ H4α, there exists a unique global smooth solution u of (3.2.1)

such that

u ∈ L∞(0, T ;H4α(Ω)), ut ∈ L∞(0, T ;H2α(Ω)).

Theorem 3.2.2 Let α > 0 and u0 ∈ Hα(Ω). When β > 0, suppose that

ρ > 0 if α �
n

2
and 0 < ρ <

4α

n− 2α
if α <

n

2
. When β < 0, suppose that

0 < ρ <
4α

n
. Then, there exists a global solution u of the equation (3.2.1)
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such that

u ∈ L∞(0, T ;H4α(Ω) ∩ Lρ+2(Ω)), ut ∈ L∞(0, T ;H−α(Ω)). (3.2.2)

Below we introduce some notations. Since u is spatial periodic, it can be

expanded by using Fourier series u =
∑
k∈Zn

ake
i<k,x>, where ak is the Fourier

coefficient of u. Thus ∂xju =
∑
k∈Zn

ikjake
i<k,x>. Here the fractional Laplacian

(−Δ)α can be expressed as (−Δ)αu =
∑
k∈Zn

|k|2αakei<k,x>. Let

A =

{
u|u =

∑
k∈Zn

ake
i<k,x> :

∑
k∈Zn

|k|2α|ak|2,
∑
k∈Zn

|ak|2 <∞
}

and Hα denote the completion of A under the norm

‖u‖Hα =

(∑
k∈Zn

|k|2α|ak|
)1/2

+

(∑
k∈Zn

|ak|2
)1/2

.

Clearly, Hα is a Banach space. It is easy to prove Hα is a Hilbert space

under the inner product

(u, v)Hα = ((−Δ)α/2u, (−Δ)α/2v) =
∑
k∈Zn

|k|2αakb̄k.

Hereinafter, the norm of function space H = L2(Ω) is usually denoted as

‖ · ‖, its inner product is expressed as (·, ·); the norm of Lp(Ω) is denoted by

‖ · ‖Lp(Ω). Obviously ‖ · ‖L2(Ω) = ‖ · ‖. H−α denotes the dual space of Hα. In

order to study the problem (3.2.1), we introduce the following Banach space

V = Hα(Ω) ∩ Lρ+2(Ω), whose norm is given by

‖v‖V = ‖v‖Hα(Ω) + ‖v‖Lρ+2(Ω).

Definition 3.2.1 The space Lp(0, T ;X) consists of all the measurable func-

tions f : [0, T ]→ X with

‖f‖Lp(0,T ;X) =

(∫ T

0

‖f‖pXdt

) 1
p

<∞

for 1 � p <∞, and when p =∞,

‖f‖L∞(0,T ;X) = sup
0�t�T

‖f‖X <∞.

Let C([0, T ];X) denote the space of all the continuous functions f : [0, T ]→
X whose norm is given by ‖f‖C([0,T ];X) = max0�t�T ‖f‖X.
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What follow are some a priori estimates and the proofs of the theorems.

Lemma 3.2.1 Suppose α > 0, ρ > 0, if u is a solution of equation (3.2.1),

then

sup
0�t<∞

‖u(t)‖ = ‖u0‖. (3.2.3)

This lemma is obvious. Multiplying the equation by ū, integrating with

respect to the space variable x over Ω, and taking the imaginary part, one

has
d

dt
‖u(t)‖2 = 0.

In what follows, T denotes an arbitrary positive constant, and C a con-

stant depending only on initial value and T .

Lemma 3.2.2 Let α > 0. Suppose ρ > 0 when β > 0 and 0 < ρ <
4α

n
when

β < 0. Then the solution u satisfies the estimate

sup
0�t<∞

(‖(−Δ)α/2u‖+ ‖u‖Lρ+2) � C(‖u0‖Hα , ‖u0‖Lρ+2).

Proof Multiplying the equation by ūt and integrating over Ω, then

(iut, ut) + ((−Δ)αu, ut) + (β|u|ρu, ut) = 0.

Taking the real part yields

d

dt

∫
Ω

|(−Δ)α/2u|2 + 2β

ρ+ 2
|u|ρ+2dx = 0,

and hence

‖(−Δ)α/2u‖2+ 2β

ρ+ 2
‖u‖ρ+2

Lρ+2(Ω) = ‖(−Δ)α/2u0‖2+ 2β

ρ+ 2
‖u0‖ρ+2

Lρ+2(Ω) = E(u0).

(3.2.4)

If β > 0, then

‖(−Δ)α/2u‖2 � E(u0) � C(‖u0‖Hα(Ω), ‖u0‖Lρ+2(Ω)),

and

‖u‖Lρ+2(Ω) � C(‖u0‖Hα(Ω), ‖u0‖Lρ+2(Ω)).

When β < 0, let θ =
nρ

2α(ρ+ 2)
< 1, then by the Gagliardo-Nirenberg

inequality

‖u‖ρ+2
Lρ+2(Ω)

� C‖(−Δ)α/2u‖θ(ρ+2)‖u‖(1−θ)(ρ+2)
� C‖(−Δ)α/2u‖nρ

2α ,
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where
1

ρ+ 2
= θ

(
1

2
− α
n

)
+ (1− θ)1

2
. Since ρ <

4α

n
, i.e.,

nρ

2α
< 2, then

2|β|
ρ+ 2

‖u‖ρ+2
Lρ+2(Ω)

�
1

2
‖(−Δ)α/2u‖2 + C. (3.2.5)

Therefore, using equation (3.2.4) and inequality (3.2.5), we know

‖(−Δ)α/2u‖2 � C(‖u0‖Hα(Ω), ‖u0‖Lρ+2(Ω)),

‖u‖Lρ+2(Ω) � C(‖u0‖Hα(Ω), ‖u0‖Lρ+2(Ω)),

completing the proof.

Lemma 3.2.3 Let α >
n

2
and ρ satisfies the conditions of lemma 3.2.2,

then u satisfies

sup
0�t<∞

(‖ut‖+ ‖(−Δ)αu‖) � C(‖u0‖H2α(Ω)). (3.2.6)

Proof Differentiate the equation with respect to time t, multiply the resulting

equation by ut, and then integrate with respect to x over Ω to obtain

(iutt, ut) + ((−Δ)αut, ut) +

(
d

dt
(β|u|ρu), ut

)
= 0.

Taking the imaginary part yields

1

2

d

dt
‖ut‖2 + �

(
d

dt
(β|u|ρu), ut

)
= 0. (3.2.7)

Moreover, since

�
(

d

dt
(β|u|ρu), ut

)
=�

∫
Ω

d

dt
(β|u|ρu)ūtdx

=�
∫
Ω

β|u|ρ|ut|2dx+ �
∫
Ω

ρβ

2
|u|ρ−2(|ut|2|u|2 + u2ū2t )dx

=�
∫
Ω

ρβ

2
|u|ρ−2(u2ū2t )dx,

(3.2.8)

by (3.2.7) and (3.2.8), we have

1

2

d

dt
‖ut‖2 + �

∫
Ω

ρβ

2
|u|ρ−2(u2ū2t )dx = 0.

Integrating the above equation with respect to time from 0 to t yields

‖ut‖2 =−
∫ t

0

�
∫
Ω

ρβ|u|ρ−2(u2ū2t )dxds+ ‖ut(x, 0)‖2

�C

∫ t

0

∫
Ω

|u|2|ut|2dxds+ ‖ut(x, 0)‖2.
(3.2.9)
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Using (3.2.1) as well as Sobolev embedding inequality ‖u‖L∞ � C‖u‖Hα(Ω) �

C for α >
n

2
gives

‖ut(x, 0)‖ � C‖(−Δ)αu0‖+ C‖β|u0|ρu0‖ � C(‖u0‖H2α(Ω)).

Thus it follows from (3.2.9) that

‖ut‖2 � C

∫ t

0

‖u‖ρL∞(Ω)
‖ut‖2ds+‖ut(x, 0)‖2 � C

∫ t

0

‖ut‖2ds+C(‖u0‖H2α(Ω)).

Taking advantage of Gronwall inequality, we have

‖ut‖2 � C(‖u0‖H2α),

and hence

‖(−Δ)αu‖� ‖ut‖+ ‖β|u|ρu‖
�C(‖u0‖H2α(Ω)) + C‖u‖ρL∞(Ω)

‖u‖ � C(‖u0‖H2α(Ω)),

completing the proof.

Lemma 3.2.4 Let α >
n

2
. Suppose that ρ satisfies the conditions of Lemma

3.2.2 if ρ is an even number. If ρ is not an even number, suppose that ρ > [α]

when β > 0 and [α] < ρ <
4α

n
when β < 0. Then the solution u satisfies the

estimate

sup
0�t<∞

‖(−Δ)α/2ut‖ � C(‖u0‖H3α(Ω)).

Proof Differentiating the equation (3.2.1) with respect to time variable, mul-

tiplying by ūtt, and then integrating with respect to the spatial variable x

over Ω, we have

(iutt, utt) + ((−Δ)αut, utt) +

(
d

dt
(β|u|ρu), utt

)
.

By integration by parts, we have

d

dt
‖(−Δ)α/2ut‖2 + 2Re

(
d

dt
(β|u|ρu), utt

)
= 0.

Since

2Re

(
d

dt
(β|u|ρu), utt

)
=

∫
Ω

(
ρ

2
+ 1

)
β|u|ρ d

dt
|ut|2dx

+

∫
Ω

ρβ

4
|u|ρ−2

(
u2

d

dt
ū2t + ū

2 d

dt
u2t

)
dx,
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one has

d

dt
‖(−Δ)α/2ut‖2 +

∫
Ω

(
ρ

2
+ 1

)
β|u|ρ d

dt
|ut|2dx

+

∫
Ω

ρβ

4
|u|ρ−2

(
u2

d

dt
ū2t + ū

2 d

dt
u2t

)
dx.

This implies that

d

dt
‖(−Δ)α/2ut‖2 + d

dt

∫
Ω

(
ρ

2
+ 1

)
β|u|ρ|ut|2dx

+
d

dt

∫
Ω

ρβ

4
|u|ρ−2(u2ū2t + ū

2u2t )dx

=−
(
ρ

2
+ 1

)
β

∫
Ω

d

dt
(|u|ρ)|ut|2dx− ρβ

4

∫
Ω

d

dt
(|u|ρ−2u2)ū2tdx

− ρβ
4

∫
Ω

d

dt
(|u|ρ−2ū2)u2tdx

�C

∫
Ω

|u|ρ−1|ut|3dx � C‖u‖ρ−1
L∞(Ω)‖ut‖3L3(Ω) � C‖ut‖3L3(Ω).

(3.2.10)

Let θ =
n

6α
<

1

3
, then

1

3
= θ

(
1

2
−α
n

)
+(1−θ)1

2
. By the Gagliardo-Nirenberg

inequality and (3.2.6), we have

‖ut‖3L3(Ω) �C‖ut‖3(1−θ)‖(−Δ)α/2ut‖3θ

�C‖(−Δ)α/2ut‖3θ � C‖(−Δ)α/2ut‖2 + C.
(3.2.11)

Then from (3.2.10) and (3.2.11), we have

‖(−Δ)α/2ut‖2 +
∫
Ω

(
ρ

2
+ 1)β|u|ρ|ut|2dx+

∫
Ω

ρβ

4
|u|ρ−2(u2ū2t + ū

2u2t )dx

�‖(−Δ)α/2ut(x, 0)‖2 +
∫
Ω

(
ρ

2
+ 1

)
|β||u0|ρ|ut(x, 0)|2dx

+

∫
Ω

ρβ

4
|u0|ρ−2(u20ūt(x, 0)

2 + ū20u
2
t (x, 0))dx + C

∫ t

0

‖(−Δ)α/2ut‖2ds+ C

�C + C

∫ t

0

‖(−Δ)α/2ut‖2ds.
(3.2.12)

Indeed, from (3.2.1), we have

‖(−Δ)α/2ut(x, 0)‖ �‖(−Δ)3α/2u(x, 0)‖+ ‖(−Δ)α/2(β|u0|ρu0)‖
�C‖u0‖H3α(Ω) + C‖|u0|ρu0‖H[α]+1(Ω) � C‖u0‖H3α(Ω),
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where ρ > [α] if ρ is not an even number. On the other hand,∫
Ω

|β|
(
ρ

2
+ 1

)
|u0|ρ|ut(x, 0)|2dx+

∫
Ω

ρβ

4
|u0|ρ−2(u20ūt(x, 0)

2 + ū20ut(x, 0)
2)dx

�C‖u0‖ρL∞(Ω)‖ut(x, 0)‖2 � C(‖u0‖H2α(Ω)),

and from (3.2.11), we have∫
Ω

|β|
(
ρ

2
+ 1

)
|u|ρ|ut|2dx+

∫
Ω

ρβ

4
|u|ρ−2(u2ū2t + ū

2u2t )dx

�C|u|ρ|ut|2dx � C

(∫
Ω

|u|3ρdx
)1/3(∫

Ω

|ut|3dx
)2/3

�C‖(−Δ)α/2ut‖2θ �
1

2
‖(−Δ)α/2ut‖2 + C.

Then using (3.2.12) and Gronwall inequality, we have

‖(−Δ)α/2ut‖2 � C + C

∫ t

0

‖(−Δ)α/2ut‖2ds � C(‖u0‖H3α(Ω)),

completing the proof.

Lemma 3.2.5 Let α >
n

2
. If ρ is an even number, suppose ρ obeys the

hypothesis of lemma 3.2.2; if ρ is not an even number, suppose ρ > 2[α] + 1

when β > 0, and suppose 2[α] + 1 < ρ <
4α

n
when β < 0. Then, there holds

for the solution u of equation (3.2.1) that

sup
0�t<∞

(‖utt‖+ ‖(−Δ)αut‖) � C(‖u0‖H4α(Ω)).

Proof Differentiating twice the equation with respect to time variable, mul-

tiplying the resulting equation by ūtt, and integrating with respect to x over

Ω, we have

(iutt, utt) + ((−Δ)αutt, utt) +

(
d2

dt2
(β|u|ρu), utt

)
= 0.

Taking the imaginary part, we have

1

2

d

dt
‖utt‖2 + �

(
d2

dt2
(β|u|ρu), utt

)
= 0. (3.2.13)

By direct computation

�
(

d2

dt2
(β|u|ρu), utt

)
=�

(
ρ2

2
+ ρ

)
β(|u|ρ−2|ut|2u, utt)

+�
(
ρ2

4
+
ρ

2

)
β(|u|ρ−2u2t ū, utt)

+�
(
ρ2

4
− ρ

2

)
β(|u|ρ−4u2tu

3, utt)
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+�βρ
2
(|u|ρ−2u2ūtt, utt).

The first term of the right hand side can be estimated as

�
(
ρ2

2
+ ρ

)
β(|u|ρ−2|ut|2u, utt) �C

∫
Ω

|u|ρ−1|ut|2|utt|dx

�C‖u‖ρ−1
L∞(Ω)‖ut‖2L4(Ω)‖utt‖

�C‖ut‖4L4(Ω) + C‖utt‖2.
In a similar way, the second and the third term of the right side can be

estimated as

�
(
ρ2

4
+
ρ

2

)
β(|u|ρ−2u2t ū, utt) + �

(
ρ2

4
− ρ

2

)
β(|u|ρ−4u2tu

3, utt)

�C‖ut‖4L4(Ω) + C‖utt‖2.
The last term can be estimated as

�βρ
2
(|u|ρ−2u2ūtt, utt) � C‖utt‖2. (3.2.14)

According to (3.2.13) and (3.2.14), we have

‖utt‖2 � C

∫ t

0

‖ut‖4L4(Ω)ds+ C

∫ t

0

‖utt‖2ds+ ‖utt(x, 0)‖2. (3.2.15)

Let θ =
n

8α
<

1

4
, then

1

4
= θ

(
1

2
− α
n

)
+ (1 − θ)1

2
. Taking advantage of

Gagliardo-Nirenberg inequality, Lemma 3.2.3 and 3.2.4, we have

‖ut‖L4(Ω) � C‖ut‖1−θ‖(−Δ)α/2ut‖θ � C(‖u0‖H3α(Ω)).

From the equation (3.2.1) and Lemma 3.2.3, we know

‖utt(x, 0)‖ �‖(−Δ)α((−Δ)αu0 + β|u0|ρu0)‖+ ‖ d
dt

(β|u|ρu)‖
�C‖(−Δ)2αu0‖+ C‖(−Δ)α(β|u0|ρu0)‖ + C‖|u0|ρ|ut(x, 0)|‖
�C(‖u0‖H4α(Ω)) + C‖(−Δ)α(|u0|ρu0)‖ + C‖ut(x, 0)‖
�C(‖u0‖H4α(Ω)) + C‖(−Δ)α(|u0|ρu0)‖.

(3.2.16)

If α � max

{
n

2
, 1

}
, then

‖(−Δ)α(|u0|ρu0)‖ � C‖(−Δ)[α]+1(|u0|ρu0)‖ � C(‖u0‖H4α(Ω)),
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where ρ > 2[α] + 1 when ρ is not an even number.

When n=1 and
1

2
< α < 1,

‖(−Δ)α(|u0|ρu0)‖ � C‖Δ(|u0|ρu0)‖ � C(‖u0‖H4α).

Thus, from (3.2.16), we know

‖utt(x, 0)‖ � C(‖u0‖H4α).

Furthermore, according to (3.2.15), we know

‖utt‖2 � C
∫ t

0

‖utt‖2ds+ C(‖u0‖H4α(Ω)),

which implies by Gronwall inequality that

‖utt‖2 � C(‖u0‖H4α(Ω)).

But ∥∥∥∥ d

dt
(|u|ρu)

∥∥∥∥ =

∥∥∥∥ρ2 |u|ρ−2(uūt + ūut)u + |u|ρut
∥∥∥∥

�C‖u‖ρL∞(Ω)‖ut‖ � C(‖u0‖H2α(Ω)),

then there holds

‖(−Δ)αut‖ � C‖utt‖+ C‖ d
dt

(|u|ρu)‖ � C(‖u0‖H4α(Ω)).

Therefore

sup
0�t<∞

‖(−Δ)αut‖ � C(‖u0‖H4α(Ω)),

completing the proof.

Lemma 3.2.6 Supposing α and ρ satisfy the conditions of Lemma 3.2.5,

the solution u of equation (3.2.1) satisfies the following a priori estimate

sup
0�t<∞

‖(−Δ)2αu‖ � C(‖u0‖H4α).

Proof Let α � max

{
n

2
, 1

}
. Applying equation (3.2.1), Lemma 3.2.3 and

Lemma 3.2.5, we obtain

‖(−Δ)2αu‖ �C‖(−Δ)αut‖+ C‖(−Δ)α(|u|ρu)‖
�C‖(−Δ)αut‖+ C‖(−Δ)[α]+1(|u|ρu)‖ � C(‖u0‖H4α).

(3.2.17)
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When n = 1 and
1

2
< α < 1, by (3.2.1) and Lemma 3.2.5, we know

‖(−Δ)2αu‖ �C‖(−Δ)αut‖+ C‖(−Δ)α(|u|ρu)‖
�C(‖u0‖H4α(Ω)) + C(‖Δ(|u|ρu)‖)
�C(‖u0‖H4α(Ω)) + C‖u‖ρL∞(Ω)‖Δu‖+ C‖u‖ρ−1

L∞(Ω)‖|∇u|2‖
�C(‖u0‖H4α(Ω)) + C‖Δu‖+ C‖∇u‖2L4(Ω).

(3.2.18)

Let θ =
2

4α
< 1, then by Gagliardo-Nirenberg inequality and Lemma 3.2.1,

we know

C‖Δu‖ � C‖(−Δ)2αu‖θ‖u‖1−θ
�

1

4
‖(−Δ)2αu‖+ C.

Let δ =
1

16α− 4
<

1

4
, then by the Gagliardo-Nirenberg inequality, we can

similarly obtain

C‖∇u‖2L4(Ω) �C‖(−Δ)2αu‖2δ‖∇u‖2(1−δ)

�C‖(−Δ)2αu‖2δ‖(−Δ)αu‖2(1−δ)
�

1

4
‖(−Δ)2αu‖+ C.

(3.2.19)

Thus we conclude that when n = 1 and
1

2
< α < 1,

‖(−Δ)2αu‖ � C(‖u0‖H4α(Ω)).

Therefore, taking advantage of (3.2.17) and the above inequality, we complete

the proof.

Before the theorem 3.2.1 is proved, we take advantage of the Faedo-

Galerkin method to prove the existence of the weak solution of equation

(3.2.1). In doing this, three lemmas are given below.

Lemma 3.2.7 Let B0, B and B1 be three Banach spaces. Assume that

B0 ⊂ B ⊂ B1 and B0 and B1 are reflexive. Suppose also that B0 is compactly

embedded in B. Denote

W = {v|v ∈ Lp0(0, T ;B0), v
′ =

dv

dt
∈ Lp1(0, T ;B1)},

where T < ∞ and 1 < pi < ∞, i = 0, 1, then W is a Banach space when

equipped with the norm

‖v‖Lp0(0,T ;B0) + ‖v′‖Lp1(0,T ;B1),

and W is compactly embeded to Lp0(0, T ;B).
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Lemma 3.2.8 Suppose Q is a bounded domain in Tn
x×Rt, gμ, g ∈ Lq(Q)(1 <

q < ∞) and ‖gμ‖Lq(Q) � C. Furthermore, suppose that gμ → g a.e. in Q,

then gμ ⇀ g weakly in Lq(Q).

Lemma 3.2.9 Supposing X is a Banach space, if g ∈ Lp(0, T ;X) and

∂g

∂t
∈ Lp(0, T ;X)(1 � p � ∞), then g ∈ C([0, T ];X) after possibly being

redefined on a set of measure zero.

In what follows, we prove Theorem 3.2.2.

Proof of theorem 3.2.2. We prove this theorem in steps.

In the first step, we fix a positive integer m and seek a function um =

um(t) of the form

um(t) =
m∑
|j|=1

gjm(t)wj , wj = ei<j,x>, j ∈ Zn,

where gjm(t)(|j| = 0, 1, · · · ,m) satisfy the following approximating equations

(ium,t, wj) + ((−Δ)αum, wj) + (β|um|ρum, wj) = 0, 0 � |j| � m, (3.2.20)

with the initial conditions

um(0) = u0m ∈ Span{wj, 0 � |j| � m}, u0m → u0(m→∞) in Hα(Ω).

(3.2.21)

Then (3.2.20) and (3.2.21) are a system of nonlinear ordinary differential

equations. According to standard existence theory for nonlinear ODEs, there

exists a unique solution um(t) for 0 � t � tm. By the a priori estimates given

above, we obtain that tm = T .

In the second step, we make several a priori estimates. Taking into con-

sideration Lemma 3.2.2 and Lemma 3.2.1, we obtain

um ∈ L∞(0, T ;Hα(Ω) ∩ Lρ+2(Ω)). (3.2.22)

For arbitrary ϕ ∈ Hα(Ω), one has

(ium,t, ϕ) + ((−Δ)αum, ϕ) + (β|um|ρum, ϕ) = 0. (3.2.23)

Thus

|(um,t, ϕ)| �|((−Δ)αum, ϕ)|+ |(β|um|ρum, ϕ)|
�C‖(−Δ)α/2um‖‖(−Δ)α/2ϕ‖+ C‖um‖ρ+1

Lρ+2(Ω)
‖ϕ‖Lρ+2(Ω)

�C‖(−Δ)α/2ϕ‖ + C‖ϕ‖Lρ+2(Ω).

(3.2.24)
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By Sobolev embedding theorem, one has ‖ϕ‖Lρ+2(Ω) � C‖(−Δ)α/2ϕ‖, and
from (3.2.23) and (3.2.24), we know |(um,t, ϕ)| � C‖(−Δ)α/2ϕ‖ for all ϕ ∈
Hα(Ω). Therefore,

um,t ∈ L∞(0, T ;H−α(Ω)). (3.2.25)

In the third step, we pass to the limit m→∞. By (3.2.22) and (3.2.25),

there exists a subsequence {uμ} of {um} such that

uμ ⇀ u, weakly in L∞(0, T ;Hα(Ω));

uμ,t ⇀ ut, weakly in L∞(0, T ;H−α(Ω)).
(3.2.26)

Using (3.2.22), we know {um} is bounded in L2(0, T ;Hα(Ω)), and from

(3.2.25), we obtain {um,t} is bounded in L2(0, T ;H−α(Ω)). Let

W = {v|v ∈ L2(0, T ;Hα(Ω)), vt ∈ L2(0, T ;H−α(Ω))},
equipped with the norm

‖v‖W = ‖v‖L2(0,T ;Hα(Ω)) + ‖vt‖L2(0,T ;H−α(Ω)).

Since Hα(Ω) is compactly embedded to L2(Ω), Lemma 3.2.7 shows that W

is compactly embedded into L2(0, T ;L2(Ω)). But um ∈W , then there exists

a subsequence uμ such that uμ → u strongly and a.e. in L2(0, T ;L2(Ω)). By

(3.2.22) and Lemma 3.2.6, we know

|uμ|ρuμ ⇀ |u|ρu weakly in L∞(0, T ;L
ρ+2
ρ+1 (Ω)). (3.2.27)

Fixing j and using (3.2.20), we obtain

(iuμ,t, wj) + ((−Δ)αuμ, wj) + (β|uμ|ρuμ, wj) = 0. (3.2.28)

By (3.2.26) and (3.2.27), there exists a subsequence uμ such that

((−Δ)αuμ, wj)⇀ ((−Δ)αu,wj) weakly in L∞(0, T );

(uμ,t, wj)⇀ (ut, wj) weakly in L∞(0, T );

(β|uμ|ρuμ, wj)⇀ (β|u|ρu,wj) weakly in L∞(0, T ).

From (3.2.28), we know that for any fixed j

(iut, wj) + ((−Δ)αu,wj) + (β|u|ρu,wj) = 0,

then

(iut, v) + ((−Δ)αu, v) + (β|u|ρu, v) = 0, ∀v ∈ Hα(Ω).

Therefore, u satisfies equations (3.2.1) and (3.2.2). By (3.2.22), (3.2.25) and

Lemma 3.2.9, we have uμ ∈ C([0, T ];H−α(Ω)) and hence uμ(0) ⇀ u(0)

weakly in H−α(Ω). Finally, by (3.2.21), we know uμ(0) → u0 weakly in

Hα(Ω). Therefore, u(0) = u0.
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Proof of Theorem 3.2.1 By the a priori estimates from Lemma 3.2.1 to

Lemma 3.2.6 and theorem 3.2.2, there exists a global smooth solution u for

(3.2.1) such that

u ∈ L∞(0, T ;H4α(Ω)), ut ∈ L∞(0, T ;H2α(Ω)).

We now prove the uniqueness. Let u and v be two solutions of equation

(3.2.1) with the same initial data. Let w = u− v, then
iwt + (−Δ)αw + β(|u|ρu− |v|ρv) = 0.

Taking inner product of this equation with w, we obtain

i(wt, w) + ((−Δ)αw,w) + β((|u|ρu− |v|ρv), w) = 0.

Taking the imaginary part, we have

1

2

d

dr
‖w‖2 + �β((|u|ρu− |v|ρv), u− v) = 0.

Since

�β((|u|ρu− |v|ρv), u− v) �C|(|u|ρ(u− v) + (|u|ρu− |v|ρv)v, u− v)|
�C‖u‖L∞(Ω)‖u− v‖2 + C‖v‖L∞(Ω)‖|u|ρ
− |v|ρ‖‖u− v‖ � C‖w‖2,

the Gronwall inequality implies ‖w‖2 = 0, yielding w = 0. The proof of the

Theorem 3.2.1 is then complete.

3.2.2 Time fractional nonlinear Schrödinger equation

The main purpose of this section is to consider the time fractional nonlinear

Schrödinger equations (1.4.2) and (1.4.3) with time fractional derivative,

(iTp)
νDν

t ψ = − L2
p

2Nm
∂2xψ +NV ψ, (3.2.29)

and

i(Tp)
νDν

t ψ = − L2
p

2Nm
∂2xψ +NV ψ, (3.2.30)

where Dν
t denotes the ν-order Caputo fractional derivative. Setting α =

NV /T
ν
p and β = L2

p/2Nm(Tp)
ν , then the equation (3.2.29) can be rewritten

as

Dν
t ψ = − β

iν
∂2xψ +

α

iν
ψ.

On the other hand for 0 < ν < 1,

D1−ν
t Dν

t y(t) =
d

dt
y(t)− [Dν

t y(t)]t=0

t1−νΓ(ν)
. (3.2.31)
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We obtain

∂tψ = − β
iν
∂2x(D

1−ν
t ψ) +

α

iν
(D1−ν

t ψ) +
[Dνψ(t)]t=0

t1−νΓ(ν)
. (3.2.32)

In this equation, since the Hamiltonian depends on time, we cannot expect

the probability conservation. Meanwhile, the Hamiltonian is nonlocal in time,

we cannot expect the inversion invariance with time. Finally, since 0 < ν < 1,

the last term on the RHS will tend to infinity as time tends to zero. Consider

the nonlocal term in (3.2.32)

D1−ν
t ψ(t, x) =

1

Γ(1− ν)
∫ t

0

d

dτ
ψ(τ, x)

dτ

(t − τ)ν .

To give a possible physical interpretation for this term, we first recall the

interpretation of the first-order time derivative in the classical quantum me-

chanics
∂

∂t
=
E

i�
, where E is the energy operator (Hamiltonian). So the inner

product

∫ ∞

−∞

ψ(t, x)∗D1−ν
t ψ(t, x)dx can be interpreted as the weighted time

average of the energy of the wave function, the weighting function being

(t− τ)−ν .

Denote ψ̃ = D1−ν
t ψ. For the classical free particle Schrödinger equation,

the probability current density and corresponding equation are respectively

P = ψψ∗, ∂tP = ∂tψψ
∗ + ψ∂tψ

∗.

Similarly, we can obtain the probability current density equation of fractional

Schrödinger equation as

∂tP =

(
− β

iν
∂2xψ̃ +

[Dν
t ψ(t, x)]t=0

t1−νΓ(ν)

)
ψ∗+ψ

(
− β

(−i)ν ∂
2
xψ̃
∗ +

[Dν
t ψ
∗(t, x)]t=0

t1−νΓ(ν)

)
.

Rearrange above equation to obtain

∂tP + β∂x

(
∂xψ̃ψ

∗

iν
+
∂xψ̃

∗ψ

(−i)ν
)

=β

(
∂xψ̃∂xψ

∗

iν
+
∂xψ̃

∗∂xψ

(−i)ν
)

+
ψ∗[Dν

t ψ(t, x)]t=0 + ψ[D
ν
t ψ
∗(t, x)]t=0

t1−νΓ(ν)
.

(3.2.33)

In this equation, the right hand side term can be regarded as a source of the

probability current equation. If the Hamiltonian does not depend on time,
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i.e., if ν → 1, the right hand side of (3.2.33) would be zero. The probability

current of fractional equation (the left second term) is

J =
β

iν
(∂xψ̃)ψ

∗ +
β

(−i)ν ψ(∂xψ̃
∗).

Since the right hand of (3.2.33) does not equal to zero, the probability is not

conserved for the time fractional Schrödinger equation. Denoting the right

hand items (3.2.33) as S(x, t), we then obtain

∂tP + ∂xJ = S.

Integrating this equation with respect to space variable, and letting the wave

function and its first derivative equal to zero at infinity, we obtain

∂t

∫ ∞

−∞

Pdx =

∫ ∞

−∞

Sdx.

1. Free particle fractional Schrödinger equation.

The time fractional Schrödinger equation for a free particle is given by

(iTp)
νDν

t ψ = − L2
p

2Nm
∂2xψ.

Performing the Fourier transform and letting Ψ(ξ, t) = F(ψ(x, t)), we can

obtain

Dν
t Ψ =

(Lpξ)
2

2Nm(iTp)ν
Ψ.

Letting ω = (Lpξ)
2/2NmT

ν
p and using the Mittag-Leffler function, the solu-

tion can be expressed as

Ψ = Ψ0Eν(ω(−it)ν), or Ψ =
Ψ0

ν
{e−iω1/νt − νFν(ω(−i)ν , t)},

where the function Fν is defined as

Fν(ρ, t) =
ρ sin(νπ)

π

∫ ∞

0

e−rtrν−1dr

r2ν − 2ρ cos(νπ)rν + ρ2
.

Taking advantage of the inverse Fourier transform, we obtain

ψ(x, t) = F−1Ψ(ξ, t) =
1

2π

∫
R

eixξ
Ψ0

ν

{
e−iω1/νt − νFν(ω(−i)ν , t)

}
dξ

= : ψS(x, t) + ψD(d, t),

where the first term

ψS(x, t) =
1

2πν

∫
R

eixξΨ0e
−iω1/νtdξ
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is oscillating and the second term

ψD(x, t) =
−1
2π

∫
R

eixξΨ0Fν(ω(−i)ν , t)dξ

decays to zero as time goes to infinity. When ν → 1, we have ψD → 0, and

then the solution reduces to the classic integer order Schrödinger equation.

ψ0 can be normalized such that∫
R

ψ(x, 0)ψ∗(x, 0)dx = 1.

As to the total probability as time evolves, we have the probability limit

when time goes to infinity

lim
t→∞

∫
R

ψ(x, t)ψ∗(x, t)dx

= lim
t→∞

∫
R

F−1

(
Ψ0

ν

{
e−iω1/νt − νFν(ω(−i)ν , t)

})
F−1

(
Ψ0

ν

{
e−iω1/νt − νFν(ω(−i)ν , t)

})∗
=
2π

ν2
lim
t→∞

∫
R

Ψ0{e−iω1/νt − νFν(ω(−i)ν , t)}

(Ψ0{e−iω1/νt − νFν(ω(−i)ν , t)})∗dξ
=
2π

ν2
lim
t→∞

∫
R

Ψ0e
−iω1/νtΨ∗0e

iω1/νtdξ

=
2π

ν2
lim
t→∞

∫
R

Ψ0Ψ
∗
0dξ

=
1

ν2
lim
t→∞

∫
R

ψ0ψ
∗
0dx.

Therefore, using the normalization condition, we obtain

lim
t→∞

∫
R

ψ(x, t)ψ∗(x, t)dx =
1

ν2
> 1.

2. Potential well situation.

Finally, let us consider the following ideal situation in which the particles

are in a infinitely deep potential well V (x) = 1 for 1 < x < a and V (x) =∞
otherwise. In this case, the equation can be written as⎧⎪⎨⎪⎩(iTp)

νDν
t ψ = − L2

p

2Nm
∂2xψ,

ψ(0, t) = 0, ψ(a, t) = 0.
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This can be solved by separation of variables. Let ψ(x, t) = X(x)T (t), then

we obtain

(iTp)
νD

ν
t T

T
= − L2

p

2Nm

∂2xX

X
= λ.

Under the boundary conditions X(0) = X(a) = 0, we have

Xn = cn sin

(
nπx

a

)
, λn =

(
nπL2

p

a

)2
1

2Nm
.

Normalizing to obtain the eigenfunction

ψn(x) =
√

2/a sin(nπx/a),

∫ a

0

|ψn|2dx = 1.

Now, the equation of T can be written as Dν
t T =

λn
(iTp)ν

T. Letting T (0) =

1 and using the Mittag-Leffler function, the solution can be written as

Tn(t) = Eν(ωn(−it)ν),

or

Tn(t) =
1

ν

{
e−iω1/νt − νFν((−iω)ν , t)

}
, ωn = λn/T

ν
p .

It is easy to know limt→∞ |T (t)| = 1

ν
. Then the solution is given by

ψn(x, t) =

√
2

a
sin(nπx/a)

1

ν

{
e−iω1/νt − νFν((−iω)ν , t)

}
.

Similar to the free particle situation,

lim
t→∞

∫ a

0

ψn(x, t)ψn(x, t)
∗dx =

1

ν2
.

3.2.3 Global well-posedness of the one-dimensional fractional

nonlinear Schrödinger equation

This section considers the following one-dimensional fractional nonlinear

Schrödinger equation [107],⎧⎨⎩iut + (−�)αu+ |u|2u = 0, (t, x) ∈ R×R,
1

2
< α < 1

u(x, 0) = u0(x) ∈ Hs(R).
(3.2.34)

We will obtain the global well-posedness of equation in L2. We have shown

the global well-posedness of periodic problem (3.2.34) in H4α. In what fol-

lows, we will prove the posedness of Cauchy problem (3.2.34) in L2 with
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1

2
< α < 1. Unlike the nonlinear Schrödinger equation, Strichartz estimates

are not enough for solving the fractional nonlinear Schröinger equation in

L2, we also need the local smoothing effect and maximal function estimates.

Thus, we will use the Bourgain’s space to consider the well-posedness for

(3.2.34).

To this end, we introduce some notations. We usually use its integral

equivalent formulation to study the problem

u(t) = S(t)u0 − i

∫ t

0

S(t− t′)|u|2u(t′)dt′,

where S(t) = F−1
x eit|ξ|

2αFx is the semigroup of equation (3.2.34). First we

define

‖f‖Lp
xL

q
t
=

(∫ ∞

−∞

(

∫ ∞

−∞

|f(x, t)|qdt) p
q dx

) 1
p

,

‖f‖Lq
tL

p
x
=

(∫ ∞

−∞

(

∫ ∞

−∞

|f(x, t)|pdx) q
p dt

) 1
q

.

For s, b ∈ R, spaces Xs,b and X̄s,b are defined to be the complete of the

Schwartz function space in R2 under the norms [29, 122, 124]

‖u‖Xs,b
= ‖S(−t)u‖Hs

xH
b
t
= ‖〈ξ〉s〈τ − φ(ξ)〉bû(ξ, τ)‖L2

ξL
2
τ
,

‖u‖X̄s,b
= ‖S(t)u‖Hs

xH
b
t
= ‖〈ξ〉s〈τ + φ(ξ)〉bû(ξ, τ)‖L2

ξ
L2

τ
,

where φ(ξ) = |ξ|2α. We easily obtain ‖u‖Xs,b
= ‖ū‖X̄s,b

.

Denote by û(τ, ξ) = Fu the Fourier transform of u with respect to vari-

ables t and x, and by F(·)u the Fourier transform only in the variable (·),
respectively. Denote by

∫
�

dδ the convolution integral∫
ξ=ξ1+ξ2+ξ3;τ=τ1+τ2+τ3

dτ1dτ2dτ3dξ1dξ2ξ3.

Let

σ=τ − |ξ|2α, σ1=τ1−|ξ1|2α, σ̄2=τ2+|ξ2|2α, σ3=τ3−|ξ3|2α, σ̄4=τ4+|ξ4|2α,
−ξ4 = ξ = ξ1 + ξ2 + ξ3, −τ4 = τ = τ1 + τ2 + τ3,

then
σ − σ1 − σ̄2 − σ3 = −|ξ|2α + |ξ1|2α − |ξ2|2α + |ξ3|2α,

or
σ1 + σ̄2 + σ3 + σ̄4 = −|ξ1|2α + |ξ2|2α − |ξ3|2α + |ξ4|2α.



February 6, 2015 16:57 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-3 page 131

3.2 Fractional nonlinear Schrödinger equation 131

Let ψ ∈ C∞0 (R) with ψ = 1 on [−1/2, 1/2] and suppψ ⊂ [−1, 1]. Denote

ψδ(·) = ψ(δ−1(·)) for some δ ∈ R \ {0}. Below we often use A ∼ B to denote

the statement that there exists a constant C1 > 0 such that A � C1B and

B � C1A, A � B the statement that there exists a large enough constant

C2 > 0 such that A �
1

C2
B and A � B the statement that there exists

C3 > 0 such that A � C3B. In what follows, a+ and a− denote a + ε and

a− ε, respectively, for some 0 < ε� 1.

We will prove the following

Theorem 3.2.3 For 1/2 < α < 1, the Cauchy problem (3.2.34) is globally

wee-posed in L2.

In order to establish the local well-posedness of the equation, we need to

establish some linear and trilinear estimates. For this, we need to employ

the [k;Z] multiplier method (refer to [216]). Let Z be arbitrary Abelian

additivity group with an invariant measure dξ. For arbitrary integer k � 2,

Γk(Z) denotes the following “hyperplane”

Γk(Z) = {(ξ1, ..., ξk) ∈ Zk : ξ1 + ...+ ξk = 0},
which is endowed with∫

Γk(Z)

f =

∫
Zk−1

f(ξ1, ..., ξk−1,−ξ1 − ...− ξk−1)dξ1...dξk−1.

Define [k;Z] multiplier as the function m: Γk(Z) → C. If m is a [k;Z]

multiplier, we define ‖m‖[k;Z] to be the best constant such that∣∣∣∣ ∫
Γk(Z)

m(ξ)

k∏
j=1

fj(ξj)

∣∣∣∣ �‖ m ‖[k;Z]

k∏
j=1

‖ fj ‖L2(Z),

for all test function fj defined on Z. In this way, ‖m‖[k;Z] determines a

norm of m. When m is defined on all of Zk, by restricting to Γk(Z) we

can similarly define the norm ‖m‖[k;Z]. We have the following property of

‖m‖[k;Z] (see [216]).

Lemma 3.2.10 (Composition and TT ∗) If k1, k2 � 1, m1 and m2 are

functions on Zk1 and Zk2 respectively, then

‖m1(ξ1, . . . , ξk1)m2(ξk1+1, . . . , ξk1+k2)‖[k1+k2;Z]

� ‖m1(ξ1, . . . , ξk1)‖[k1+1;Z]‖m2(ξ1, . . . , ξk2)‖[k2+1;Z].

As a special case, for all functions m : Zk → R, the following TT ∗ holds

‖m(ξ1, . . . , ξk)m(−ξk+1, . . . ,−ξ2k)‖[2k;Z] = ‖m(ξ1, . . . , ξk)‖2[k+1;Z].
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Lemma 3.2.11 The group {S(t)}+∞−∞ of the fractional Schrödinger equation

satisfies

‖Dα− 1
2

x S(t)u0‖L∞x L2
t
�‖u0‖L2 , the local smoothing effect

‖D−
1
4

x S(t)u0‖L4
xL
∞
t

�‖u0‖L2 , the maximal function estimate

‖S(t)u0‖L4
xL

4
t
�‖u0‖L2 , the Strichartz estimate

‖D
α−1
3

x S(t)u0‖L6
xL

6
t
�‖u0‖L2 .

Lemma 3.2.12 Let FFρ(ξ, τ) = f(ξ, τ)

(1 + |τ − ξ2α|)ρ , then

‖Dα− 1
2

x Fρ‖L∞x L2
t
� ‖f‖L2

ξ
L2

τ
, ρ > 1/2

‖D− 1
4

x Fρ‖L4
xL
∞
t

� ‖f‖L2
ξL

2
τ
, ρ > 1/2

‖D
α−1
3

x Fρ‖L6
xL

6
t
� ‖f‖L2

ξL
2
τ
, ρ > 1/2

‖D
α−1
4

x Fρ‖L4
xL

4
t
� ‖f‖L2

ξL
2
τ
, ρ > 3/8

‖Fρ‖L4
xL

4
t
� ‖f‖L2

ξL
2
τ
, ρ > 1/2

‖D−1/2−
x Fρ‖L∞x L∞t � ‖f‖L2

ξL
2
τ
, ρ > 1/2

‖Fρ‖Lq
xL

q
t
� ‖f‖L2

ξL
2
τ
, ρ >

2q − 4

2q
, 2 � q � 4

‖D−
q−2
2q −

x Fρ‖Lq
xL

q
t
� ‖f‖L2

ξL
2
τ
, ρ >

q − 2

2q
, 2 � q <∞.

Lemma 3.2.13 (Linear estimates [123, 124]] Let s ∈ R,
1

2
< b < 1, and

0 < δ < 1, then

‖ψδ(t)S(t)u0‖Xs,b
�Cδ

1
2−b‖u0‖Hs ,∥∥∥∥ψδ(t)

∫ t

0

S(t− t′)f(t′)dt′
∥∥∥∥
Xs,b

�Cδ
1
2−b‖f‖Xs,b−1

,∥∥∥∥ψδ(t)∫ t

0

S(t− t′)f(t′)dt′
∥∥∥∥
Hs

�Cδ
1
2−b‖f‖Xs,b−1

,

‖ψδ(t)f‖Xs,b−1
�Cδb

′−b‖f‖Xs,b′−1
.

Lemma 3.2.14 If
1

4
< b <

1

2
, then there exists C > 0 such that∫

R

dx

〈x− α〉2b〈x− β〉2b �
C

〈α− β〉4b−1
.
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Lemma 3.2.15 If f, f1, f2 and f3 belong to the Schwartz space on R2, then∫
�

¯̂
f(ξ, τ)f̂1(ξ1, τ1)f̂2(ξ2, τ2)f̂3(ξ3, τ3)dδ =

∫
f̄f1f2f3(x, t)dxdt.

Lemma 3.2.16 For arbitrary Schwartz functions u1 and ū2 with Fourier

support in |ξ1| ∼ R1 and |ξ2| ∼ R2, respectively. If ξ1 · ξ2 < 0 or R1 �
R2(R2 � R1), then

‖u1ū2‖L2
xL

2
t
� ‖u1‖X

0, 1
2
+
‖u2‖X

0, 1
2
−
.

Remark 3.2.1 By multilinear expression, we have∥∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2−
∥∥∥∥
[3,R×R]

� 1.

Proof Define τ2 = τ − τ1, ξ2 = ξ − ξ1 and σ = τ − |ξ|2α. By symmetry, we

can assume |ξ1| � |ξ2|.
Case 1). When |σ1| � |ξ1|2α or |σ̄2| � |ξ2|2α.
By symmetry we assume |σ1| � |ξ1|2α, then using Lemma 3.2.12, we have

‖u1ū2‖L2
xL

2
t
� ‖u1‖L4+

x L4+
t
‖ū2‖L4−

x L4−
t

� ‖u1‖X
0, 1

2
+
‖u2‖X

0, 1
2
−
.

Case 2). When |σ1| � |ξ1|2α and |σ̄2| � |ξ2|2α.
Then from σ − σ1 − σ̄2 = −|ξ|2α + |ξ1|2α − |ξ − ξ1|2α � |ξ1|2α, it fol-

lows that |σ| � |ξ1|2α. Let f1(τ1, ξ1) = 〈σ1〉1/2+û1(τ1, ξ1) and f2(τ2, ξ2) =

〈σ̄2〉1/2− ˆ̄u2(τ2, ξ2), then
‖u1ū2‖L2

xL
2
t
=‖F(u1ū2)‖L2

ξL
2
τ
= ‖(û1 ∗ ˆ̄u2)(ξ)‖L2

ξL
2
τ

=

∥∥∥∥ ∫ ∫ f1(τ1, ξ1)f2(τ − τ1, ξ − ξ1)
〈σ1〉1/2+〈σ̄2〉1/2−

dξ1dτ1

∥∥∥∥
L2

ξL
2
τ

�

∥∥∥∥(∫ ∫ dξ1dτ1

〈σ1〉1+〈σ̄2〉1−
) 1

2

(∫ ∫
(f1(τ1, ξ1)f2(τ2, ξ2))

2dξ1dτ1

) 1
2
∥∥∥∥
L2

ξL
2
τ

�

∥∥∥∥(∫ ∫ dξ1dτ1

〈σ1〉1+〈σ̄2〉1−
) 1

2
∥∥∥∥
L∞ξ L∞τ∥∥∥∥(∫ ∫ (f1(τ1, ξ1)f2(τ2, ξ2))
2dξ1dτ1

) 1
2
∥∥∥∥
L2

ξL
2
τ

�

∥∥∥∥(∫ ∫ dξ1dτ1

〈σ1〉1+〈σ̄2〉1−
) 1

2
∥∥∥∥
L∞ξ L∞τ

‖f1‖L2
ξL

2
τ
‖f2‖L2

ξL
2
τ
.
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It suffices to show that

‖
(∫ ∫

dξ1dτ1

〈σ1〉1+〈σ̄2〉1−
) 1

2

‖L∞
ξ

L∞τ
� 1.

Using Lemma 3.2.14, when
1

4
< b < 1/2, we have∫ ∫

R2

dτ1dξ1
〈τ1 − |ξ1|2α〉2b〈τ − τ1 + |ξ − ξ1|2α〉2b

�C

∫
R

dξ1
〈τ − |ξ1|2α + |ξ − ξ1|2α〉4b−1

.

To integrate with respect to ξ1, we change variable μ = τ−|ξ1|2α+ |ξ−ξ1|2α.
From ξ1(ξ − ξ1) < 0 or |ξ − ξ1| � |ξ1|, it follows that dμ ∼ |ξ1|2α−1dξ1.

Moreover,

μ = τ − |ξ|2α + |ξ|2α − |ξ1|2α + |ξ − ξ1|2α � |ξ1|2α.
Taking b = 1/2− ε for small enough ε > 0, we have when α > 1/2 that∫

R

dξ1
〈τ − |ξ1|2α + |ξ − ξ1|2α〉4b−1

∼ 1

|ξ1|2α−1

∫
R

dμ

〈μ〉4b−1
� |ξ1|1−2α−αε

� 1.

This completes the proof of Lemma 3.2.16.

Below we consider trilinear estimates and prove the following

Theorem 3.2.4 Assume Fu1 = û1(τ1, ξ1), F ū2 = ˆ̄u2(τ2, ξ2) and Fu3 =

û3(τ3, ξ3) are supported in {(ξ1, τ1) : |ξ1| � 2}⋃{(ξ2, τ2) : |ξ2| � 2}⋃{(ξ3, τ3) :
|ξ3| � 2}⋃{(ξ1 + ξ2 + ξ3, τ1 + τ2 + τ3) : |ξ1 + ξ2 + ξ3| � 6}, then

‖u1ū2u3‖X0,−1/2+
� C‖u1‖X0,1/2+

‖u2‖X0,1/2+
‖u3‖X0,1/2+

.

Proof By duality and Plancherel identity, it suffices to show

Γ =

∫
�

f̄(τ, ξ)

〈σ〉1−b
Fu1(τ1, ξ1)Fu2(τ2, ξ2)F ū3(τ3, ξ3)dδ

=

∫
�

f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

〈σ〉1/2−〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+

� C‖f‖L2

3∏
j=1

‖fj‖L2

for all f̄ ∈ L2, f̄ � 0, where f1 = 〈σ1〉1/2+û1, f2 = 〈σ̄2〉1/2+̂̄u2, f3 =

〈σ3〉1/2+û3. By multiple linear expressions, (3.2.3) is established only when∥∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+〈σ4〉1/2−
∥∥∥∥
[4,R×R]

� 1.
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Let

FF j
ρ (ξ, τ) =

fj(ξ, τ)

(1 + |τ − ξ2α|)ρ , j = 1, 3; FF 2
ρ (ξ, τ) =

f2(ξ, τ)

(1 + |τ + ξ2α|)ρ ,

FFρ(ξ, τ) = f̄(ξ, τ)

(1 + |τ − ξ2α|)ρ .

By symmetry, we need only to consider the following two cases.

Case 1). When |ξ| � 6.

Using Lemma 3.2.12 and 3.2.15, the integral Γ restricted to this domain is

estimated by ∫
�

f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

〈σ〉1/2−〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+

=C

∫
F1/2− · F 1

1/2+ · F 2
1/2+ · F 3

1/2+(x, t)dxdt

�C‖F1/2−‖L4
xL

4
t
‖F 1

1/2+‖L4
xL

4
t
‖F 2

1/2+‖L4
xL

4
t
‖F 3

1/2+‖L4
xL

4
t

�C‖f‖L2
ξL

2
τ
‖f1‖L2

ξL
2
τ
‖f2‖L2

ξL
2
τ
‖f3‖L2

ξL
2
τ
.

Case 2). When |ξ1| � 2.

Using Lemma 3.2.12 and 3.2.15, the integral Γ restricted to this area is

bounded by ∫
�

f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

〈σ〉1/2−〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+

=C

∫
F1/2− · F 1

1/2+ · F 2
1/2+ · F 3

1/2+(x, t)dxdt

�C‖F1/2−‖L3
xL

3
t
‖F 1

1/2+‖L6
xL

6
t
‖F 2

1/2+‖L4
xL

4
t
‖F 3

1/2+‖L4
xL

4
t

�C‖f‖L2
ξL

2
τ
‖f1‖L2

ξL
2
τ
‖f2‖L2

ξL
2
τ
‖f3‖L2

ξL
2
τ
.

Thus we complete the proof of Lemma 3.2.16.

Theorem 3.2.5 (Trilinear estimates) If 1/2 < α < 1, then

‖u1ū2u3‖X0,−1/2+
� C‖u1‖X0,1/2+

‖u2‖X0,1/2+
‖u3‖X0,1/2+

.

Proof By duality and the Plancherel identity, it suffices to show that∥∥∥m((ξ1, τ1), ..., (ξ4, τ4))
∥∥∥
[4,R×R]

:=
∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+〈σ4〉1/2−
∥∥∥
[4,R×R]

� 1,
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where

ξ1 + ξ2 + ξ3 + ξ4 = 0, τ1 + τ2 + τ3 + τ4 = 0, ξ = −ξ4, τ = −τ4,

σ̄4 = τ4 + |ξ4|2α, |σ1 + σ̄2 + σ3 + σ̄4| = |ξ4|2α − |ξ1|2α + |ξ2|2α − |ξ3|2α.
Define Ni := |ξi|, and adopt the notation that

1 � soprano, alto, tenor, baritone � 4

as the distinct indices such that

Nsoprano � Nalto � Ntenor � Nbaritone

are the highest, second highest, third highest and fourth highest values of

the frequencies N1, . . . , N4, respectively. Since ξ1 + ξ2 + ξ3 + ξ4 = 0, we have

Nsoprano ∼ Nalto. Without loss of generality, we can assume that Nsoprano =

N1 and ξ1 > 0.

Case 1). Assume N2 = Nalto.

This means that ξ1ξ2 < 0.

Subcase 1-a). When ξ3ξ4 < 0. From Lemma 3.2.10 and Lemma 3.2.16,

we know ∥∥∥m((ξ1, τ1), ...(ξ4, τ4))
∥∥∥
[4,R×R]

�

∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+〈σ4〉1/2−
∥∥∥
[4,R×R]

�

∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2+
∥∥∥
[3,R×R]

∥∥∥ 1

〈σ3〉1/2+〈σ4〉1/2−
∥∥∥
[3,R×R]

�1.

Subcase 1-b). When ξ3ξ4 > 0. Then it implies that ξ3 < 0, ξ4 < 0 and

|ξ1 + ξ2| = |ξ3 + ξ4| � max{|ξ3|, |ξ4|}.
(1) If N3 = Ntenor, then |ξ4|2α − |ξ3|2α < 0 and −|ξ1|2α + |ξ2|2α < 0.

Using Taylor formula, we have

|ξ3|2α − |ξ4|2α � 2αN2α−1
4 N12,

|ξ1|2α − |ξ2|2α ∼ 2αN2α−1
1 N12,

and

|ξ1|2α − |ξ4|2α − |ξ2|2α + |ξ3|2α � |ξ2|2α−1|ξ3|.
If |ξ4| � |ξ3|, similarly to Subcase 1-a), we can obtain the result.
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If |ξ4| ∼ |ξ3|, then it implies that |ξ| ∼ |ξ3|. By symmetry, we assume

|σ̄4| = |σ| � |ξ2|2α−1|ξ3| � |ξ3|2α. Similar to the proof of Theorem 3.2.4,

using Lemma 3.2.12 and Lemma 3.2.15, we bound the integral Γ by∫
�

f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

〈σ〉1/2−〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+

�

∫
�

f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2)f3(τ3, ξ3)dδ

|ξ3|α−〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+

=C

∫
F0 · F 1

1/2+ · F 2
1/2+ ·D−α+

x F 3
1/2+(x, t)dxdt

�C‖F0‖L2
xL

2
t
‖F 1

1/2+‖L4
xL

4
t
‖F 2

1/2+‖L4
xL

4
t
‖D−α+

x F 3
1/2+‖L∞x L∞t

�C‖f‖L2
ξL

2
τ
‖f1‖L2

ξL
2
τ
‖f2‖L2

ξL
2
τ
‖f3‖L2

ξL
2
τ
.

(2) Suppose N4 = Ntenor. Let f(x) = (x + a)2α − a2α − x2α with a, x >

0, 2α > 1. Then we have f ′(x) > 0 for x > 0 and f(x) ∼ (x + a)min{x, a}.
Thus we have

|ξ1|2α − |ξ4|2α − |ξ2|2α + |ξ3|2α= |ξ2 + ξ3 + ξ4|2α − |ξ4|2α − |ξ2|2α + |ξ3|2α
� |ξ2|2α−1|ξ3|.

Similarly, we can obtain the result.

Case 2). Assume N3 = Nalto.

It implies that ξ1ξ3 < 0.

Subcase 2-a). If ξ2 < 0, ξ4 > 0, then similar to Subcase 1-a), we can

obtain the result.

Subcase 2-b). If ξ2 > 0, ξ4 < 0, then by Lemma 3.2.10 and Lemma

3.2.16, we have∥∥∥m((ξ1, τ1), ...(ξ4, τ4))
∥∥∥
[4,R×R]

�

∥∥∥∥ 1

〈σ1〉1/2+〈σ̄2〉1/2+〈σ3〉1/2+〈σ4〉1/2−
∥∥∥∥
[4,R×R]

�

∥∥∥∥ 1

〈σ1〉1/2+〈σ̄4〉1/2−
∥∥∥∥
[3,R×R]

∥∥∥∥ 1

〈σ3〉1/2+〈σ2〉1/2+
∥∥∥∥
[3,R×R]

�1.

Subcase 2-c). If ξ2 < 0, ξ4 < 0, then it implies that |ξ1+ξ2| = |ξ3+ξ4| �
max{|ξ3|, |ξ4|}. Moreover, we have |ξ1|2α− |ξ2|2α > 0 and |ξ3|2α− |ξ4|2α > 0,

|ξ1|2α − |ξ4|2α − |ξ2|2α + |ξ3|2α � |ξ2|2α−1|ξ3|.
Similar to the Subcase 1-b), we can obtain the result. This completes the

proof.
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Moreover, we have the following energy inequality.

Lemma 3.2.17 Let u(t) be smooth solution of the Cauchy problem (3.2.34).

Then

‖u(t)‖L2 � ‖u0‖L2 .

Therefore, similar to [122, 124], using Lemma 3.2.13, Theorem 3.2.5 and

Lemma 3.2.17, we can show that the Cauchy problem (3.2.34) is globally

well-posed in L2 with 1/2 < α < 1. Theorem 3.2.3 is hence established.

3.3 Fractional Ginzburg-Landau equation

In this section, we will focus on the fractional complex Ginzburg-Landau

(FCGL) equation [184, 211]

ut = Ru− (1 + iν)(−Δ)αu− (1 + iμ)|u|2σu, (3.3.1)

for α ∈ (0, 1), where u(x, t) is a complex-valued function of t and x, R, μ, ν

and σ are all real coefficients. If α = 1, then (3.3.1) reduces to the classical

Ginzburg-Landau equation [76, 105]. The main purpose of this section is to

discuss the existence and uniqueness of solutions for (3.3.1) and its infinite-

dimensional dynamical behaviors. For the sake of simplicity, we will discuss

the periodic case on Td = [0, 2π]d. What follows consists of three parts: the

global existence of weak solutions, the global existence of strong solutions

and the asymptotic behaviors of the infinite-dimensional dynamical systems.

3.3.1 Existence of weak solutions

In this section, we will discuss the existence of weak solutions of (3.3.1).

Theorem 3.3.1 For any ϕ ∈ L2(Td), there exists a function

u ∈ C([0, T ]);w-L2(Td)) ∩ L2([0, T ];Hα(Td)) ∩ L2ς([0, T ];L2ς(Td))

satisfying the FCGL equation in the weak sense

〈u(t), φ∗〉 − 〈ϕ, φ∗〉 =R
∫ t

0

〈u, φ∗〉dτ −
∫ t

0

(1 + iν)〈Λαu,Λαφ∗〉dτ

−
∫ t

0

(1 + iμ)〈|u|2σu, φ∗〉dτ, ∀φ ∈ C∞(Td).

(3.3.2)

Moreover, there holds the following energy inequality

1

2
‖u(t)‖2L2 +

∫ t

0

‖Λαu‖2L2dτ +

∫ t

0

‖u‖2ςL2ςdτ �
1

2
‖ϕ‖2L2 +R

∫ t

0

‖u‖2L2dτ.

(3.3.3)
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By u ∈ C([0, T ]);w-L2(Td)), we mean 〈u(t), φ〉 ∈ C([0, T ]) for arbitrary

φ ∈ L2(Td).

First, we will establish the following a priori estimates.

Lemma 3.3.1 Let u be a smooth solution of FCGL equation with initial

data ϕ, then

‖u(t)‖2L2 � e2Rt‖ϕ‖2L2, (3.3.4)

and

‖u(t)‖2L2 + 2

∫ t

0

‖Λαu‖2L2dτ + 2

∫ t

0

‖u‖2ςL2ςdτ � e2Rt‖ϕ‖2L2 . (3.3.5)

Proof Multiply FCGL equation by u∗, and integrate over Td to get∫
Td

utu
∗ = R

∫
Td

uu∗dx−(1+iν)

∫
Td

(−Δ)αuu∗dx−(1+iμ)

∫
Td

|u|2σuu∗dx.

Adding this to its conjugate, and using the integration by parts formula, we

have

d

dt

∫
Td

|u|2dx+ 2

∫
Td

|Λαu|2dx+ 2

∫
Td

|u|2ς � 2R

∫
Td

|u|2. (3.3.6)

In particular,
d

dt

∫
Td

|u|2dx � 2R

∫
Td

|u|2,

yielding by the Gronwall inequality that

‖u‖2L2 � ‖ϕ‖2L2e2Rt.

Substituting this into (3.3.6) yields the estimate (3.3.5).

Lemma 3.3.2 Let u be a smooth solution of the FCGL equation, then∥∥∥∥dudt
∥∥∥∥
L

2ς
2ς−1 (0,t;H−β)

� C, β � max

{
α,
σd

2ς

}
. (3.3.7)

Proof Multiplying the function by φ∗(x) and integrating over Td× [0, t] yield∫ t

0

〈
du

dt
, φ∗
〉

=

∫ t

0

〈Ru, φ∗〉−
∫ t

0

(1+iν)〈(−Δ)αu, φ∗〉−
∫ t

0

(1+iμ)〈|u|2σu, φ∗〉.

Integrating by parts and applying the Hölder inequality, we have∣∣∣∣ ∫ t

0

〈Ru, φ∗〉
∣∣∣∣ � R‖u‖L2ς(Td×[0,t])‖φ‖L2ς(Td×[0,t]),



February 6, 2015 16:57 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-3 page 140

140 Chapter 3 Fractional Partial Differential Equations

∣∣∣∣ ∫ t

0

(1 + iν)〈(−Δ)αu, φ∗〉
∣∣∣∣ � C‖u‖L2(0,t;Hα)‖φ‖L2(0,t;Hα)

and ∣∣∣∣ ∫ t

0

(1 + iμ)〈|u|2σu, φ∗〉
∣∣∣∣ � C‖u‖2ς−1

L2ς(Td×[0,t])
‖φ‖L2ς(Td×[0,t]).

Therefore, we know that for β � max{α, σd/(2σ + 2)},∣∣∣∣ ∫ t

0

〈
du

dt
, φ∗
〉∣∣∣∣ � C‖φ‖L2ς(0,t;Hα), ∀φ ∈ L2ς(0, t;Hα).

It shows that
du

dt
∈ L 2ς

2ς−1 (0, t;H−α), and the inequality (3.3.7) holds.

Further estimation can also be obtained. Let Iφ(t) = 〈u(t), φ∗〉.

Lemma 3.3.3 Iφ(t) is a continuous function of t for arbitrary φ ∈ L2(Td).

Proof We first consider the case φ ∈ C∞(Td) and then use a density argu-

ment to extend to the general case for φ ∈ L2(Td). Let 0 � t1 < t− 2 � T ,

by Hölder inequality,

|Iφ(t2)− Iφ(t1)| =|R
∫ t2

t1

〈u, φ∗〉dτ −
∫ t2

t1

(1 + iν)〈Λαu,Λαφ∗〉dτ

−
∫ t2

t1

(1 + iμ)〈|u|2σu, φ∗N 〉dτ |

�(|R|‖φ‖L∞ + |1 + iν|‖Λ2αφ∗‖L∞)‖u‖L2(0,T ;L2)|t2 − t1|1/2

+|1 + iμ|‖φ∗‖∞‖u‖2σ−1
L2ς(0,T ;L2ς)|t2 − t1|

1
2ς

�Cφe
RT ‖ϕ‖L2 |t2 − t1|1/2 + Cφ(e

2RT ‖ϕ‖2L2)
2ς−1
2ς |t2 − t1| 12ς

(3.3.8)

thanks to Lemma 3.3.1. The continuity of Iφ(t) then follows. Let ε > 0, and

for arbitrary φ ∈ L2(Td), choose φε ∈ C∞(Td) such that ‖φε−φ‖L2(Td) � ε.

Use Hölder inequality and triangle inequality to obtain

|Iφ(t2)− Iφ(t1)| � ε(‖u(t2)‖L2 + ‖u(t1)‖L2) + |Iφε(t2)− Iφε(t1)|. (3.3.9)

Since Iφε(t) is continuous in t, the second item on the right approaches to 0

as t1 → t2. Noting that ‖u(t2)‖L2 + ‖u(t1)‖L2 is independent of ε and ε is

arbitrary, the continuity of Iφ(t) for φ ∈ L2(Td) then follows.

The existence of weak solutions is proved by using the Fourier-Galerkin

approximation method. Let {e1, e2, · · · , eN , · · · } be an orthonormal basis for
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L2 and PNL
2 be the orthogonal projection of L2 into span{e1, · · · , eN}.

Consider the following approximation problem

〈uN (t), φ∗〉 − 〈ϕN , φ∗〉 =R
∫ t

0

〈uN , φ∗〉dτ −
∫ t

0

(1 + iν)〈ΛαuN ,Λ
αφ∗〉dτ

−
∫ t

0

(1 + iμ)〈|uN |2σuN , φ∗N 〉dτ,
(3.3.10)

where φ ∈ C∞(Td) and φN = PNφ. When N → ∞, PNφ strongly con-

verges to φ in L2(Td), and ‖φN‖L2 � ‖φ‖L2 by the Parseval inequality.

Fix T > 0. First, Lemma 3.3.1-3.3.3 still hold for uN , yielding

‖uN(t)‖2 + 2

∫ t

0

‖ΛαuN‖2L2dτ + 2

∫ t

0

‖uN‖2ςL2ςdτ

= ‖ϕN(t)‖2 + 2R

∫ t

0

‖uN‖2L2dτ. (3.3.11)

From above, we see {uN} is bounded in L2([0, T ];Hα) and L2ς([0, T ];L2ς).

Therefore, there exists a subsequence (still denoted by {uN}) such that uN →
u weakly in L2([0, T ];Hα) and L2ς([0, T ];L2ς). Moreover, (3.3.4) shows that

for arbitrary t � 0, {uN (t)} is weakly compact in L2(Td) and Lemma 3.3.2

shows that duN/dt is bounded in L
2ς

2ς−1 (0, T ;H−β). Therefore, it follows that

{uN} is compact in L2(0, T ;L2).

According to the interpolation inequality

‖η‖2ς−1
L2ς−1 � ρ‖η‖2ςL2ς + C(ρ)‖η‖2L2 , ∀ρ > 0,

it can be shown that {uN} is compact in the strong topology of L2ς−1([0, T ];

L2ς−1). Let ε > 0 and ηN = uN − u, then using the inequality above yields

‖ηN‖2ς−1
L2ς−1(Td×[0,T ])

� ρ‖ηN‖2ςL2ς(Td×[0,T ])
+ C(ρ)‖ηN‖2L2(Td×[0,T ]).

Since ηN → 0 weakly in L2ς(Td × [0, T ]), and strongly in L2(Td × [0, T ]), we

have

lim sup
N→∞

‖ηN‖2ς−1
L2ς−1(Td×[0,T ])

� lim sup
N→∞

ρ‖ηN‖2ςL2ς(Td×[0,T ])
� ρC < ε.

As ε > 0 is arbitrary, it shows that uN → u strongly in L2ς−1(Td × [0, T ]),

and hence |uN |2σuN → |u|2σu weakly in L1([0, T ];L1(Td)).

Similar to Lemma 3.3.3, {〈uN , φ∗〉}N is a continuous function of t. Ac-

tually, as (3.3.8) and (3.3.9) are independent of N , then for arbitrary φ ∈
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L2(Td), {〈uN , φ∗〉}N is equicontinuous in C([0, T ]). On the other hand, ac-

cording to Lemma 3.3.1, {〈uN , φ∗〉}N is uniformly bounded in C([0, T ]). Ac-

cording to Arzelà-Ascoli theorem, {〈uN , φ∗〉}N is compact in C([0, T ]), i.e.,

{uN} is compact in C([0, T ]);w-L2(Td)).

Proof of 3.3.1 The starting point of the proof is the approximation problem

(3.3.10). Let φ ∈ C∞(Td). Similar to Lemma 3.3.3, 〈uN (t), φ〉 is a continuous
function of t, which converges to 〈u(t), φ〉 as N →∞ for arbitrary t � 0. As

uN → u weakly in L2([0, T ];Hα(Td)), then∫ t

0

〈uN , φ∗〉dτ →
∫ t

0

〈u, φ∗〉dτ,

and ∫ t

0

〈ΛαuN ,Λ
αφ∗〉dτ →

∫ t

0

〈Λαu,Λαφ∗〉dτ.

As |uN |2σuN → u|2σu weakly in L1([0, T ];L1(Td)), and φN → φ uniformly

in Td, then ∫ t

0

〈|uN |2σuN , φ∗N 〉dτ →
∫ t

0

〈|u|2σu, φ∗N 〉dτ.
Hence, the limit function u satisfies the fractional complex Ginzburg-Landau

equation in the sense of (3.3.2). At last, (3.3.3) is obvious from (3.3.11) and

Fatou Lemma.

Generally speaking, weak solution is not unique. However, the following

uniquenes criterion holds.

Theorem 3.3.2 Let α ∈
(
1

2
, 1

]
, T > 0, and d < 4α. Then there is at most

one solution for the FCGL equation such that

u ∈ L∞(0, T ;L2) ∩ L2(0, T ;Hα) (3.3.12)

and

u ∈ L 2σ
1−θ (0, T ;L4σ), θ =

d

4α
∈ (0, 1). (3.3.13)

Proof Let uA and uB be two solutions of the FCGL equation, then w =

uA − uB satisfies

wt = Rw − (1 + iν)(−Δ)αw − (1 + iμ)(|uA|2σuA − |uB|2σuB).
Multiply the formula by w∗ and integrate over Td and take the real part to

obtain

d

dt
‖w‖2L2 + 2‖Λαw‖2L2 =2R‖w‖2L2 − 2

∫
Td

|uA|2σ|w|2

−
∫
Td

(|uA|2σ − |uB |2σ)(uBw∗ + u∗Bw).
(3.3.14)
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For the second item on the right, using the following interpolation inequality

‖w‖L4 � ‖w‖1−θ
L2 ‖w‖θHα , θ =

d

4α
,

yields∣∣∣∣2 ∫
Td

|uA|2σ|w|2
∣∣∣∣ �(∫ |uA|4σ) 1

2
(∫

|w|4
) 1

2

�C

(∫
|uA|4σ

) 1
2

‖w‖2(1−θ)
L2 ‖w‖2θHα

�C‖uA‖2σL4σ‖w‖2L2 + C‖uA‖
2σ
1−θ

L4σ ‖w‖2L2 + ‖Λαw‖2L2 .

But since there is a constant ε ∈ (0, 1) such that

||uA|2σ − |uB|2σ| �2σ |ε|uA|+ (1− ε)|uB ||2σ−1 ||uA| − |uB||
�Cσ||uA|+ |uB||2σ−1|w|,

the last item on the right can be bounded by

�C

((∫
|uA|4σ

) 1
2

+

(∫
|uB|4σ

) 1
2

)(∫
|w|4

) 1
2

�C‖U‖2σL4σ‖w‖2L2 + C‖U‖
2σ
1−θ

L4σ ‖w‖2L2 + ‖Λαw‖2L2 .

Here |U | = |uA|+ |uB|. By using (3.3.14), we get

d

dt
‖w‖2L2 = 2R‖w‖2L2 + C‖U‖2σL4σ‖w‖2L2 + C‖U‖

2σ
1−θ

L4σ ‖w‖2L2 .

It follows that w = 0 by (3.3.12), completing the proof.

3.3.2 Global existence of strong solutions

This section considers the global existence of fractional complex Ginzburg-

Landau equation. Let Sα(t) = e−t(1+iν)(−Δ)α+Rt, then the operator family

Sα(t) generates bounded linear operators in Lp for p ∈ [1,∞] (see [164]). We

first consider the following linear equation

ut = Ru− (1 + iν)(−Δ)αu, u(0) = ϕ(x). (3.3.15)

By taking the Fourier transform, we obtain

d

dt
û(t, ξ) = Rû− (1 + iν)|ξ|αû(t, ξ),
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which yields by inverse Fourier transform

u(t) = Sα(t)ϕ = F−1
(
e−t(1+iν)|ξ|2α+Rt

)
∗ ϕ = Gα

t ∗ ϕ.

For this, it suffices to study G̃α
t := Gα

t e
−Rt. By a change of variable

G̃α
t (x) =

1

(2π)d

∫
Rd

eix·ξe−t(1+iν)|ξ|2αdξ = t−
d
2α G̃α

1

( x

t1/2α

)
,

which reduces to study the kernel function

G̃α(x) =
1

(2π)d

∫
Rd

eix·ξe−(1+iν)|ξ|2α.

Since e−(1+iν)|ξ|2α ∈ L1(Rd), from the Riemann-Lebesgue Lemma, we know

G̃α ∈ L∞(Rd)∩C(Rd), and G̃α(x)→ 0 when |x| → ∞. Then G̃α ∈ C0(R
d),

the space of continuous functions which tend to zero at infinite. Moreover,

since for arbitrary β > 0, |ξ|2βe−(1+iν)|ξ|2α ∈ L1(Rd), then (−Δ)βG̃α ∈
C0(R

d).

The following two lemmas will be useful (see [164]).

Lemma 3.3.4 Let α > 0, then G̃α ∈ Lp(Rd) for all p ∈ [1,∞] and

|G̃α(x)| � C(1 + |x|)−d−2α, ∀x ∈ Rd.

Lemma 3.3.5 Let α > 0, then (−Δ)sG̃α ∈ Lp(Rd) for all p ∈ [1,∞] and

|(−Δ)sG̃α(x)| � C(1 + |x|)−d−2s, ∀s > 0, ∀x ∈ Rd.

In particular, ∇G̃α ∈ Lp(Rd) for arbitrary p ∈ [1,∞].

In the following, the semigroup method is used to establish the local and

global existence of solutions for the equation. One may refer to [177] for the

semigroup method. Consider an abstract evolution equation in Banach space

X

ut = Au+ f(u), u(0) = ϕ ∈ X, (3.3.16)

where A is the infinitesimal generator of a strong continuous semigroup S(t)

in Banach space X , while f(u) can be viewed as a nonlinear perturbation in

X .

Proposition 3.3.1 Let f : X → X be a Lipshitz continuous function,

then for arbitrary ρ > 0 there exists a time T (ρ) > 0 such that for arbitrary

initial data u(0) = ϕ ∈ X with ‖ϕ‖X � ρ, there exists a unique solution

u ∈ C([0, T ];X) for (3.3.16) in the sense

u(t) = S(t)ϕ+

∫ t

0

S(t− τ)f(u(τ))dτ.

Moreover, u is a locally Lipshitz continuous function of ϕ.
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For FCGL equation, let Au = Ru − (1 + iν)Λ2αu and f(u) = −(1 +

iμ)|u|2σu. The semigroup Sαper(t) corresponding to the periodic FCGL equa-

tion can be written as Sαper(t) = Gα
per,t ∗ ϕ, where

Gα
per,t(x) =

∑
n∈Zd

Gα
t (x+ n).

Next, we consider the integral form of the FCGL equation

u(t) = Gα
per,t ∗ ϕ+

∫ t

0

Gα
per,t−τ ∗ f(u(τ))dτ. (3.3.17)

By Lemma 3.3.4 and 3.3.5, applying the decay estimates gives ‖Gα
per,t‖L1 �

CeRt and by Young’s inequality, we have

‖Sαper(t)ϕ‖Lp � ‖Gα
per,t‖L1‖ϕ‖Lp � CeRt‖ϕ‖Lp, ∀p ∈ [1,∞].

It follows that Sαper(t) is a strong continuous semigroup in C(Td) and Lp(Td)

for p ∈ [1,∞).

We now prove the following local existence of strong solutions in X =

C(Td).

Theorem 3.3.3 Let α ∈ (1/2, 1) and ρ > 0 be arbitrary. Then there is

some T = T (ρ) > 0 such that there exists a unique solution for the FCGL

equation

u ∈ C([0, T ];C) ∩C((0, T ];C2) ∩ C1((0, T ];C),

for every initial data ϕ ∈ C(Td) with ‖ϕ‖L∞ � ρ. Moreover, if the initial

data ϕ ∈ C2(Td), then

u ∈ C([0, T ];C2) ∩ C1([0, T ];C).

Proof Obviously, the nonlinear term f(u) is locally Lipshitz function mapping

C(Td) into itself. By standard local existence theory, there exists a local mild

solution for the FCGL equation on [0, T ] with T depending on ‖ϕ‖L∞, which
is the limit of the sequence {u(n)} defined successively by

u(0)(t) = Gα
t ∗ ϕ,

u(n+1)(t) = Gα
t ∗ ϕ+

∫ t

0

Gα
t−τ ∗ f(u(n)(τ))dτ.

(3.3.18)

Using the standard bootstrapping argument, additional regularity can be

obtained. The main ingredient is by observing the estimate

‖∇Gα
per,t‖L1 � Ct−

1
2α eRt. (3.3.19)
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Indeed, applying the Gradient operator ∇ to (3.3.18), we obtain

∇u(n+1)(t) = ∇Gα
per,t ∗ ϕ+

∫ t

0

∇Gα
per,t−τ ∗ f(u(n)(τ))dτ.

Computing directly, we have

‖∇u(n+1)(t)‖L∞

6‖∇Gα
per,t‖L1‖ϕ‖L∞ +

∫ t

0

‖∇Gα
per,t−τ‖L1‖f(u(n)(τ))‖L∞dτ

6Ct−
1
2α eRt‖ϕ‖L∞ + C

∫ t

0

(t− τ)−
1
2α eR(t−τ)‖f(u(n)(τ))‖L∞dτ.

Since α ∈ (1/2, 1), this shows that ∇u(n) is bounded in C([0, T ];C(Td)). On

the other hand, since f is Lipshitz continuous, similar argument shows that

∇u(n) is Cauchy in C([0, T ];C(Td)). Therefore u ∈ C([0, T ];C1(Td)) and

the singularity at t = 0 disappears. In this case, ∇u is a solution for the

equation

∇u(t) = Gα
per,t ∗∇ϕ+

∫ t

0

Gα
per,t−τ ∗ [f ′(u(τ))∇u(τ)]dτ (3.3.20)

where

f ′(u(τ))∇u(τ) = −(1 + iµ)[(σ + 1)|u|2σ∇u+ σ|u|2σ−2u2∇u∗].

A repetition of the above procedure then shows that u(t) ∈ C((0, T ];C2(Td)).

Moreover, because the FGL equation trades the first time derivative to the

2α-order space derivative, the solution obtained must also be in C1((0, T ];

C(Td)). Therefore, the solution is indeed a classical one, completing the

proof.

Generally, the above discussion cannot be repeated to show u ∈ C((0, T ];

C3(Td)), since further differentiation of the nonlinear term will introduce

singularities at the zeros of u, yielding divergence of (3.3.20). But when σ is a

positive integer, arbitrary differentiation of nonlinear term will not introduce

singularities, thus one can show u ∈ C((0, T ];C∞(Td)). Similarity, one can

also show that u ∈ C∞((0, T ];C∞(Td)) also holds.

When σ is not an integer, as long as the differentiation of nonlinear term

does not introduce unbounded singularities at the zeros, we can still bootstrap

to obtain higher regularity of the solution.

Theorem 3.3.4 (Local Ck solution) Let σ >
n

2
for some positive integer

n. Then for every ρ > 0, there exists T (ρ) > 0 such that for every initial

data ϕ ∈ C(Td) with ‖ϕ‖∞ < ρ, there exists a unique
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ϕ ∈ C(Td) with ‖ϕ‖∞ < ρ, there exists a unique

u ∈ C([0, T ];C(Td)) ∩C((0, T ];Cn+2(Td)) ∩ C1((0, T ];Cn(Td))

satisfying the FCGL equation. Moreover, if ϕ ∈ Cn+2(Td), then there holds

u ∈ C([0, T ];Cn+2(Td)) ∩ C1((0, T ];Cn(Td)).

In the following, we consider the local existence of solutions in X =

Lp(Td). Assume that ϕ ∈ Lp(Td) for 1 � p < ∞. First, we have the

Lr estimates

‖u(t)‖Lr � ‖Gα
per,t‖Lq‖ϕ‖Lp + |1 + iμ|

∫ t

0

‖Gα
per,t−τ‖Ls‖u(τ)‖2σ+1

Lr dτ,

(3.3.21)

where p, q, r, s satisfy

1 +
1

r
=

1

p
+

1

q
, and 1 +

1

r
=

1

s
+

2σ + 1

r
. (3.3.22)

Let

‖u(t)‖L̂r,q =
‖u(t)‖Lr

‖Gα
per,t‖Lq

,

and define the space Ξp,r([0, T ];Td) to be the completion of C([0, T ];Lr(Td))

under the norm

‖u‖Ξp,r := sup
t∈[0,T ]

{‖u(t)‖L̂r,q}.

From (3.3.21), it is easy to get

‖u(t)‖L̂r,q � ‖ϕ‖Lp +
|1 + iμ|
‖Gα

per,t‖Lq

∫ t

0

‖Gα
per,t−τ‖Ls‖Gα

per,τ‖2σ+1
Lq ‖u(τ)‖2σ+1

L̂r,q
dτ.

If the kernel satisfies the condition

1

‖Gα
per,t‖Lq

∫ t

0

‖Gα
per,t−τ‖Ls‖Gα

per,τ‖2σ+1
Lq dτ → 0, as t→ 0, (3.3.23)

then there is a sufficiently small T > 0 such that iterative sequence (3.3.18)

converges in the space Ξ. But by the definition of Gα
per,t, it is easy to see

that

|Gα
per,t| �

∑
n∈Zd

eRtt−
d
2α |G̃α

(
x

t1/2α

)
| � eRtt−

d
2α (a+ bt

d
2α ),
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where a, b are constants depending only on ν. By using interpolation inequal-

ity, there holds

‖Gα
per,t‖Lq 6 ‖Gα

per,t‖1/q
∗

L∞ ‖Gα
per,t‖1/qL1 6

CeRt

td/(2αq∗)
(a+ bt

d
2α )1/q

∗

. (3.3.24)

In particular, ‖Gα
per,t‖Lq = O(t

d
2αq∗ ) when t→ 0.

So, if

A1. d(2σ + 1) < 2αq∗, and

A2.
d

2αs∗
+

σd

αq∗
< 1,

then the condition (3.3.23) holds. The condition A1 is equivalent to

1

p
− 2α

(2σ + 1)d
<

1

r
(3.3.25)

By using (3.3.22), the condition A2 is equivalent to σd < αp.

Now we only assume

A. σd < αp,

and choose r = (2σ+1)p, then (3.3.25) and (3.3.23) hold. Using contraction

mapping principle in Ξp,r([0, T ];Td) for r = (2σ + 1)p, then it is easy to

know that FCGL equation has a unique local solution.

Let us consider the regularity of u. It is easy to show that u ∈ C([0, T ];

Lp(Td)) ∩ C((0, T ];Lr(Td)). Indeed, from the definition of Ξp,r, it is easy

to know Ξp,r([0, T ];Td) ⊂ C((0, T ];Lr(Td)), thus to show that u ∈ C([0, T ];

Lp(Td)) it suffices to prove the continuity of u at t = 0. Notice that

‖u(t)− ϕ‖Lp 6‖Gα
per,t ∗ ϕ− ϕ‖Lp

+ |1 + iµ|
∫ t

0

‖Gα
per,t−τ‖L1‖Gα

per,τ‖2σ+1
Lq ‖u(τ)‖2σ+1

Lr/Lq
t
dτ,

where r = (2σ + 1)p and q is defined in (3.3.22). By the strong continuity

of the operator semigroup in Lp, we have known that when t → 0 , the first

item in the right approaches to 0. On the other side, according to σd < αp, it

is known that d(2σ+1) < 2αq∗. Thus ‖Gα
per,τ‖2σ+1

Lq is integrable near τ = 0.

Using the boundedness of u in Ξp,r and (3.3.19), it’s easy to see that when

t→ 0, the second item in the right approaches to 0. Then u is continuous at

t = 0, i.e. u ∈ C([0, T ];Lp(Td)).
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Theorem 3.3.5 If p satisfies q � p and σd < αp, then for arbitrary ρ >

0, there is T (ρ) > 0 such that for arbitrary initial value ϕ ∈ Lp(Td) with

‖ϕ‖Lp � ρ, there is a unique solution

u ∈ Ξp,r([0, T ];Td) ∩ C([0, T ];Lp(Td)),

in the sense of (3.3.17).

The mild solution here actually is the strong solution u ∈ C((0, T ];

C2(Td)) ∩ C1((0, T ];C(Td)). According to Theorem 3.3.3, we only need

to prove u ∈ C((0, T ];L∞). Therefore it suffices to prove that the solu-

tion with the Lp initial data belongs to C((0, T ];Lr(Td)) for r > p satis-

fying (A1-A2) and (3.3.25). Indeed, if p >

(
σ +

1

2

)
d, then for arbitrary

r ∈ [(2σ + 1)p,∞], the conditions are all satisfied, then u ∈ C((0, T ];L∞)

holds. On the other side, if σd < p �

(
σ +

1

2

)
d, then u ∈ C((0, T ];Lp1) for

p1 = (2σ+1)p. When p1 �

(
σ+

1

2

)
d, by repeating the above reasoning, we

can show u ∈ C((0, T ];L∞). Otherwise, more generally, repeating the above

reasoning we know that when pn = (2σ+1)np �

(
σ+

1

2

)
d for n = 1, 2, · · · ,

then u ∈ C((0, T ];Lpn(Td)), hence u ∈ C((0, T ];L∞).

In particular, we have the following

Theorem 3.3.6 Let 1 � p <∞ and σd < αp, then for arbitrary ρ > 0, there

is T (ρ) > 0 such that for arbitrary initial value ϕ ∈ Lp(Td) with ‖ϕ‖Lp � ρ,

there exists a unique solution for the FCGL equation satisfying

u ∈ C([0, T ];Lp(Td)) ∩C((0, T ];C2(Td)) ∩C1((0, T ];C(Td)).

A special situation is when p = 2σ + 2. Once σ < ∞ when d = 1 or
2α

d− 2α
when d � 2, then there is a local strong solution according to the

above theorem.

In the following, we extend the local solution to a global one by some

a priori estimates. The purpose is to get the H1-estimates of the solution,

then using the Sobolev embedding theorem to get the Lp-estimates of the

solution. Therefore it suffices to get the L2 estimates of ∇u.
Theorem 3.3.7 (Global strong solution) Let σ �

1

2
and d < 2 + 2/σ.

If

σ �

√
1 + μ2 + 1

μ2
, (3.3.26)
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then the FCGL equation with C2 initial data has a unique global strong solu-

tion.

Proof Multiply the equation by −Δu∗ and integrate over Td to get∫
Td

∂tu(−Δ)u∗ =R

∫
u(−Δ)u∗ − (1 + iν)

∫
(−Δ)αu(−Δ)u∗

− (1 + iμ)

∫
|u|2σu(−Δ)u∗,

which yields

d

dt
‖∇u‖2 =2R‖∇u‖2 − 2‖(−Δ)

1+α
2 u‖2 − 1

2

∫
|u|2σ−2[(1 + 2σ)|∇|u|2|2

− 2iμσ∇|u|2(u∗∇u− u∇u∗) + |u∗∇u− u∇u∗|2]dx.
(3.3.27)

If the matrix (
1 + 2σ −σμ
−σμ 1

)
(3.3.28)

is non-negative definite, then the last item above in non-positive and hence

d

dt
‖∇u‖2 � 2R‖∇u‖2,

yielding

‖∇u(t)‖ � eRT ‖∇ϕ‖L2 .

The theorem is found to establish by the local existence. By the H1 estimates

of the solution, its Lp estimation can be obtained for

1 � p <

⎧⎨⎩∞, d = 1, 2
2d

d− 2
, d � 3.

(3.3.29)

In this case, besides (3.3.26) and (3.3.29), if moreover σd < αp, then the

FCGL equation has a unique strong solution according to Theorem 3.3.5.

But when d < 2+
α

σ
, we can select p such that all the above conditions hold,

completing the proof.

3.3.3 Existence of attractors

This section will discuss the existence of attractor of fractional Ginzburg-

Landau in L2. For simplicity, we only consider the case when d = 1 and

1/2 < α � 1. We let T = T1 and prove the following
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Theorem 3.3.8 Suppose that α ∈
(
1

2
, 1

]
and d = 1. Then the solution

operator S : S(t)ϕ = u(t) for all t > 0 of the FGL equation well defines a

semigroup in the space H = L2. Moreover, the following statements hold:

1. For any t > 0, S(t) is continuous in H;

2. For any ϕ ∈ H, S is continuous from [0, T ] to H;

3. For any t > 0, S(t) is compact in H;

4. The semigroup {S(t)}t�0 possesses a global attractor A in H. Fur-

thermore, A is compact and connected in H, and is the maximal bounded

absorbing set and the minimal invariant set in H in the sense of set inclu-

sion relation.

First of all, we state the following theorem [120,213].

Theorem 3.3.9 Suppose that H is a metric space and the semigroup

{S(t)}t�0 is a family of operators from H to itself such that

1. for any fixed t > 0, S(t) : H → H is continuous;

2. there is t0 > 0 such that S(t0) is compact from H to itself;

3. there exists a bounded subset B0 ⊂ H and an open subset U ⊂ H
such that B0 ⊆ U ⊆ H, and for arbitrary bounded subset B ⊂ U , there is a

t0 = t0(B) such that S(t)B ⊂ B0 for all t > t0(B).

Then A = ω(B) is a compact attractor which attracts all the bounded set

of U , i.e.,

lim
t→+∞

dist(S(t)x,A) = 0, ∀x ∈ U.

A is the maximal bounded absorbing set and minimal invariant set, in the

sense that S(t)A = A for all t � 0.

Suppose in addition that H is a Banach space, U is convex and

4. For all x ∈ H, S(t)x : R+ → H is continuous.

Then A := ω(B) is also connected.

If U = H, A is called the global attractor of the semigroup {S(t)}t�0 in

H.

Based on the preceding discussions, for d = 1 and α ∈
(
1

2
, 1

]
, then for

arbitrary ϕ ∈ L2(T), FCGL possesses a unique global solution u such that

u ∈ C([0, T ];L2) ∩ L2(0, T ;Hα) for all T < ∞, and S(t) : ϕ → u(t) is a

continuous mapping from L2 to itself. To prove Theorem 3.3.8, it suffices to

check the conditions in Theorem 3.3.9

1. Absorbing set in H = L2.
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Taking the L2 inner product of equation (3.3.1) with u∗ over T. Integrating

by parts and taking the real part, we have

1

2

d

dt
‖u‖2 + ‖Λαu‖2 + ‖u‖2σ+2

L2σ+2 −R‖u‖2 = 0. (3.3.30)

When R � 0, this leads to trivial dynamical systems. Indeed, when R < 0,

we have

‖u(t)‖L2 � ‖ϕ‖L2eRt,

from which it follows that for any initial data ϕ ∈ L2, we have

‖u(t)‖2L2 → 0, t→∞. (3.3.31)

When R = 0, using Hölder inequality

‖u‖2L2 � |T| σ
σ+1 ‖u‖2L2σ+2 ,

we have from (3.3.30) that

d

dt
‖u‖2L2 +

2

(2π)σ
‖u‖2σ+2

L2 � 0,

which yields
1

‖u(t)‖2L2

�
1

‖ϕ‖2σ +
2σ

(2π)σ
t.

Therefore, (3.3.31) still holds.

When R > 0, using Young’s inequality we have Ry2 �
1

2
y2σ+2 +CR

σ+1
σ ,

we have
1

2
‖u‖2σ+2

L2σ+2 −R‖u‖2 � −2πCR σ+1
σ ,

where C is a constant depending only on R and σ. One obtains from (3.3.30)

that

d

dt
‖u‖2 + 2‖Λαu‖2 + ‖u‖2σ+2

L2σ+2 +R‖u‖2L2 � 4πCR
σ+1
σ , (3.3.32)

and hence by Gronwall inequality

‖u(t)‖2L2 �e−Rt
[
‖ϕ‖2L2 + 4πCR

σ+1
σ t
]

�‖ϕ‖2L2e−Rt + 4πCR
1
σ (1− e−Rt), ∀t � 0.

(3.3.33)

Therefore,

lim sup
t→∞

‖u(t)‖2L2 � ρ20, ρ20 = 4πCR
1
σ .
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From (3.3.33), we can infer the existence of an absorbing ball in L2.

Indeed, the balls BH(0, ρ) with ρ > ρ0 are positively invariants for the semi-

group S(t) associated with the FCGL equation, and these balls are absorbing

for any ρ > ρ0. Fix any ρ′0 > ρ0 and denote B′
0 the ball BH(0, ρ′0). Since any

bounded set B can be included in a ball BH(0, ρ) of H centered at 0 of radius

ρ, it follows that S(t)B ⊂ B′
0 for t � t0 = t0(B, ρ

′
0) with t0 =

1

R
log

ρ2

ρ′20 − ρ20
.

Furthermore, by integrating (3.3.32) from t to t+ 1, we have

‖u(t+ 1)‖2L2 + 2

∫ t+1

t

‖Λαu‖2L2ds+

∫ t+1

t

‖u‖4L4ds � ‖u(t)‖2L2 + 4πCR2.

(3.3.34)

The inequalities (3.3.33) and (3.3.34) show that

2

∫ t+1

t

‖Λαu‖2L2ds+

∫ t+1

t

‖u‖4L4ds � ρ′20 + 4πCR2.

Therefore, when t � t0 (t0 as above),∫ t+1

t

‖Λαu‖2L2ds � a1 and

∫ t+1

t

‖u‖4L4ds � a2 (3.3.35)

are uniformly bounded independent of ϕ.

2. Absorbing set in Hα.

First of all, we state the uniform Gronwall Lemma [213].

Lemma 3.3.6 Let g, h and y be three positive locally integrable functions

on (t0,∞) such that y′ is locally integrable on (t0,∞) and satisfy

dy

dt
� gy + h for t > t0,

∫ t+r

t

g(s)ds � a1,

∫ t+r

t

h(s)ds � a2,

∫ t+r

t

y(s)ds � a3, for t � t0,

where r, a1, a2, a3 are positive constants, then

y(t+ r) �

(
a3
r

+ a2

)
ea1 , ∀t � t0.

The following will focus on the attractor set in Hα. Taking inner prod-

uct of (3.3.1) with (−Δ)αu∗, integrating by parts and then using Hölder
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inequality, we obtain

d

dt
‖Λαu‖2L2 + 2‖Λ2αu‖2L2 − 2R‖Λαu‖2L2 =−R

[
(1 + iμ)

∫
Td

|u|2σuΛ2αu∗dx

]
�
√

1 + μ2
∫
Td

|u|2σ+1|Λ2αu|dx

�
1

2
‖Λ2αu‖2L2 +

√
1 + μ2

2
‖u‖2(2σ+1)

L2(2σ+1) .

(3.3.36)

By using interpolation inequality, we have

‖u‖L2(2σ+1) � C1‖u‖1−ρ
L2 (‖u‖2L2 + ‖Λ2αu‖2L2)ρ/2, ρ =

2σ

4α(2σ + 1)
,

which follows from (3.3.36) that

d

dt
‖Λαu‖2L2 +

3

2
‖Λ2αu‖2L2−2R‖Λαu‖2L2 �

√
1 + μ2

2
‖u‖2(2σ+1)

L2(2σ+1)

�2ρ(2σ+1)C′1Cμ[‖u‖2(2σ+1) + ‖Λ2αu‖2ρ(2σ+1)]

�2ρ(2σ+1)C′1Cμ‖u‖2(2σ+1) +
1

2
‖Λ2αu‖2L2 + C2,

where C′1=C
2(2σ+1)
1 , Cμ=

√
1+μ2/2, C2=

[(2ρ(2σ+1))ρ(2σ+1)2ρ(2σ+1)C′1Cμ]
q

q
,

and q =
1

1− ρ(2σ + 1)
. Therefore,

d

dt
‖Λαu‖2L2 + ‖Λ2αu‖2L2 � 2R‖Λαu‖2L2 + 2ρ(2σ+1)C′1Cμ‖u‖2(2σ+1) + C2.

Let

y = ‖Λαu‖2L2, g = 2R, h = 2ρ(2σ+1)C′1Cμ‖u‖2(2σ+1) + C2,

it follows that from the uniform Gronwall inequality that

‖Λαu‖2 � (a3 + a2)e
a1 , t � t0 + 1, (3.3.37)

where a1, a2, a3 are constants. A careful inspection can assure us the exis-

tence of an absorbing ball of the solutions in the space Hα, which is similar

to the L2 case.

Let ϕ ∈ B, a bounded set of H . Since B1 is bounded in Hα, and the

embedding Hα ↪→ L2 is compact, we infer that⋃
t�t0+1

S(t)B is relatively compact in L2.

This observation proves 3 of Theorem 3.3.8.
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Proof of Theorem 3.3.8 Theorem 3.3.8 is a direct consequence of Theorem

3.3.9. It suffices to check conditions 1 and 4 in Theorem 3.3.9, which are

standard and obvious.

3.4 Fractional Landau-Lifshitz equation

In this section, we discuss the fractional Landau-Lifshitz equation. Classical

Landau-Lifshitz equation has the following form

∂u

∂t
= −αu×

(
u× δE

δu

)
+ βu× δE

δu
,

where u : Ω → R3 is a three-dimensional vector in R3, α � 0, β > 0 are

constants and δE
δu

is the variation of the functional E with respect to u,

E(u) =

∫
Ω

|∇u|2dx+
∫
Ω

φ(u)dx+

∫
R3

|∇Φ|2dx,

where the three items in the right hand side are exchange energy, anisotropy

energy and magnetostatic energy, respectively. When the magnetostatic en-

ergy cannot be neglected, the equation is nonlocal and complex. So, it’s very

important to consider some simplified models of the equation with magneto-

static energy. Therefore, we consider the following fractional Landau-Lifshitz

equation, {
ut = u× (−Δ)αu, (x, t) ∈ Rd × (0, T ),

u(x, 0) = u0, x ∈ Rd,
(3.4.1)

where α ∈ (0, 1), Ω is a smooth domain ofRd, ki ∈ Zd and ei is an orthonomal

basis in Rd.

3.4.1 Vanishing viscosity method

In this section, we consider the periodic case and employ the vanishing vis-

cosity method to prove the following theorem.

Theorem 3.4.1 Let 0 < α < 1, u0 ∈ Hα
per(Ω) and |u0(x)| = 1 for a.e.

x ∈ Rd. Then for any T > 0, there exists u ∈ L∞(0, T ;Hα(Ω)) such that

|u(x, t)| = 1 for a.e. (x, t) ∈ Rd × [0, T ] and satisfies (3.4.1) in the weak

sense∫
Ω×(0,T )

uΦtdxdt+

∫
Ω

u0Φ(·, 0)dx =

∫
Ω×(0,T )

(−Δ)
α
2 u× Φ · (−Δ)

α
2 udxdt,

for any Φ ∈ C∞(Rd × [0, T ]) with Φ(x, T ) = 0.
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We first introduce the discrete Young’s inequality. If f ∈ L2(Ω), then f

can be represented by Fourier series as f =
∑

n∈Zd f̂(n)e2πin·x for f̂(n) =∫
Ω

f(x)e−2πin·x, and n = (n1, n2, · · · , nd) ∈ Zd being a d-dimensional vector.

For arbitrary non-negative multi-index m = (m1,m2, · · · ,md) ∈ Zd(mi � 0),

one has at least formally

(−Δ)αf = (2π)α
∑
n∈Zd

|n|2αf̂(n)e2πin·x.

Define

H2α
per(Ω) =

⎧⎨⎩f |f ∈ L2(Ω)or
∑
n∈Zd

|n|4α|f̂(n)|2 <∞
⎫⎬⎭ ,

with norm

‖f‖H2α
per(Ω) = ‖f‖2 + ‖(−Δ)αf‖2.

If f, g ∈ H2α
per(Ω), by using the Parseval identity and integrating by parts,

one has ∫
Ω

(−Δ)αf · gdx =

∫
Ω

(−Δ)α1f · (−Δ)α2gdx,

for arbitrary non-negative α1 and α2 such that α1 + α2 = α.

Lemma 3.4.1 If {fn} ∈ lp and {gn} ∈ l1, then the “convolution”

{ ∑
n1+n2=n

fn1gn2

}∞
n=1

∈ lp and

∥∥∥∥ ∑
n1+n2=n

fn1gn2

∥∥∥∥
lp

� ‖fn‖p‖gn‖1.

Assume temporarily u0 ∈ H1
per(Ω) and consider the Ginzburg-Landau

approximation⎧⎪⎪⎨⎪⎪⎩
ut =

u

max{1, |u|} × (−Δ)αu− β u

max{1, |u|} ×Δu+ εΔu

(x, t) ∈ Ω× (0, T ),

u(x, 0) = u0, x ∈ Ω,

(3.4.2)

where β and ε are viscosity coefficients. Taking inner product of the approx-

imation equation (3.4.2) with u, one has

1

2

d

dt

∫
Ω

|u|2dx+ ε
∫
Ω

|∇u|2dx = 0,
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which yields by integrating with respect to time over [0, t] that

‖u(·, t)‖2 � C, ∀0 � t � T.

Take inner product of the approximation equation (3.4.2) with βΔu to obtain

βΔu · ut = β u

max{1, |u|} × (−Δ)αu ·Δu+ εβ|Δu|2,

and then with (−Δ)αu to obtain

(−Δ)αu · ut = εΔu · (−Δ)αu− β u

max{1, |u|} ×Δu · (Δ)−αu.

Taking the difference of the two equations and then integrating over Ω, one

has

−β
2

d

dt

∫
Ω

|∇u|2dx− 1

2

d

dt

∫
Ω

|(−Δ)α/2u|2dx=βε
∫
Ω

|Δu|2dx

−ε
∫
Ω

Δu · (−Δ)αudx,

yielding

βε

∫ t

0

‖Δu‖22dt+ ε
∫ t

0

‖(−Δ)
1+α
2 u‖22 +

β

2
‖∇u‖22

+
1

2
‖(−Δ)α/2u‖22 =

β

2
‖∇u0‖22 +

1

2
‖(−Δ)α/2u0‖22.

(3.4.3)

Next we seek the approximation solution of (3.4.2) in the form

uN (x, t) =
∑
|n|�N

ϕn(t)e
2πin·x,

such that for any |n| � N , there holds〈
∂uN
∂t
− uN

max{1, |uN |} × (−Δ)αuN + β
uN

max{1, |uN |} ×ΔuN

−εΔuN , e2πin·x
〉

= 0, (3.4.4)

where ϕn is a vector in R3 and 〈·, ·〉 represents the inner product in the space

L2(Ω). The initial value can be accordingly approximated in H1
per(Ω) by

uN (x, 0) =

N∑
i=1

ϕi(0)ei(x)→ u0.
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We hence have obtained a system of ODEs for {ϕn(t)} for 1 � |n| �
N . By the classical theory of ODEs, there exists a unique local solution

{ϕn(t)} satisfying (3.4.4). In what follows, we will obtain some useful a

priori estimates to take the limit N → ∞, and C will always denote some

constant independent of β, ε and N . Multiplying the equation (3.4.4) by ϕn

and then summing over 1 � |n| � N , we have

1

2

d

dt

∫
Ω

|uN |2dx+ ε
∫
Ω

|∇uN |2dx = 0,

which yields by integrating over [0, t] that ‖uN(t)‖2 � C for all t ∈ [0, T ].

Similar to (3.4.3), we have

β‖∇uN (t)‖22 + ‖(−Δ)α/2uN (t)‖22 � C, ∀t ∈ [0, T ],

and

βε

∫ T

0

‖ΔuN‖22dt � C.

The estimates of ‖uNt‖2 can also be obtained from (3.4.4). Let ε and β

be fixed, and denote QT = Ω × (0, T ), then in view of the above bounded

estimates, we have in the sense of a subsequence that

ΔuN → Δuβ,ε weakly in L2(QT )

uN → uβ,ε weakly * in L∞(0, T ;H1
per(Ω))

uN → uβ,ε weakly and strongly in L2(QT ) and a.e.

uNt → uβ,εt weakly in L2(QT ).

Letting N → ∞, then for any Fourier series ψ and smooth function ϕ ∈
C∞[0, T ], there holds∫

QT

uβ,εt · ψϕdxdt =
∫
QT

[
uβ,ε

max{1, |uβ,ε|} × (−Δ)αuβ,ε · ψϕ

− β uβ,ε

max{1, |uβ,ε|} ×Δuβ,ε · ψϕ+ εΔuβ,ε · ψϕ
]
dxdt.

It follows from density argument that for any φ ∈ L2(QT ),∫
QT

uβ,εt · φdxdt =
∫
QT

[
uβ,ε

max{1, |uβ,ε|} × (−Δ)αuβ,ε · φ

− β uβ,ε

max{1, |uβ,ε|} ×Δuβ,ε · φ+ εΔuβ,ε · φ
]
dxdt.

(3.4.5)
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Lemma 3.4.2 If uβ,ε satisfies (3.4.5), then |uβ,ε| � 1 for a.e. (x, t) ∈
Ω× (0, T ).

Proof We choose φ = uβ,ε −min{1, |uβ,ε|} u
β,ε

|uβ,ε| in (3.4.5) to get

1

2

d

dt

∫
|uβ,ε|�1

|uβ,ε|2
(
1− 1

|uβ,ε|
)
dx =

1

2

∫
|uβ,ε|�1

uβ,ε · ∂tuβ,ε
|uβ,ε| dx

−ε
∫
|uβ,ε|�1

|uβ,ε · ∇uβ,ε|2
|uβ,ε|3 dx− ε

∫
|uβ,ε|�1

|∇uβ,ε|2
(
1− 1

|uβ,ε|
)
dx.

Choose
χuβ,ε

|uβ,ε| as the test function, then

1

2

∫
|uβ,ε|�1

uβ,ε · ∂tuβ,ε
|uβ,ε| dx =

ε

2

∫
|uβ,ε|�1

|uβ,ε · ∇uβ,ε|2
|uβ,ε|3 dx

−ε
2

∫
|uβ,ε|�1

|∇uβ,ε|2
|uβ,ε| dx+

∫
|uβ,ε|=1

∂uβ,ε

∂n
· uβ,εdS,

where χ is the characteristic function of the set {|uβ,ε| � 1}. Since
∂uβ,ε

∂n
·

uβ,ε =
1

2

|∂uβ,ε|
∂n

� 0 on the boundary {|uβ,ε| = 1}, then it follows that

1

2

d

dt

∫
|uβ,ε|�1

|uβ,ε|2
(
1− 1

|uβ,ε|
)
dx � 0,

which implies that |uβ,ε| � 1 for a.e. x ∈ Ω× (0, T ).

Let β be fixed and ε→ 0, then (3.4.3) allows us to choose a subsequence

from {uβ,ε} such that uβ,ε → uβ weakly * in L∞(0, T ;H1(Ω)). We will show

that

|uβ | = 1, a.e. in Ω× (0, T ). (3.4.6)

In fact, for any t > 0, it is easy to know∫
Ω

|uβ,ε(t)|2dx−
∫
Ω

|uβ,ε(0)|2dx+ ε
∫ t

0

∫
Ω

|∇uβ,ε|2dxdt = 0.

Letting ε → 0, then uβ,ε → uβ strongly in L2(Ω). Furthermore, since

‖∇uβ,ε‖2 is uniformly bounded and |uβ,ε(0)| = 1 always holds, letting ε→ 0

yields

∫
Ω

|uβ(t)|2 − 1dx = 0, from which it follows (3.4.6) thanks to Lemma

3.4.2
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We now consider the limit of (3.4.5) as ε → 0. Let β be fixed, then for

any φ ∈ C∞(Q̄T ), φ with φ(·, T ) = 0, then∫
QT

uβ,εt ·φdxdt =
∫
QT

[uβ,ε×(−Δ)αuβ,ε·φ−βuβ,ε×Δuβ,ε·φ+εΔuβ,ε·φ]dxdt.
(3.4.7)

The term on the left hand side can be written as

−
∫
QT

uβ,ε · φtdxdt −
∫
Ω

uβ,ε(0) · φ(·, 0)dx,

which converges to

−
∫
QT

uβ · φtdxdt−
∫
Ω

u0 · φ(·, 0)dx, (3.4.8)

as ε→ 0. For the second term on the right of (3.4.7), we have

−
∫
QT

βuβ,ε ×Δuβ,ε · φdxdt =
∫
QT

βuβ,ε ×∇uβ,ε ·∇φdxdt

→
∫
QT

βuβ ×∇uβ ·∇φdxdt,
(3.4.9)

as ε→ 0. Similarly, the last term in (3.4.7) converges to 0.

Next we consider the limit when β → 0. According to the a priori esti-

mates (3.4.3), there is a subsequence {uβ} such that

uβ → u weakly * in L∞(0, T ;Hα
per(Ω));

uβ → u strongly in L2(QT ),

and β‖∇uβ‖22 � C. Then if β → 0, (3.4.8) converges to

−
∫
QT

u · φtdxdt−
∫
Ω

u0 · φ(·, 0)dx.

For (3.4.9), using Cauchy inequality, we have∣∣∣∣∫
QT

βuβ ×∇uβ ·∇φdxdt
∣∣∣∣ �√β ∫

QT

|
√
β∇uβ ||∇φ|dxdt,

which converges to 0 as β → 0.

Next we consider the convergence of the first term on the right of (3.4.7).
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First of all, change this term into the form∫
Ω

uβ,ε × (−Δ)αuβ,ε · φdx

=−
∫
Ω

uβ,ε × φ · (−Δ)αuβ,εdx

=−
∫
Ω

(−Δ)α/2(uβ,ε × φ) · (−Δ)α/2uβ,εdx

=

∫
Ω

[
(−Δ)α/2(uβ,ε × φ)− (−Δ)α/2uβ,ε × φ

]
· (−Δ)α/2uβ,εdx =: Iβ,ε.

Define Lu := (−Δ)α/2(uφ)− (−Δ)α/2uφ, then by the following Proposition

3.4.1 L : Hα
per → L2(Ω) is compact. Therefore, we have from (3.4.3) that

lim
β→0

lim
ε→0
Iβ,ε =

∫
Ω

[
(−Δ)α/2(u× φ) − (−Δ)α/2u× φ

]
· (−Δ)α/2udx

=

∫
Ω

(−Δ)α/2(u× φ) · (−Δ)α/2udx.

Then the proof of Theorem 3.4.1 is complete.

Proposition 3.4.1 Operator L : Hα
per(Ω)→ L2(Ω) is compact.

Proof It suffices to prove that L : Hα
per(Ω) → Hα

per(Ω) is a bounded linear

operator, since Hα
per(Ω) is compactly embedded into L2(Ω). Obviously, by

definition,

‖(−Δ)α/2(uφ)‖2L2 = (2π)α
∑
n∈Zd

|n|2α|ûφ(n)|2,

and

‖(−Δ)α/2uφ‖L2 � C‖u‖Hα
per
.

Since ûφ(n) =
∑

n1+n2=n

û(n1)φ̂(n2) and |n1 + n2|α � C(|n1|α + |n2|α), then

|n|α|ûφ(n)| �|n|α
∑

n1+n2=n

|û(n1)||φ̂(n2)|

�C

( ∑
n1+n2=n

|n1|α|û(n1)||φ̂(n2)|+
∑

n1+n2=n

|û(n1)||n2|α|φ̂(n2)|
)
.

Applying the discrete Young’s inequality, we have

‖(−Δ)α/2(uφ)‖2L2 � C(‖(−Δ)α/2u‖2‖φ‖21 + ‖u‖22‖(−Δ)α/2φ‖21).

We need also to estimate ‖(−Δ)α/2(Lu)‖L2 . By definition, it suffices to prove

that {|n|αL̂u(n)} ∈ l2. As u ∼
∑
n

û(n)e2πin·x and φ ∼
∑
n

φ̂(n)e2πin·x, then
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uφ ∼
∑
n

∑
n1+n2=n

û(n1)φ̂(n2)e
2πin·x. By definition of Lu, we have

L̂u(n) =
∑

n1+n2=n

|n|αû(n1)φ̂(n2)−
∑

n1+n2=n

|n1|αû(n1)φ̂(n2),

yielding

|L̂u(n)| �
∑

n1+n2=n

|n2|α|û(n1)||φ̂(n2)|,

and

|n|αL̂u(n) �
∑

n1+n2=n

|n1|α|û(n1)||n2|α|φ̂(n2)|+
∑

n1+n2=n

|û(n1)||n2|2α|φ̂(n2)|.

Applying the discrete Young’s inequality again, we obtain

‖(−Δ)α/2Lu‖2L2 � ‖(−Δ)α/2u‖22‖(−Δ)α/2φ‖21 + ‖u‖22‖(−Δ)αφ‖21,

completing the proof.

3.4.2 Ginzburg-Landau approximation and asymptotic limit

In this section, we consider the Ginzburg-Landau approximation of the frac-

tional Landau-Lifshitz equation and the limits when the coefficients tend to

zero, {
∂tu = νu × Λ2αu+ μu× (u× Λ2αu),

u(0) = u0 and |u0(x)| = 1, a.e. x ∈ Ω,
(3.4.10)

where α ∈ (1/2, 1) and u = (u1, u2, u3) is the magnetization vector, Λ =

(−Δ)1/2 represents fractional Laplace operator. For convenience, we let Ω =

[0, 2π] be the one dimensional periodic domain, ν ∈ R and μ � 0 are physical

parameters. Let QT = (0, T )× Ω.

When α = 1, (3.4.10) reduces to the classical Landau-Lifshitz equation

∂tu = −νu×Δu− μu× (u×Δu).

The equation was first proposed by Landau and Lifshitz [128], which was used

to study the dispersion theory of permeability for ferromagnetic materials,

then it was widely studied [102]. When ν = 0, α = 1, equation (3.4.10)

reduces to the heat flow of harmonic maps [133]

ut = μΔu + μ|∇u|2u.

When α = 1, ν = −1 and μ = 0, (3.4.10) reduces to the Schrodinger flow on

the unit sphere, and was extensively studied [41, 173]. For this reason, when
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ν = 0, equation (3.4.10) is also called the fractional heat flow for harmonic

maps. If μ = 0, equation (3.4.10) reduces to the fractional Heisenberg equa-

tion [210]. It is easy to see, if |u0(x)| = 1, then |u(t, x)| = 1 for any t � 0

and hence (3.4.10) is equivalent to the following Gilbert equation [91]

ut =
ν2 + μ2

ν
u× Λ2αu+

μ

ν
u× ut. (3.4.11)

The weak solution of this equation can be defined as follows.

Definition 3.4.1 Let u0 ∈ Hα, |u0| = 1 a.e., u = (u1, u2, u3) is called a

weak solution of (3.4.11) if

(i) for any T > 0, u ∈ L∞(0, T ;Hα(Ω)), ut ∈ L2(QT ) and |u| = 1 a.e.;

(ii) for any three-dimensional vector ϕ ∈ L2(0, T ;Hα(Ω)), there holds

μ

ν

∫
QT

(
u× ∂u

∂t

)
· ϕdxdt −

∫
QT

∂u

∂t
· ϕdxdt

=
ν2 + μ2

ν

∫
QT

Λαu · Λα(u× ϕ)dxdt;
(3.4.12)

(iii) u(0, x) = u0(x) in the trace sense;

(iv) for any T > 0, there holds∫
Ω

|Λαu(T )|2dx+ 2μ

1 + μ2

∫
QT

|∂u
∂t
|2dxdt �

∫
Ω

|Λαu0|2dx. (3.4.13)

One of the main results in this section states that there exists at least

one weak solution to the fractional Landau-Lifshitz equation, see Theorem

3.4.2. Since (3.4.10) is similar to the harmonic map heat flow equation but

with one more nonlinear term u × Λαu, we generalize Chen’s idea in [44] to

the fractional case, where she proved the existence of weak solutions to the

heat flow of harmonic maps by Ginzburg-Landau approximation. But since

λα is a nonlocal operator, more is involved in the fractional case and the

fractional calculus inequalities in Theorem 2.2.14 will play a critical role in

the convergence of approximate solutions.

The fractional calculus inequality itself is not sufficient for the conver-

gence, since the equation does not have any commutator structure or the

divergence free condition as in the quasi-geostrophic equation in the sub-

sequent sections. However, noting that cross product a × b of two three

dimensional vectors is vertical to each of its components, we can introduce a

commutator structure to get the convergence. The details are presented in

the following and the commutator is defined as

[Λα, ϕ]u := Λα(ϕ× u)− ϕ× Λαu.
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Another aspect of this paper concerns the limiting behaviors as the Gilbert

parameter μ varies. Formally, as μ → 0, (3.4.10) tends to the fractional

Heisenberg equation and as ν → ∞, the solution of (3.4.10) tends to the

weak solution of the fractional heat flow of harmonic maps after a scale

transform. These observations will be justifies in this section, see Theorem

3.4.3 and Theorem 3.4.4 for detailed statements. All these results can be

generalized to the case α = 1, which is established in Guo-Ding [102] and

Alougest-Soyeur [10].

If not specified, Ḣα(Ω) denotes the homogeneous fractional Sobolev space

and Hα(Ω) denotes the inhomogeneous one. The product functional spaces

(X)3 are all simplified to X . For example, (L∞(0, T ;Hα(Ω)))3 is simplified

to L∞(0, T ;Hα(Ω)).

Now we prove the existence of global weak solutions to the 1D periodic

fractional Landau-Lifshitz equation (3.4.10). For simplicity we let ν = 1,

which will not affect the result essentially. We will prove the following.

Theorem 3.4.2 Let α ∈ (1/2, 1) and u0 ∈ Hα such that |u0| = 1, a.e..

Then there exists at least a weak solution for the fractional Landau-Lifshitz

equation in the sense of Definition 3.4.1.

What follows focuses on the proof of this theorem. Before we doing so,

we introduce a compact lemma due to Simon [201].

Lemma 3.4.3 Assume B0, B,B1 are three Banach spaces and satisfy B0 ⊂
B ⊂ B1 with compact embedding B0 ↪→ B. LetW be bounded in L∞(0, T ;B0)

and Wt := {wt;w ∈ W} be bounded in Lq(0, T ;B1) where q > 1. Then W is

relatively compact in C([0, T ];B).

The proof can be found in Simon [201, Corollary 4, P.85]. Note that this

lemma is an extension of the Aubin’s compactness result, see [13, 135] for

details. One may see also Theorem 3.2.7.

Inspired by Chen’s work on the heat flow of harmonic maps, we consider

the following Ginzburg-Landau approximation problem for uε

μ
∂uε
∂t

+ uε × ∂uε
∂t

+ (1 + μ2)

(
Λ2αuε − 1

ε2
(1 − |uε|2)uε

)
= 0. (3.4.14)

Let {wi}i∈N be a complete orthonormal basis of L2(Ω) consisting of eigen-

vectors of Λ2α

Λ2αwj = κjwj , j = 1, 2, · · · (3.4.15)
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under periodic boundary conditions. The existence of such a basis can be

proved as in Temam [213, §.2,Ch.II]. For fixed ε > 0, we seek approximate

solutions {uN (t, x)} for equation (3.4.14) of the form

uN(t, x) =

N∑
i=1

ϕi(t)wi(x),

where ϕi are R3-valued vectors, such that for 1 � i � n there holds

μ

∫
Ω

∂uN
∂t
wi+

∫
Ω

uN × ∂uN
∂t
wi + (1 + μ2)

∫
Ω

Λ2αuNwi

−1 + μ2

ε2

∫
Ω

(|uN |2 − 1)uNwi = 0, 1 � i � n

(3.4.16)

with initial conditions ∫
Ω

uN (0)wi =

∫
Ω

u0wi

hold.

Since the coefficient matrix “μ+uN×” before
∂uN
∂t

is anti-symmetric and

hence invertible, from the standard ODE theory, there exists a local solution

to the system (3.4.16) for {ϕi}Ni=1. In the following, we make some a priori

estimates to show these solutions exist at least on a common interval [0, T ].

Multiplying the equality (3.4.16) by
dϕi

dt
and summing over 1 � i � n lead

to

μ

1 + μ2

∫
Ω

|∂uN
∂t
|2dx+ 1

2

d

dt

∫
Ω

|ΛαuN |2dx+ 1

4ε2
d

dt

∫
Ω

(|uN |2 − 1)2dx = 0.

Then integrating the resulting equality over [0, T ] leads to

1

2

∫
Ω

|ΛαuN (T )|2dx+ 1

4ε2

∫
Ω

(|uN |2 − 1)2(T )dx+
μ

1 + μ2

∫
QT

|∂uN
∂t
|2dxdt

=
1

2

∫
Ω

|ΛαuN0|2dx+ 1

4ε2

∫
Ω

(|uN0|2 − 1)2dx, ∀t ∈ [0, T ].

(3.4.17)

Since α ∈ (1/2, 1) and Hα(Ω) ↪→ L4(Ω), the right hand side is uniformly

bounded. Furthermore, by Young’s inequality∫
Ω

|uN |2dx � C +
1

2

∫
Ω

(|uN |2 − 1)2dx, (3.4.18)

therefore for fixed ε > 0, there holds

{uN} is bounded inL∞(0, T ;Hα(Ω));

{∂uN
∂t
} is bounded in L2(0, T ;L2(Ω));

{|uN |2 − 1} is bounded in L∞(0, T ;L2(Ω)).
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These estimates imply that the solution can be extended to all time, and

we can extract a subsequence (still denoted as {uN(t)}) such that for any

1 < p <∞
uN → uε weakly in Lp(0, T ;Hα(Ω));

uN → uε strongly in C([0, T ];Hβ(Ω)) and a.e. for 0 � β < α;

∂uN
∂t
→ ∂uε

∂t
weakly in L2(0, T ;L2(Ω));

|uN |2 − 1→ ζ weakly in Lp(0, T ;L2(Ω)).

The second convergence is due to Lemma 3.4.3. On the other hand, since

uN → uε a.e., it can be shown from [135, Lem1.3, Chap.1] that ζ = |uε|2− 1.

Taking N → ∞ in (3.4.16), we find a weak solution uε for the approximate

problem (3.4.14), i.e., there holds

μ

∫
QT

∂uε
∂t
φ+

∫
ΩT

uε × ∂uε
∂t
φ+ (1 + μ2)

∫
QT

ΛαuεΛ
αφ

−1 + μ2

ε2

∫
QT

(|uε|2 − 1)uεφ = 0,

(3.4.19)

for any φ ∈ L2(0, T ;Hα). Furthermore, passing N →∞ in (3.4.17), by Fatou

lemma we have

1

2

∫
Ω

|Λαuε(T )|2dx+ 1

4ε2

∫
Ω

(|uε|2 − 1)2(T )dx+
μ

1 + μ2

∫
QT

∣∣∣∣∂uε∂t
∣∣∣∣2dxdt

�
1

2

∫
Ω

|Λαu0|2dx, ∀t ∈ [0, T ].

(3.4.20)

In the following, we let ε→ 0. From (3.4.20) and a similar inequality that

leads to (3.4.18), we have

{uε} is bounded in L∞(0, T ;Hα(Ω));{
∂uε
∂t

}
is bounded in L2(0, T ;L2(Ω));

{|uε|2 − 1} is bounded in L∞(0, T ;L2(Ω)).

Therefore, we can select a subsequence (still denoted as uε) such that for any

1 < p <∞ and for any 0 � β < α

uε → u weakly in Lp(0, T ;Hα(Ω));

uε → u strongly in C([0, T ];Hβ(Ω)) and a.e.,

∂uε
∂t
→ ∂u

∂t
weakly in L2(0, T ;L2(Ω));

|uε|2 − 1→ 0 strongly in Lp(0, T ;L2(Ω)) and a.e..
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It can be shown from the last convergence that |u| = 1, a.e.. On the other

hand, since Hα(Ω) ↪→ L∞(Ω), by Sobolev embedding inequality we have

uε is bounded in L
∞(QT ), i.e. |uε| � C (3.4.21)

for some constant C depending only on the initial data and the Sobolev

constant. In order to pass to the limit, we let ϕ ∈ C∞([0, T ] × Ω) and

φ = uε × ϕ in (3.4.19). Applying the multiplicative estimates to uε and ϕ

‖Λα(uε × ϕ)‖L2 � C(‖uε‖L∞‖ϕ‖Ḣα,2 + ‖uε‖Ḣα,2‖ϕ‖L∞),

it can be shown φ ∈ L2(0, T ;Hα(Ω)) (where L2(0, T ;L2(Ω))-norm is obvi-

ous), and hence

− μ
∫
QT

(
uε × ∂uε

∂t

)
· ϕ+

∫
QT

|uε|2 ∂uε
∂t
· ϕ

−
∫
QT

(
uε · ∂uε

∂t

)
uε · ϕ+ (1 + μ2)

∫
QT

Λαuε · Λα(uε × ϕ) = 0.

(3.4.22)

Taking ε→ 0, it can be shown that∫
QT

|uε|2 ∂uε
∂t
· ϕ =

∫
QT

(|uε|2 − 1)
∂uε
∂t
· ϕ+

∫
QT

∂uε
∂t
· ϕ

→
∫
QT

∂u

∂t
· ϕ,

thanks to the strong convergence of |uε|2 − 1 to zero. For the third term, we

have∫
QT

(
uε · ∂uε

∂t

)
uε · ϕ−

∫
QT

u · ∂u
∂t
u · ϕ =

∫
QT

(
uε · ∂uε

∂t

)
(uε − u) · ϕ

+

∫
QT

(
uε ·

(
∂uε
∂t
− ∂u
∂t

)
u · ϕ

+

∫
QT

(uε − u) · ∂u
∂t
u · ϕ

→0.

Finally, we consider the convergence of the last term in (3.4.22). This is by no

means obvious since we encounter the fractional order derivatives and for this

reason, the commutator estimate will be resorted to. Let Iε = −
∫
QT

Λαuε ·

Λα(uε × ϕ) and accordingly I = −
∫
QT

Λαu · Λα(u × ϕ). Since

∫
QT

Λαuε ·
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Λαuε × ϕ =

∫
QT

Λαu · Λαu× ϕ = 0, we have

Iε =
∫
QT

Λαuε · [Λα, ϕ]uε

and

I =

∫
QT

Λαu · [Λα, ϕ]u.

Now, using commutator estimate, it is shown

‖[Λα, ϕ](uε−u)‖L2(Ω) � C(‖∇ϕ‖Lp1‖uε−u‖Ḣα−1,p2 + ‖ϕ‖Ḣα,p3 ‖uε−u‖Lp4 ).

Taking p1 =
1

1− α, p2 =
2

2α− 1
and for any p3, p4 ∈ (2,∞), we have

‖[Λα, ϕ](uε − u)‖L2(QT ) �C(‖∇ϕ‖L∞(0,T ;Lp1(Ω))‖uε − u‖L2(QT )

+ ‖ϕ‖L∞(0,T ;Ḣα,p3 (Ω))‖uε − u‖L2(0,T ;Hβ(Ω)))

→0,

by the strong convergence of uε to u in L2(QT ) and in L2(0, T ;Hβ(Ω)),

where β =
1

2
− 1

p4
<

1

2
< α. On the other hand, following exactly the same

commutator estimate, one can show that [Λα, ϕ]u ∈ L2(QT ). Therefore,

Iε − I =

∫
QT

Λαuε · [Λα, ϕ](uε − u) +
∫
QT

Λα(uε − u) · [Λα, ϕ]u→ 0,

since uε is bounded in L2(0, T ;Hα(Ω)) and converges to u weakly in L2(0, T ;

Hα(Ω)). This verifies the convergence of the last term in (3.4.22). Taking

ε→ 0, we have

μ

∫
QT

(
u× ∂u

∂t

)
· ϕdxdt −

∫
QT

∂u

∂t
· ϕdxdt

=(1 + μ2)

∫
QT

Λαu · Λα(u× ϕ)dxdt,

and this relation holds for ϕ ∈ L2(0, T ;Hα(Ω)) by a standard density argu-

ment. Furthermore, the inequality (3.4.13) holds from estimates (3.4.20) and

we finish the proof of Theorem 3.4.2.

Remark 3.4.1 For technical reasons, the above analysis is confined to the

1-D case due to Sobolev embedding inequality in (3.4.21). Similar result is ob-

tained through an auxiliary function g for the classical Landau-Lifshitz equa-

tion. See [10, pp.1079], but whose analysis breaks down in the fractional

case.
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Remark 3.4.2 When α = 1, it can be shown that |uε| � 1, see [10]. We

would also like to mention that the advantage of the Ginzburg-Landau approx-

imation lies in the fact that it can be shown |u| = 1 through the approximating

process, which is difficulty to be accomplished by the usual Galerkin method.

Remark 3.4.3 When μ = 0, by means of the Galerkin approximation, we

can show that there exists at least a global weak solution for the fractional

Heisenberg equation such that for all ϕ ∈ L2(0, T ;Hα(Ω)) there holds∫
QT

∂u

∂t
· ϕdxdt+ ν

∫
QT

Λαu · Λα(u × ϕ)dxdt = 0. (3.4.23)

On the other hand, it can be shown following the same steps as above that

when ν = 0, there exists a global weak solution for the fractional harmonic

map heat flow such that for all ϕ ∈ L2(0, T ;Hα(Ω)), the following equality

holds ∫
QT

(
u× ∂u

∂t

)
· ϕdxdt− μ

∫
QT

Λαu · Λα(u× ϕ)dxdt = 0. (3.4.24)

In what follows, we discuss the relationships between the fractional Landau-

Lifshitz equation and the fractional Heisenberg equation or the generalized

fractional heat flow of harmonic maps. We will prove the following two the-

orems.

Theorem 3.4.3 Let μ → 0, the weak solution obtained in Sect. 3 weakly

converges, up to a subsequence, to a solution of the fractional Heisenburg

equation in the sense of (3.4.23).

Proof From the inequality (3.4.13), we know that uμ is uniformly bounded in

Lp(0, T ;Hα) for any 1 � p �∞, and
√
μ
∂uμ

∂t
is bounded in L2(0, T ;L2(Ω)).

By the calculus inequalities, we have

‖Λα(uμ × ϕ)‖ �C(‖Λαϕ‖+ ‖Λαuμ‖‖ϕ‖L∞(Ω))

�C(1 + ‖Λαuμ‖)‖ϕ‖Hα .

Therefore from (3.4.10)∣∣∣∣ ∫
QT

∂uμ

∂t
· ϕ
∣∣∣∣ �C√μ‖ϕ‖L2(QT )

+ C(1 + μ2)(1 + ‖Λαu0‖)‖Λαuμ‖L2(QT )‖ϕ‖L2(0,T ;Hα(Ω))

�C(1 + μ2)‖ϕ‖L2(0,T ;Hα(Ω)),

and hence

{
∂uμ

∂t

}
is bounded uniformly in L2(0, T ;H−α(Ω)) as far as μ � 1.

We can then extract a subsequence (if necessary) such that for any −α �
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β < α and for any 1 < p <∞ there hold

uμ → u weakly in Lp(0, T ;Hα(Ω));

uμ → u strongly in C([0, T ];Hβ(Ω)).

Passing to the limit μ→ 0 and taking advantage of the commutator estimate,

we then find a weak solution of the fractional Heisenberg equation as a limit

of uμ in the sense of (3.4.23) and Theorem 3.4.3 is proved.

Theorem 3.4.4 Let uμ be weak solutions for the fractional Landau-Lifshitz

equation and ũμ(t, x) = uμ(t/μ, x). Then as μ → ∞, ũμ weakly converges,

up to a subsequence, to a solution of the fractional heat flow of harmonic map

equation in the sense of (3.4.24).

Proof Taking the scale transform ũμ(t, x) = uμ(t/μ, x), we have from (3.4.12)

that ∫
QT

(
ũμ × ∂ũ

μ

∂t

)
· ϕdxdt − 1

μ

∫
QT

∂ũμ

∂t
· ϕdxdt

=
1 + μ2

μ2

∫
QT

Λαũμ · Λα(ũμ × ϕ)dxdt.
(3.4.25)

Furthermore, we have the energy inequality∫
Ω

|Λαũμ(T )|2dx+ 2μ2

1 + μ2

∫
QT

∣∣∣∣∂ũμ∂t
∣∣∣∣2dxdt � ∫

Ω

|Λαu0|2dx.

Therefore,

{
∂ũμ

∂t

}
is uniformly bounded in μ in L2(QT ) as soon as μ > 1.

We can then extract a subsequence if necessary such that for any 1 < p <∞
and for any 0 � β < α there hold

ũμ → ũ weakly in Lp(0, T ;Hα(Ω));

ũμ → ũ strongly in C([0, T ];Hβ(Ω)) and a.e.;

∂ũμ

∂t
→ ∂ũ

∂t
weakly in L2(0, T ;L2(Ω)).

Taking μ→∞ in (3.4.25) and taking advantage of the commutator estimate,

we find that up to a subsequence, weak solutions for the fractional Landau-

Lifshitz equation weakly converge as μ → ∞ to a weak solution for the

fractional heat flow of harmonic map equation in the sense of (3.4.24).

3.4.3 Higher dimensional case—Galerkin approximation

Now, we consider the fractional Landau-Lifshitz equation in higher dimen-

sions {
ut = γu× Λ2αu+ λu × (u× Λ2αu)

u(0) = u0 ∈ Hα,
(3.4.26)
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where u(x, t) is still a three-dimensional vector, representing the magnetiza-

tion vector of ferromagnetic materials, γ, λ � 0 and α ∈ (0, 1) are real num-

bers. In the section, we still discuss the spatial periodic case as Ω = [0, 2π]d

and d = 2, 3. Let QT = (0, T ) × Ω. When γ = 0, equation (3.4.26) is the

fractional heat flow of harmonic maps

ut = λu × (u× Λ2αu). (3.4.27)

In what follows, we discuss the existence of global weak solutions of

(3.4.26) and (3.4.27). We first make clear what we mean by a weak solu-

tion.

Definition 3.4.2 Let u0 ∈ Hα, |u0| = 1 a.e., we say that u is a weak

solution of equation (3.4.26) if

(i) for all T > 0, u ∈ L∞(0, T ;Hα(Ω));

(ii) for all ϕ ∈ C∞(QT ), there holds when λ = 0∫
QT

∂u

∂t
· ϕ = −γ

∫
QT

Λαu · Λα(u× ϕ)dxdt (3.4.28)

where QT = (0, T )× Ω; or when λ > 0∫
QT

∂u

∂t
·ϕ = γ

∫
QT

(u×Λ2αu)·ϕdxdt−
∫
QT

λ(u×Λ2αu)·(u×ϕ)dxdt. (3.4.29)

When λ > 0, we will show below that u × Λ2αu makes sense in L2(QT ),

and for this reason, it will be clear that (3.4.29) makes sense.

Definition 3.4.3 Let u0 ∈ Hα, |u0| = 1 a.e., we say that u is a weak

solution of equation (3.4.27) if

(i) for all T > 0, u ∈ L∞(0, T ;Hα(Ω)), ∂tu ∈ L2(0,+∞;L2(Ω)) and

|u| = 1 a.e.;

(ii) for all ϕ ∈ C∞(QT ), there holds∫
QT

(
u× ∂u

∂t

)
· ϕ = λ

∫
QT

Λαu · Λα(u× ϕ)dxdt; (3.4.30)

(iii) u(0, x) = u0(x) in the trace sense;

(iv) for all T > 0, there holds∫
Ω

|Λαu(T )|2dx+ 2

λ

∫
QT

∣∣∣∣∂u∂t
∣∣∣∣2dxdt � ∫

Ω

|Λαu0|2dx.

This definition fully utilize the condition that u stays on the unit sphere

as time evolves, and the readers are referred to Lemma 3.4.8 to see why we

define a weak solution by the identity (3.4.30).
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Consider the eigenvalue problem{
Λ2αu = νu,

with periodic boundary conditions.
(3.4.31)

Since Λ−2α is a compact self-adjoint operator in L2(Ω), there exists a com-

plete orthonormal family of L2(Ω), {wj}j∈N, made of eigenvectors of Λ−2α

Λ−2αwj = μjwj , ∀j ∈ N,

where the sequence μj is decreasing and tends to 0. It is clear that wj ∈
D(Λ2α) for all j ∈ N, and setting νj = μ

−1
j we obtain{

Λ2αwj = νjwj , j = 1, 2 · · ·
0 < ν1 � ν2 � · · · , νj →∞ (as j →∞).

The family {wj} satisfies{
(wj , wk) = δjk, the Kronecker symbol,

〈Λ2αwj , wk〉 = νjδjk, ∀j, k.

What follows is dedicated to constructing the global weak solutions for

(3.4.26) via the Galerkin method. In particular, the following global existence

theorem for the fractional Landau-Lifshitz-Gilbert equation (3.4.26) will be

proved. We set γ = 1 in the following.

Theorem 3.4.5 Let α ∈ (0, 1). Then for all u0 ∈ Hα(Ω), |u0| = 1 a.e.,

there exists at least a weak solution for the fractional Landau-Lifshitz-Gilbert

equation (3.4.26) such that

(i) when λ = 0,

u(x, t) ∈ L∞(0, T ;Hα(Ω))
⋂
C0, α

α+s (0, T ;L2(Ω))

where s > α+
d

2
;

(ii) when λ > 0,

u(x, t) ∈ L∞(0, T ;Hα(Ω))
⋂
C0, r−1

r (0, T ;Lr(Ω)),

where r < 2 and 1 � r � r∗ =
d

d− α , or r = 2, d = 1, and α > 1/2.

The proof of this theorem is divided into two major parts. First, we show

some a priori estimates, and then some compactness arguments which insure

the existence of global weak solutions.
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Let {wn(x)}∞n=1 be the normalized eigenfunctions of (3.4.31), and let

λ1, λ2, · · · be the corresponding eigenvalues. Then {wn} are smooth over

Ω and form a basis of Hα(Ω). Define the orthogonal projection

PN : Hα(Ω)→ SN := span{w1, w2, · · · , wN} ⊂ Hα(Ω).

We look for approximate solutions {uN(t, x)} for equation (3.4.26) under the

form

uN (t, x) =

N∑
s=1

ϕsN (t)ws(x),

where ϕsN are three dimensional vector valued functions and are chosen such

that∫
Ω

∂uN
∂t
·ws−

∫
Ω

uN×Λ2αuN ·ws−λ
∫
Ω

uN×(uN×Λ2αuN)·ws = 0, 1 � s � N

(3.4.32)

with the initial conditions∫
Ω

uN(x, 0) · ws(x) =

∫
Ω

u0(x) · ws(x), 1 � s � N. (3.4.33)

The local in time existence of solutions

(ϕ1
sN , ϕ

2
sN , ϕ

3
sN ), 1 � s � N

to problem (3.4.32)-(3.4.33) follows from the standard Picard’s theorem,

which can be found in a standard ODE textbook. In order to take the

limit N →∞, we need to make sure that all the functions ϕsN are defined at

least in a common interval [0, T ], and this is a consequence of the following

lemmas.

Lemma 3.4.4 Let u0 ∈ Hα(Ω). Then for any 0 < T <∞, for the solutions

uN to the approximating system (3.4.32)-(3.4.33), there holds the estimate

sup
0�t�T

‖uN‖2Hα + λ

∫ T

0

‖uN × Λ2αuN‖2L2dt � K1. (3.4.34)

If p <∞ and 2 � p � p∗ =
2d

d− 2α
, or p =∞, d = 1 and α >

1

2
, then there

holds

sup
0�t�T

‖uN‖2Lp � CK1.

Furthermore, for r < 2 and 1 � r � r∗ =
d

d− α , or r = 2, d = 1 and α >
1

2
,

there holds

‖uN × ΛαuN‖Lr(Ω) � CK2.

In particular, the constants C,K1 and K2 are independent of N .
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Proof Multiplying the equation (3.4.32) with ϕsN and summing up the re-

sulting product for s = 1, 2, · · · , N , we have

d

dt

∫
Ω

|uN (x, t)|2dx = 0.

Then we have

‖uN‖2L2(Ω) � ‖Pu0‖2L2(Ω) � K0, (3.4.35)

where K0 depends only on the initial data ‖u0‖L2(Ω) and is independent of

N . Multiplying the equation (3.4.32) with νsϕsN and summing up to N , we

have ∫
Ω

∂uN
∂t
· Λ2αuN − λ

∫
Ω

uN × (uN × Λ2αuN ) · Λ2αuN = 0,

i.e.
1

2

d

dt

∫
Ω

|ΛαuN |2 + λ
∫
Ω

|uN × Λ2αuN |2 = 0.

Integrating over [0, T ], we have

sup
0�t�T

‖ΛαuN (t)‖2L2(Ω) + λ‖uN × Λ2αuN‖2L2(0,T ;L2(Ω)) � K1, (3.4.36)

where the constant K1 depends only on the initial data ‖Λαu0‖L2(Ω). By

Sobolev embedding, we have for any p <∞ such that 2 � p � p∗ =
2d

d− 2α
,

there holds

sup
0�t�T

‖uN(t)‖Lp(Ω) � CK1.

In particular, when d = 1, there holds for any α > 1/2 that

sup
0�t�T

‖uN(t)‖L∞(Ω) � CK1. (3.4.37)

Finally, by Hölder inequality, for r < 2 such that 1 � r � r∗ there holds(∫
Ω

|uN × ΛαuN |rdx
)1/r

�

(∫
Ω

|ΛαuN |2dx
)1/2(∫

Ω

|uN | 2r
2−r dx

) 2−r
2r

,

(3.4.38)

where r∗ =
d

d− α . In this case, since
2r

2− r � p∗ for r � r∗, we have

{uN × ΛαuN}N�1 are uniformly bounded in Lr(Ω). (3.4.39)

On the other hand, when r = 2, from the Hölder inequality and inequality

(3.4.37) there holds(∫
Ω

|uN × ΛαuN |2dx
)1/2

� |uN |L∞(Ω)

(∫
Ω

|ΛαuN |2dx
)1/2

,

for d = 1 and α > 1/2. In particular, all these constants are independent of

N .
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Lemma 3.4.5 Let uN be solutions for (3.4.32). Then under the conditions

of Lemma 3.4.4, there hold the following estimates

(i) when λ = 0,

sup
0�t�T

∥∥∥∥∂uN∂t
∥∥∥∥
H−s(Ω)

� K2, ∀s > α+
d

2
; (3.4.40)

(ii) when λ > 0, for r as in Lemma 3.4.4,∥∥∥∥∂uN∂t
∥∥∥∥
Lr(QT )

� K3, (3.4.41)

where the constants K2,K3 are independent of N .

Proof Consider the case λ = 0. For any three dimensional vector ϕ ∈ Hs(Ω),

ϕ can be represented as

ϕ = ϕN + ϕ̄N ,

where

ϕN (x) =
N∑

s=1

βsws(x), ϕ̄N (x) =
∞∑

s=N+1

βsws(s).

Then by Lemma 3.4.4, we have∫
Ω

∂uN
∂t
ϕ =

∫
Ω

∂uN
∂t
ϕN =

∫
Ω

uN × Λ2αuN · ϕN

=−
∫
Ω

ΛαuN · Λα(uN × ϕN ).

Using the calculus inequality in Theorem 2.2.14, for
1

2
=

1

p
+

1

q
, q < ∞ we

have∣∣∣∣∫
Ω

∂uN
∂t
ϕ

∣∣∣∣ �‖ΛαuN‖L2(Ω)‖Λα(uN × ϕN )‖L2(Ω)

�‖ΛαuN‖L2(Ω){‖uN‖Lp‖ϕN‖Ḣα,q + ‖uN‖Ḣα,2‖ϕN‖∞}.

Taking 2 < p < p∗, using Sobolev embedding, we have

‖uN‖Lp � ‖uN‖Hα .

Therefore ∣∣∣∣∫
Ω

∂uN
∂t
ϕ

∣∣∣∣ � ‖uN‖2Hα,2‖ϕN‖Hs,2

for any s > α+
d

2
and (3.4.40) is proved.
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Consider the case λ > 0. We have from (3.4.26) that∣∣∣∣∫
QT

∂uN
∂t
ϕ

∣∣∣∣ � ∣∣∣∣∫
QT

(uN × Λ2αuN) · ϕ
∣∣∣∣

+ λ

∣∣∣∣∫
QT

[
uN × (uN × Λ2αuN )

] · ϕ∣∣∣∣
�‖uN × Λ2αuN‖L2(QT )‖ϕ‖L2(QT )

+ λ‖uN × Λ2αuN‖L2(QT )‖uN‖Lp(QT )‖ϕ‖Lq(QT )

�K3‖ϕ‖Lq(QT )

for
1

2
=

1

p
+
1

q
. Let p and r be as in Lemma 3.4.4, then we have ‖∂uN/∂t‖Lr(QT )

� K3, completing the proof.

Lemma 3.4.6 Under the conditions in Lemma 3.4.4, for the solution uN (t, x)

for (3.4.32) the following estimates hold:

(i) when λ = 0, for s > α+
d

2

‖uN(t1)− uN (t2)‖L2(Ω) � K4|t1 − t2| α
α+s ;

(ii) when λ > 0, for r as in Lemma 3.4.4 and r > 1

‖uN (t1)− uN(t2)‖Lr(Ω) � K4|t1 − t2|
r−1
r ,

where the constant K4 is independent of N .

Proof When λ = 0, by Sobolev embedding theorem and the interpolation

inequalities, we have from Lemma 3.4.5

‖uN(t1)− uN(t2)‖L2(Ω) �C‖uN (t1)− uN (t2)‖
α

α+s

H−s(Ω)‖uN (t1)− uN (t2)‖
s

α+s

Hα(Ω)

�C

∥∥∥∥∫ t2

t1

∂uN
∂t

dt

∥∥∥∥
α

α+s

H−s(Ω)

�C sup
0�t�T

∥∥∥∥∂uN∂t
∥∥∥∥ α

α+s

H−s(Ω)

|t2 − t1| α
α+s

�C|t2 − t1| α
α+s ,

where in the last inequality we have used the estimate (3.4.40).

Consider λ > 0. Let r > 1 be as in Lemma 3.4.4, then from Young’s
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inequality and Hölder inequality, we have

‖uN (t1)− uN(t2)‖Lr(Ω) =

∥∥∥∥∫ t2

t1

∂uN
∂t

dt

∥∥∥∥
Lr(Ω)

�

∫ t2

t1

∥∥∥∥∂uN∂t
∥∥∥∥
Lr(Ω)

dt

�|t2 − t1|
r−1
r

(∫
QT

∣∣∣∣∂uN∂t
∣∣∣∣r)1/r

�C|t2 − t1|
r−1
r ,

where in the last inequality we have used the estimate (3.4.41). The proof is

complete.

Based on the above a priori estimates, we have the following.

Lemma 3.4.7 Let N and T be arbitrarily fixed. Then under the conditions

of Lemma 3.4.4, the initial value problem for the ordinary differential equa-

tions (3.4.32)-(3.4.33) has at least one continuous differentiable and global

solution {ϕsN (t)} for s = 1, 2, · · · , N and t ∈ [0, T ].

In the following, we will take N → ∞ to get a global weak solutions

for the fractional Landau-Lifshitz-Gilbert equation. We first consider the

convergence for the case of λ = 0.

It follows from these a priori estimates that {uN (t, x)}N�1 is uniformly

bounded in the space

G0 = L∞(0, T ;Hα(Ω))
⋂
W 1,∞(0, T ;H−s(Ω)).

Applying the compactness lemma, there exists some u ∈ L∞(0, T ;Hα(Ω))

such that up to a subsequence

uNt ⇀ ut, weakly in Lp(0, T ;H−s(Ω)),

uN → u, strongly in Lp(0, T ;Hβ(Ω)),

where 1 < p < ∞ and −s < β < α. In particular, uN → u strongly in

L2(0, T ;Hβ(Ω)).

Then the convergence of the first term is obvious∫
QT

∂uN
∂t
· ϕ→

∫
QT

∂u

∂t
· ϕ, ∀ϕ ∈ C∞(QT ). (3.4.42)
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However the convergence for the nonlinear nonlocal term is not obvious

at all, since we only have compactness in Hβ for β < α. In the following, we

show ∫
QT

ΛαuN · Λα(uN × ϕ)dxdt →
∫
QT

Λαu · Λα(u × ϕ)dxdt. (3.4.43)

As a first check, we show that the r.h.s. of (3.4.43) makes sense. Indeed,

for any u ∈ Hα, we have∣∣∣∣∫
Ω

Λαu · Λα(u× ϕ)dx
∣∣∣∣ �‖Λαu‖‖Λα(u × ϕ)‖

�C‖Λαu‖(‖Λαu‖‖ϕ‖∞ + ‖u‖Lp‖Λαϕ‖Lq)

�C‖Λαu‖2‖ϕ‖Hs ,

(3.4.44)

for
1

p
+

1

q
=

1

p
+
α

d
=

1

2
and s > max

{
α+

d

p
,
d

2

}
.

Now the special structure of this equation plays an important role in the

convergence. Indeed, let Cϕ(u) = Λα(u× ϕ)− Λαu× ϕ. Since

Λαu · (Λαu× ϕ) = 0,

it suffices to prove∫
QT

ΛαuN · Cϕ(uN − u) +
∫
QT

Λα(uN − u) · Cϕ(u)→ 0.

Applying the commutator estimate and Sobolev embedding, we have

‖Cϕ(uN − u)‖L2(Ω)

�c
(
‖∇ϕ‖Lp1(Ω)‖uN − u‖Ḣα−1,p2 (Ω) + ‖ϕ‖Ḣα,p3 (Ω)‖uN − u‖Lp4(Ω)

)
�c
(
‖∇ϕ‖Lp1(Ω)‖uN − u‖L2(Ω) + ‖ϕ‖Ḣα,p3 (Ω)‖uN − u‖Hβ(Ω)

)
�C‖ϕ‖Hs(Ω)‖uN − u‖Hβ(Ω),

where p2, p3 ∈ (1,+∞) are such that

1

2
=

1

p1
+

1

p2
and

α− 1

d
+

1

2
=

1

p2
,

1

2
=

1

p3
+

1

p4
and

β

d
+

1

p4
=

1

2
, 0 < β < α,

and

s >
d

2
+ 1.
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Note that in this case, s > α+
d

2
− d

p3
holds automatically.

Again by Hölder inequality,∣∣∣∣∫
QT

ΛαuN · Cϕ(uN − u)dxdt
∣∣∣∣

�c‖ϕ‖Hs(Ω)‖ΛαuN‖L2(QT )‖uN − u‖L2(0,T ;Hβ(Ω))

→0 as N →∞.
On the other hand, since Cϕ(u) ∈ L2(QT ) and uN → u in L2(0, T ;Hα(Ω))

weakly, the convergence∫
QT

Λα(uN − u) · Cϕ(u)→ 0

is obvious and (3.4.43) is proved. Therefore, letting N → ∞, we have from

(3.4.42) and (3.4.44) that∫
QT

∂u

∂t
· ϕdxdt = −

∫
QT

Λαu · Λα(u× ϕ)dxdt,

and the global existence of weak solutions for the fractional Heisenberg equa-

tion (λ = 0 in (3.4.26)) is proved.

Next we consider the convergence for the case of λ > 0. From the esti-

mates established before, we have that {uN}N�1 is uniformly bounded in

Gλ = L∞(0, T ;Hα(Ω))
⋂
W 1,r(0, T ;Lr(Ω)),

for r > 1 as in Lemma 3.4.4. Therefore, from the compactness lemma, there

exists some u ∈ L∞(0, T ;Hα(Ω)) such that

uN ⇀u weakly in Lp(0, T ;Hα(Ω)) for 1 < p <∞;

uN →u strongly in Lp(0, T ;Hβ(Ω)) for 1 < p <∞, 0 � β < α;

uN ⇀u weakly in Lp(QT ) for 1 < p <∞ as in Lemma 3.4.4;

∂uN
∂t

⇀
∂u

∂t
weakly in Lr(QT ) for r > 1 as in Lemma 3.4.4.

(3.4.45)

The handling of the case λ > 0 is much trickier since it involves one more

nonlinear nonlocal term of the highest order derivative and the usual (integral

order) Leibniz formula does not hold anymore. Even worse, in this case, the

former commutator estimates method cannot be applied to get the desired

global existence result directly. Observing the fact that from (3.4.36)

‖uN × Λ2αuN‖2L2(0,T ;L2(Ω)) �
K1

λ
,
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there exists some element ζ in L2(0, T ;L2(Ω)) such that

uN × Λ2αuN ⇀ ζ weakly in L2(0, T ;L2(Ω)). (3.4.46)

In the following, we show

u× Λ2αu = ζ ∈ L2(0, T ;L2(Ω)). (3.4.47)

In fact, let ϕ ∈ Hs(Ω) for s > α+
d

2
,∫

QT

uN × Λ2αuN · ϕ = −
∫
QT

ΛαuN · Λα(uN × ϕ)

= −
∫
QT

ΛαuN · Cϕ(uN ).

On the other hand, using commutator estimate together with the same rea-

sonings that lead to (3.4.43), we have∫
QT

ΛαuN · Cϕ(uN )→
∫
QT

Λαu · Cϕ(u)

=

∫
QT

Λαu · Λα(u × ϕ)

=−
∫
QT

u× Λ2αu · ϕ,

and therefore (3.4.47) is proved. In particular, we have

uN × Λ2αuN ⇀ u× Λ2αu weakly in L2(0, T ;L2(Ω)).

From (3.4.46) and (3.4.47), we know that for any ϕ ∈ C∞(QT )∫
QT

(uN × Λ2αuN ) · ϕdxdt→
∫
QT

(u× Λ2αu) · ϕdxdt.

Furthermore, since uN → u strongly in L2(QT ), the following convergence

also holds for any ϕ ∈ C∞(QT )∫
QT

(uN × Λ2αuN ) · (uN × ϕ)dxdt →
∫
QT

(u× Λ2αu) · (u × ϕ)dxdt,

and the r.h.s. term makes sense. Then the global existence of weak solutions

for the fractional Landau-Lifshitz equation (3.4.26) is proved in the sense of

(3.4.29) in Definition 3.4.2.

Theorem 3.4.5 is now completely proved.

Next we prove the global existence of weak solutions for equation (3.4.27).

We will prove
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Theorem 3.4.6 Let α ∈ (0, 1) be such that α >
d

4
. Then for any u0 ∈ Hα,

|u0| = 1 a.e., there exists at least one weak solution for (3.4.27) in the sense

of Definition 3.4.3.

First we prove the following

Lemma 3.4.8 A map u : Ω ×R+ → S2, with Λαu ∈ L∞(R+;L2(Ω)) and

∂tu ∈ L2(Ω×R+), is a weak solution of (3.4.27) if and only if

u× ut = −λu× Λ2αu, (3.4.48)

holds in the sense of Definition 3.4.3.

Proof If u weakly solves (3.4.27), then for any three dimensional vector φ ∈
C∞(Ω), multiplying (3.4.27) with (u× φ) and then integrating give∫

Ω

ut · (u× φ) =λ
∫
Ω

(u · Λ2α)u · (u× φ)− λ
∫
Ω

Λ2αu · (u× φ)

=− λ
∫
Ω

Λ2αu · (u× φ),

since u · (u× φ) = 0. Note also that∫
Ω

ut · (u× φ) = −
∫
Ω

(u× ut) · φ.

Hence u weakly solves (3.4.48) in the sense of (3.4.30) in Definition 3.4.3.

Conversely, if u weakly solves equation (3.4.48), then we have

(∂tu+ λΛ
2αu)× u = 0.

Hence there exists a multiplier m : Ω×R+ → R such that

∂tu+ λΛ
2αu = mu.

Multiplying it by uφ and using ∂tu · u = 0, we obtain that for any three

dimensional vector φ ∈ C∞(Ω),∫
Ω

mφ = λ

∫
Ω

Λ2αu · uφ. (3.4.49)

Therefore u weakly solves

∂tu+ λΛ
2αu = λ(u · Λ2αu)u,

i.e. u weakly solves (3.4.27).
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Remark 3.4.4 Strictly speaking, one needs to show that the integral on the

right hand side of (3.4.49) makes sense for any u ∈ Hα(Ω). Indeed, this is

the case. For any φ ∈ C∞(Ω), and for any u such that u(·, t) ∈ Hα(Ω),∣∣∣∣∫
Ω

Λ2αu · (uφ)
∣∣∣∣ = ∣∣∣∣∫

Ω

Λαu · Λα(uφ)

∣∣∣∣
� ‖Λαu‖‖Λα(uφ)‖ ,

while

‖Λα(uφ)‖ � C(‖Λαu‖L2|φ|∞ + |u|∞‖Λαφ‖L2),

thanks to the calculus inequality in Lemma 3.4.4. On the other hand, this

lemma explains why we define a weak solutions for (3.4.27) as in Definition

3.4.3. This observation is crucial for us to get the convergence in the following

proofs.

In the following, we consider the Ginzburg-Landau approximation. For

k � 1 integer, consider the problem for maps uε : Ω×R+ → R3:

∂tu
ε + λΛ2αuε =

λ

ε2
(1− |uε|2)uε. (3.4.50)

We seek approximate solutions {un(t, x)} for equation (3.4.50) under the

form

un(t, x) =
n∑

i=1

ϕi(t)wi(x),

where ϕi are R3-valued vectors, such that for 1 � i � n there holds∫
Ω

∂un
∂t
wi + λ

∫
Ω

Λ2αunwi +
λ

ε2

∫
Ω

(|un|2 − 1)unwi = 0, (3.4.51)

with the initial conditions ∫
Ω

un(0)wi =

∫
Ω

u0wi.

This is a system of ODEs for ϕi’s and from standard ODEs theory, one

can easily show the existence of local solutions. Now, we show some a priori

estimates. Multiplying the equality (3.4.51) by
dϕi

dt
and summing over 1 �

i � n lead to∫
Ω

∣∣∣∣∂un∂t
∣∣∣∣2dx+ λ2 d

dt

∫
Ω

|Λαun|2dx+ λ

4ε2
d

dt

∫
Ω

(|un|2 − 1)2dx = 0,
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from which, after integration in time, we have

1

2

∫
Ω

|Λαun(t)|2dx+ 1

4ε2

∫
Ω

(|un|2 − 1)2(t)dx +
1

λ

∫
QT

∣∣∣∣∂un∂t
∣∣∣∣2dxdt

=
1

2

∫
Ω

|Λαun0|2dx+ 1

4ε2

∫
Ω

(|un0|2 − 1)2dx, for all t ∈ [0, T ].

(3.4.52)

Since the initial data u0 ∈ Hα which is embedded into L4(Ω) for α �
d

4
, the

right hand side is uniformly bounded. Furthermore by Young’s inequality∫
Ω

|un|2 � C +
1

2

∫
Ω

(|un|2 − 1)2,

we know that {un} is bounded in L∞(0, T ;L2(Ω)). Then we deduce that

{un} is bounded in L∞(0, T ;Hα(Ω));{
∂un
∂t

}
is bounded in L2(0, T ;L2(Ω));

{|un|2 − 1} is bounded in L2(0, T ;L2(Ω)).

These estimates imply that the solution can be extended to all time, and we

can extract a subsequence (still denoted as {un(t)}) such that

un → uε weakly in L2(0, T ;Hα(Ω)),

∂un
∂t
→ ∂uε

∂t
weakly in L2(QT ),

un → uε strongly in L2(0, T ;Hβ(Ω)) for 0 � β < α and a.e.,

|un|2 − 1→ χ weakly in L2(QT ).

From [135, Lemma 1.3, Ch1], it is easy to show that χ = |uε|2 − 1. Passing

to the limit (n →∞), we find a global weak solution uε to the approximate

equation (3.4.50), i.e. for any ϕ̃ ∈ L2(0, T ;Hα(Ω)), there holds∫
QT

∂uε

∂t
· ϕ̃dxdt+ λ

∫
QT

Λαuε · Λαϕ̃dxdt

+
λ

ε2

∫
QT

(|uε|2 − 1)uε · ϕ̃dxdt = 0.

(3.4.53)

Furthermore, applying Fatou lemma to (3.4.52) we have the estimates for uε

1

2

∫
Ω

|Λαuε(t)|2dx+ 1

4ε2

∫
Ω

(|uε|2 − 1)2(t)dx

+
1

λ

∫
QT

∣∣∣∣∂uε∂t
∣∣∣∣2dxdt � 1

2

∫
Ω

|Λαu0|2dx.
(3.4.54)
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From (3.4.54), we have

{uε} is bounded in L2(0, T ;Hα(Ω)),{
∂uε

∂t

}
is bounded in L2(QT ),

and |uε|2 − 1→ 0 in L2(QT ) as ε→ 0,

and therefore, up to a subsequence, we have

uε → u weakly in L2(0, T ;Hα(Ω)),

∂uε

∂t
→ ∂u

∂t
weakly in L2(QT ),

uε → u strongly in L2(0, T ;Hβ(Ω)) for 0 � β < α and a.e.,

|uε|2 − 1→ 0 strongly in L2(QT ) and a.e..

(3.4.55)

Let ϕ̃ = (uε × ϕ) in (3.4.53), we have∫
QT

∂uε

∂t
· (uε × ϕ)dxdt +λ

∫
QT

Λαuε · Λα(uε × ϕ)dxdt

+
λ

ε2

∫
QT

(|uε|2 − 1)uε · (uε × ϕ)dxdt = 0. (3.4.56)

The third term on the left is zero since a · (a× b) = 0 and by (3.4.55),∫
QT

∂uε

∂t
· (uε × ϕ)dxdt →

∫
QT

∂u

∂t
· (u× ϕ)dxdt.

Finally, following exactly the same steps that lead to (3.4.43), we have∫
QT

Λαuε · Λα(uε × ϕ)dxdt →
∫
QT

Λαu · Λα(u × ϕ)dxdt,

as ε → 0, where the r.h.s. makes sense following the same remarks after

Lemma 3.4.8.

Taking ε→ 0 in (3.4.56), we have∫
QT

∂u

∂t
· (u × ϕ)dxdt+ λ

∫
QT

Λαu · Λα(u× ϕ)dxdt = 0.

This is exactly the expression in (3.4.30), and we finish the proof of Theorem

3.4.6.
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3.4.4 Local well-posedness

In what follows, we consider the local smooth solutions for the fractional

Landau-Lifshitz equation (3.4.10) for ν = 1 and μ = 0 on the d-dimensional

torus with d � 3:

∂tu = u× Λ2αu (3.4.57)

with initial data

u(·, 0) = u0(·). (3.4.58)

The approach is based on the vanishing viscosity method and Kato’s

method on local in time existence for quasi-linear equations [121]. We first

consider the approximate system

ut = εΔu+ u× Λ2αu, (3.4.59)

with smooth initial data u(x, 0) = u0. We will show that the viscous equation

(3.4.59) has a unique global classical solution. We first show [185]

Theorem 3.4.7 Let d � 3, ε > 0 be fixed and 0 < α � 1/2. Assume that

u0 ∈ H4+α. Then there exists a T > 0 depending only on the initial data u0,

such that (3.4.59) possesses a unique solution

u ∈ C([0, T ];H4+α) ∩ C1([0, T ];Hα).

Proof The proof is based on Kato’s method for evolutionary equations, see

[121, Sect. 7]. For that purpose, let X = Hα, Y = H4+α and S = (I −Δ)2.

We choose W as the ball in Y with center 0 and radius R and define the

operator

A(y)· = −εΔ · −y × Λ2α·, for y ∈W.
It is known that X and Y are both reflexive Banach spaces with Y ↪→ X

continuously and densely and S = (I − Δ)2 is an isomorphism of Y onto

X . Finally, we denote by G(X,M, β) the set of all linear operators L in

X such that −L generates a C0 semigroup {e−tL} with ‖e−tL‖ � Meβt for

0 � t <∞.

We check the following properties one by one.

(A1) A(·) is a function of W into G(X, 1, β), where W is an open ball in Y

and β is a real number.

For y ∈ Y , we will check that if u is a solution of

ut = εΔu+ y × Λ2αu, (3.4.60)
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then there exists some constants β > 0 such that

‖u‖Hα � eβt‖u0‖Hα . (3.4.61)

Multiplying (3.4.60) with u and integration by parts, we have

1

2

d

dt
‖u‖2L2 + ε‖∇u‖2L2 = (Λαu,Λα(y × u))

�‖Λαu‖2L2 + ‖Λα(y × u)‖2L2

�‖Λαu‖2L2 + C(‖Λαu‖2L2‖y‖2L∞ + ‖Λαy‖2Lp‖u‖2Lq)

�C‖u‖2Hα ,

(3.4.62)

where
1

p
+

1

q
=

1

2
, and q �

2d

d− 2α
for d > 2α and 1 < q <∞ for d = 1 and

α = 1/2. Similarly, multiplying the equation with Λ2αu and integration by

parts, we have
1

2

d

dt
‖Λαu‖2L2 + ε‖∇Λαu‖2L2 � 0. (3.4.63)

Adding together (3.4.62) and (3.4.63), we have

d

dt
‖u‖2Hα + 2ε‖∇u‖2Hα � C‖u‖2Hα ,

from which we know that

‖u(t)‖Hα � eCt‖u0‖Hα , t ∈ [0,∞), y ∈W.

Let β = C, (3.4.61) is proved and

‖e−tA(y)‖Hα � eβt, t ∈ [0,∞), y ∈W.

Therefore, A(·) maps W into G(X, 1, β).

(A2) For each y ∈ W , we have

SAS−1 = A(y) +B(y),

and B(y) ∈ L(X,X) with ‖B(y)‖X � K for some constant K > 0.

Indeed, by direct computation, we have for y ∈ Y and w ∈ X ,

B(y)w = [S, y × Λ2α]S−1w

=− 2Δy × Λ2αS−1w − 4∇× Λ2α∇S−1w +Δ2y × Λ2αS−1w

+ 4∇3y × Λ2α∇S−1w + 6Δy × Λ2αΔS−1w + 4∇y × Λ2α∇3S−1w

= : I + II + III + IV + V + V I.
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For I, we have since Λα and S commutes,

‖J αI‖L2 �C(‖J αΔy‖Lp‖Λ2αS−1w‖Lq

+ ‖Δy‖L∞‖J αΛαS−1Λαw‖L2)

�C‖y‖H4+α‖w‖Hα ,

for any 2 < p <∞ with
1

p
+

1

q
=

1

2
.

The treatment for II is similar, and we have

‖J αII‖L2 �C(‖J α
∇y‖Lp‖ΛαS−1

∇Λαw‖Lq

+ ‖∇y‖L∞‖J αΛαS−1
∇Λαw‖L2)

�C‖y‖H4+α‖w‖Hα .

For III, we have by Sobolev embedding

‖J αIII‖ �C(‖J αΔ2y‖L2‖ΛαS−1Λαw‖L∞
+ ‖Δ2y‖Lp‖J αΛαS−1Λαw‖Lq)

�C‖y‖H4+α‖w‖Hα ,

for any p ∈
(
2,

2d

d− 2α

)
and q with

1

p
+

1

q
=

1

2
.

For IV , we have

‖J αIV ‖ �C(‖Λα
∇

3y‖Lp1‖J α
∇S−1Λαw‖Lq1

+ ‖∇3y‖Lp2‖J αΛα
∇S−1Λαw‖Lq2 )

�C‖y‖H4+α‖w‖Hα ,

where we choose p1 ∈
(
2,

2d

d− 2

)
and q1 with

1

p1
+

1

q1
=

1

2
and p2 ∈(

2,
2d

d− 2(1 + α)

)
and q2 with

1

p1
+

1

q1
=

1

2
.

For V , we have

‖J αV ‖ �C(‖J αΔy‖Lp‖ΛαΔS−1Λαw‖Lq

+ ‖Δy‖L∞‖J αΛαΔS−1Λαw‖L2)

�C‖y‖H4+α‖w‖Hα ,

for all p, q ∈ (2,∞) such that
1

p
+

1

q
=

1

2
.

The term V I can be handled in the following way,

‖J αV I‖ �C(‖J α
∇y‖Lp1‖Λα

∇
3S−1Λαw‖Lq1

+ ‖∇y‖Lp2‖J αΛα
∇

3S−1Λαw‖Lq2 )

�C‖y‖H4+α‖w‖Hα ,
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for any q1 ∈
(
2,

2d

d− 2(1− α)
)

for α �
1

2
, and

1

p1
+

1

q1
=

1

2
and for p2 ∈

(2,∞] and q2 ∈ [2,∞) such that
1

2
− 1− 2α

d
�

1

q2
and

1

p2
+

1

q2
=

1

2
. Note

here q2 � 2, we require α �
1

2
in the last inequality.

Therefore, we have shown that

‖J αB(y)w‖ � C‖y‖H4+α‖w‖Hα .

In other words, that B(y) is a bounded operator form X to X . In particular,

there exists some positive constant K = C‖y‖H4+α such that ‖B(y)‖ � K.

(A3) For each y ∈ W , we have A(y) ∈ L(Y,X) and the function y → A(y)

is Lipshitz continuous.

Indeed, since y ∈ H4+α, we have for w ∈ H4+α

‖(A(y)−A(z))w‖Hα �C‖J α{(y − z)× Λ2αw}‖
�C(‖J α(y − z)‖L2‖Λ2αw‖L∞

+ ‖y − z‖Lp‖J αΛ2αw‖Lq)

�C‖y − z‖Hα‖w‖H4+α ,

for p =
2d

d− 2α
, and

1

p
+

1

q
=

1

2
. This implies that

‖A(y)−A(z)‖L(Y,X) � C‖y − z‖X , ∀y, z ∈W.

(A4) Let y0 be the center of W , then A(y)y0 ∈ Y for all y ∈W with

‖A(y)y0‖Y � K2, y ∈ W.

This is obvious since y0 = 0 and A(y) is linear.

Applying Kato’s local existence theorem [121, Theorem 6], (A1)-(A4) im-

ply the local existence of classical solutions for the viscous problem (3.4.59)

with initial data Z0, and we complete the proof of this theorem.

Remark 3.4.5 In the proof, the choice of the fractional space X = Hα as

our working space is vital. It seems difficulty to get the well-posedness for any

other choice of working space such as Hs (s 
= k+α, k nonnegative integers)

as we have tried.

In the following two lemmas, we give some a priori estimates, which will

lead to the global existence of smooth solutions for the approximate equation

(3.4.59).
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Lemma 3.4.9 Suppose that u0 ∈ S2 is smooth and u is a smooth solution

to (3.4.59) on [0, T ] with initial data u0, then

‖u(t)‖Lp � ‖u0‖Lp, ∀t ∈ [0, T ] and p ∈ [2,∞].

Proof Multiplying the equation with p|u|p−2u for p � 2, integrating over Ω

and integrating by parts, we have

d

dt
‖u‖pLp =εp

∫
Ω

|u|p−2u ·Δudx

=− εp(p− 1)

∫
Ω

|u|p−2|∇u|2dx � 0.

Therefore, one easily obtains that

‖u(t)‖Lp � ‖u0‖Lp , ∀p ∈ [2,∞).

Letting p→∞ then completes the proof.

Lemma 3.4.10 Let d � 3, α ∈ (0, 1/2] and ε > 0 be fixed. Let u0 ∈ S2 be

smooth and u be a smooth solution to (3.4.59) on [0, T ] with initial data u0,

then there exists constant C > 0 such that

sup
0�t�T

‖u‖Hm+α � C‖u0‖Hm+α , (3.4.64)

for all nonnegative integers m = 0, 1, 2, · · · .
Proof When m = 0, by multiplying the equation (3.4.67) by Λ2αu and in-

tegrating over Ω, we can show that for any T > 0, there exists a constant

C > 0 independent of T such that

sup
0�t�T

‖u‖Hα + ε

∫ T

0

‖u‖2H1+α � C. (3.4.65)

When m = 1, multiplying the equation (3.4.59) with ΔΛ2αu and integra-

tion by parts, we have

d

dt
‖∇Λαu‖2L2 + 2ε‖ΔΛαu‖2L2 = 2(u× Λ2αu,ΔΛ2αu). (3.4.66)

For the right hand side term, we have

(u×Λ2αu,ΔΛ2αu) = (Λα(u× Λ2αu),ΔΛαu)

�δ‖ΔΛαu‖2L2 + C‖Λα(u × Λ2αu)‖L2

�δ‖ΔΛαu‖2L2 + C
(‖Λαu‖2Lp1‖Λ2αu‖2Lq1 + ‖u‖2Lp2‖Λ3αu‖2Lq2

)
�δ‖ΔΛαu‖2L2 + C(‖u‖2H1+α‖u‖2H1+α + ‖u‖2H1+α‖u‖2H1+α),

(3.4.67)
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where we have used the calculus inequality in Theorem 2.2.14 and Sobolev

embedding H1+α ↪→ L∞ for d = 1, 2 for α > 0. The constants here p1, q1
satisfy ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

p1
+

1

q1
=

1

2
;

p1 =∞, q1 = 2, for d = 1;

p1 <∞, q1 �
2d

d− 2(1− α) , for d = 2, 3,

and the constants p2, q2 satsify⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

p2
+

1

q2
=

1

2
;

p2 =∞, q2 = 2, for d = 1, 2;

p2 �
6

1− 2α
, q2 <∞, for d = 3, 0 < α < 1/2.

(3.4.68)

From (3.4.66)-(3.4.67), and choosing δ sufficiently small such that 2δ < ε,

then we have

d

dt
‖∇Λαu‖2L2 + ε‖ΔΛαu‖2L2 � C‖u‖2H1+α‖u‖2H1+α ,

which implies

sup
0�t�T

‖u‖H1+α + ε

∫ T

0

‖u‖2H2+α � C, (3.4.69)

thanks to the Gronwall inequality and the integrability of ‖u‖2H1+α in (3.4.65).

The only case that fails here is when d = 3 and α = 1/2 because of the

failure of embedding H3/2 ↪→ L∞ when d = 3. Indeed, in this case, since

α = 1/2, the index q2 can be only chosen to be q2 = 2 in (3.4.68), but p2
can not be p2 = ∞ when applying Theorem 2.2.14, hence contradicting the

condition
1

p2
+

1

q2
=

1

2
.

When d = 3 and α = 1/2, we start by bounding the term ‖u‖2Lp2‖Λ3αu‖2Lq2

in (3.4.67) using the result in Lemma 3.4.9. We choose p2 =∞ and q2 = 2

‖u‖2L∞‖Λ3/2u‖2L2 � ‖u0‖2L∞‖u‖2H3/2 .

Repeating the Gronwall inequality and using the fact u0 ∈ S2, we obtain the

estimate (3.4.69) for d = 3 and α = 1/2 and we complete the case m = 1.

Repeating the above arguments will lead to estimates (3.4.64) for m =

2, · · · , and therefore complete the proof of Lemma 3.4.10.

Combining the local existence result and the global a priori estimates,

we indeed show that the solution is globally smooth when u0 is smooth. We

state this fact in the following theorem.
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Theorem 3.4.8 Let d � 3, α ∈ (0, 1/2] and ε > 0 be fixed. Then there exists

a unique global smooth solution uε ∈ C([0, T ];Hm+α) of the approximate

equation (3.4.59) for any initial data u0 ∈ Hm+α.

Now, we consider the local existence of classical solutions of (3.4.57). We

will prove

Theorem 3.4.9 Let d � 3, α ∈ (0, 1/2] and u0 ∈ Hm+α with m � 4. Then

there exists a T∗ > 0 depending only on u0 such that (3.4.57) possesses a

unique classical solution u, which remains in C([0, T∗];H
m+α ∩ C2).

Proof Let ε > 0 be a small parameter. Consider the regularized equation for

uε

∂tu
ε = uε × Λ2αuε + εΔuε, (3.4.70)

with initial data uε(x, 0) = u0(x). For such a system, the previous results

imply that (3.4.70) possesses a global classical solution uε ∈ C([0, T ];Hm+α)

when ε > 0 is fixed. We now show that there exists T∗ > 0 over which uε

is regular and converges to a classical solution u of (3.4.57). It suffices to

establish certain a priori bounds for uε independent of ε.

More specifically, we will prove that uε is uniformly bounded in Hm+α

and ∂tu
ε in Hs for some d/2 < s < m+ α. By integration by parts, we have

1

2

d

dt
‖∇mΛαuε‖2L2 + ε‖∇m+1Λαuε‖2L2 = (uε × Λ2αuε,ΔmΛ2αuε).

For the right hand side term, we have

(uε×Λ2α,ΔmΛ2αuε)

=(∇m(uε × Λ2αuε),∇mΛ2αuε)

=(∇muε × Λ2αuε,∇mΛ2αuε) + · · ·+ (uε ×∇
mΛ2αuε,∇mΛ2αuε).

By the elementary property of cross product, the last term vanishes, and we

need only to consider the remaining terms.

Let us consider the first term. Since ∇ commutes with Λ2α, the first term

can be written as

(∇muε × Λ2αuε,∇mΛ2αuε) = (Λα(∇muε × Λ2αuε),∇mΛαuε).

By calculus inequality, we have

‖Λα(∇muε × Λ2αuε)‖L2 �C(‖∇mΛαuε‖L2‖Λ2αuε‖L∞
+ ‖∇muε‖Lp‖Λ3αuε‖Lq)

for some 2 < p, q <∞ such that
1

p
+

1

q
=

1

2
. Choosing p =

2d

d− 2α
∈ (2,∞)
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for d � 2 and any p ∈ (2,∞) for d = 1, we have by Sobolev embedding

‖∇muε‖Lp‖Λ3αuε‖Lq � ‖uε‖Hm+α‖uε‖Hm+α ,

when m > 2α+
d

2
. On the other hand, for any j = 0, 1, · · · ,m− 1, we can

always select (p1, q1) ∈ [2,∞)× (2,∞] and (p2, q2) ∈ (2,∞]× [2,∞) that may

depend on j such that

‖Λα(∇juε ×∇
m−jΛ2αuε)‖L2 �C(‖∇jΛαuε‖2Lp1‖∇m−jΛ2αuε‖Lq1

+ ‖∇juε‖Lp2‖∇m−jΛ2αuε‖Lq2 )

�C‖uε‖2Hm+α .

Therefore, we deduce that there exists some constant C > 0 such that

d

dt
‖uε‖Hm+α � C‖uε‖2Hm+α ,

and therefore, there exists 0 < T∗ < (C‖u0‖Hm+α)−1 such that for all ε and

0 < T � T∗,

sup
0�t�T

‖uε‖Hm+α �
‖u0‖Hm+α

1− CT ‖u0‖Hm+α

. (3.4.71)

This inequality implies that uε is uniformly bounded in C([0, T ];Hm+α),

provided that T � T∗.

On the other hand, since Hs is an algebra for s >
d

2
, there holds

‖fg‖Hs � C‖f‖Hs‖g‖Hs , ∀f, g ∈ Hs.

Using this inequality and expressing ∂tu
ε in terms of the other terms in

(3.4.70), we get

sup
t∈[0,T ]

‖∂tuε‖Hs � C, ∀t ∈ [0, T∗].

Finally, using the Lions-Aubin compactness theorem [152,222] (see for ex-

ample, Lemma 10.4, Chapter 10 in [152]), {uε} is compact in C([0, T∗];H
s),

which is also compact in C([0, T∗];C
2) by Sobolev embedding theorem. There-

fore, we can pass to the limit ε → 0 to obtain a local classical solution

u ∈ L∞([0, T∗];H
m+α) of the equation (3.4.57).

In addition, u is continuous in the weak topology of Hm+α, i.e., u ∈
CW ([0, T ];Hm+α). Let ϕ ∈ H−(m+α), since uε → u in C([0, T∗];H

s) for

s < m + α, it follows that 〈uε, ϕ〉 → 〈u, ϕ〉 uniformly on [0, T ] for any

ϕ ∈ H−s. Using uniform boundedness of ‖uε‖ in Hm+α and the fact that

H−s is dense inH−(m+α), we have 〈uε, ϕ〉 → 〈u, ϕ〉 uniformly on [0, T ] for any

ϕ ∈ H−(m+α) by means of ε/3 argument. This shows u ∈ CW ([0, T ];Hm+α)

and hence

lim inf
t→0+

‖u(t, ·)‖Hm+α � ‖u0‖Hm+α .
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On the other hand, estimate (3.4.71) implies that

sup
0�t�T

‖uε‖Hm+α � ‖u0‖Hm+α +
C‖u0‖2Hm+αT

1− CT ‖u0‖Hm+α

, ∀0 < T � T∗,

and hence

lim sup
t→0+

‖u(t, ·)‖Hm+α � ‖u0‖Hm+α .

In particular, we get the right continuity of ‖u(t, ·)‖Hm+α at t = 0,

lim
t→0+

‖u(t, ·)‖Hm+α = ‖u0‖Hm+α .

The left continuity at t = 0 can be similarly deduced and gives us the strong

continuity at t = 0. For the continuity at t′ ∈ [0, T∗], we can take u(t′) as

initial data and repeat the argument to show the continuity of ‖u(t)‖Hm+α

at t′ ∈ [0, T∗]. We therefore complete the proof of the theorem.

A natural question is whether the unique local solution exists globally or

will it develop singularities in finite time. This question is not easy to answer

since there is no regularizing effects in this equation. However we can give

some regularity criteria to show that it can be extended globally if we know

before hand that u is in a reasonably regular functional space.

By the construction of the local classical solution of (3.4.57), the solution

can be continued in time provided that ‖u‖Hm+α remains bounded. That is, T

be the maximal time of the existence of smooth solutions u ∈ C([0, T );Hm+α)

if and only if limt→T ‖u‖Hm+α =∞. Although we cannot show directly that

T can be chosen to be ∞, we can give some necessary condition for such a

maximal time. I.e., we can give the following regularity criteria, involving

some integrability of higher order derivatives. Hereafter, we denote the space

Lr,s of all functions v such that the quantity

‖v‖Lr,s :=

⎧⎪⎪⎨⎪⎪⎩
(∫ T

0

‖v(·, τ)‖rLsdτ

)1/r

, if 1 � p <∞;

ess sup0<τ<T ‖v(·, τ)‖Ls , if r =∞

is finite, where ‖v(·, τ)‖Ls is the usual Lebesgue norm.

Lemma 3.4.11 Suppose that u0 ∈ S2 is smooth and u is a smooth solution

to (3.4.57), then

‖u(t)‖Lp � ‖u0‖Lp , ∀p ∈ [2,∞].

Proof The proof is the same as that in Lemma 3.4.9.
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Theorem 3.4.10 Let d � 3, α ∈ (0, 1/2] and u0 ∈ Hm+α with m � 4, so

that there exists a classical solution u ∈ C([0, T );Hm+α∩C2) to the fractional

Landau-Lifshitz equation (3.4.57). Then for any 0 < T <∞, if when α = 1/2

that ∫ T

0

‖∇u‖L∞dt <∞,
∫ T

0

‖Λu‖L∞dt <∞, (3.4.72)

or when 0 < α < 1/2 that∫ T

0

‖∇u‖Lsdt <∞,
∫ T

0

‖Λ2αu‖L∞dt <∞, (3.4.73)

for some s > 1 satisfying 2α + d
s � 1, then the solution u exists globally in

time, i.e, u ∈ C([0,∞);H1+α).

Proof From the a priori estimates, we know that for any T > 0, we have

u ∈ L∞(0, T ;Hα) and

sup
t∈[0,T ]

‖u‖Hα � ‖u0‖Hα .

Multiplying the equation with ΔΛ2αu and by integration by parts, we have

1

2

d

dt
‖∇Λαu‖2L2 =(∇u× Λ2αu,∇Λ2αu)

=(Λα(∇u× Λ2αu),∇Λαu)

�‖∇Λαu‖L2‖Λα(∇u× Λ2αu)‖L2.

(3.4.74)

By calculus inequality, we have

‖Λα(∇u× Λ2αu)‖L2 � C
(‖Λα

∇u‖L2‖Λ2αu‖L∞ + ‖∇u‖Lp‖Λ3αu‖Lq

)
(3.4.75)

where
1

p
+

1

q
=

1

2
, with p, q � 2 and q 
=∞.

When α = 1/2, we can only let q = 2 and p = ∞ and in this case we

obtain

d

dt
‖∇Λ1/2u‖2L2 � C‖∇Λ1/2u‖2L2 (‖Λu‖L∞ + ‖∇u‖L∞) ,

which implies that the local solution can be extended to [0, T ] under assump-

tion (3.4.72) and remains in L∞([0, T ];H1+α).

When 1/3 � α <
1

2
, we have

‖∇u‖Lp‖Λ3αu‖Lq � C‖∇Λαu‖θ+δ
L2 ‖∇u‖2−(θ+δ)

Ls (3.4.76)
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where we have used the Gagliardo-Nirenberg inequality for the fractional

Sobolev spaces [203]

‖∇u‖Lp � C‖∇Λαu‖θL2‖∇u‖1−θ
Ls ;

‖Λ3αu‖Lq � C‖∇Λαu‖δL2‖∇u‖1−δ
Ls .

Here the constants 2 � p, q �∞, q 
=∞, 0 � θ, δ � 1 satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

p
+

1

q
=

1

2
,

1− d
p
= θ

(
1 + α− d

2

)
+ (1− θ)

(
1− d

s

)
,

3α− d
p
= δ

(
1 + α− d

2

)
+ (1− δ)

(
1− d

s

)
.

(3.4.77)

This system has many solutions, among which one solution to (3.4.77) can

be written as

p =
2(d− α)
d− 2α

, q =
2(d− α)
α

, θ =

d

s
− d
p

α− d
2
+
d

s

, δ =

3α− 1 +
d

s
− d
q

α− d
2
+
d

s

.

Note in this case,

θ + δ =
3α− 1 +

2d

s
− d

2

α− d
2
+
d

s

� 1,

provided that 2α +
d

s
� 1. Moreover, for any p, q, θ, δ satisfy (3.4.77), we

have from the assumption 2α +
d

s
� 1 that θ + δ � 1. Note also that the

larger θ + δ is, the less regularity of ‖∇u‖Lr,s is required. Hence we choose

θ + δ = 1 in the following.

Putting (3.4.75) and (3.4.76) into (3.4.74), we obtain

d

dt
‖∇Λ2αu‖2L2 � ‖Λα

∇u‖2L2(‖Λ2αu‖L∞ + ‖∇u‖Ls). (3.4.78)

Therefore, by applying the Gronwall inequality, we have

sup
0�t�T

‖∇Λ2αu‖2L2 �‖∇Λαu0‖2L2 exp

{∫ T

0

‖Λ2αu(·, t)‖L∞+‖∇u(·, t)‖Lsdt

}
.

Under the assumption (3.4.73), this inequality implies that

u ∈ L∞(0, T ;H1+α).
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When 0 < α < 1/3, we choose p = 2d/(d− 2α), and q = d/α, we have

‖∇u‖Lp � C‖∇Λαu‖L2

and for 2α+
d

s
� 1,

‖Λ3αu‖Lq � C‖∇u‖Ls ,

thanks to Lemma 3.4.11. Again, we recover the inequality (3.4.78). There-

fore, we complete the proof for all 0 < α � 1/2.

Scaling analysis. Let u(x, t) be a solution of the equation (3.4.57), then

the scaling uλ(x, t) = u(λx, λ
2αt) is also a solution. Motivated by the work

of Caffarelli, Kohn and Nirenberg [33] (see also [229]) for the Navier-Stokes

equation, we call the norm ‖Λβu‖Lr(0,T ;Ls) is of dimension zero if

‖Λβuλ‖Lr(0,T ;Ls) = ‖Λβu‖Lr(0,T ;Ls)

holds for any λ > 0, see also [229]. It is easy to see this holds if and only if

β =
2α

r
+
d

s
. (3.4.79)

Therefore, the regularity criteria may involve the finiteness of ‖Λβu‖Lr,s for

β, r, s satisfying (3.4.79). Note that condition (3.4.72) satisfy this relationship

with r = 1, s =∞ and β = 1 when α =
1

2
. Therefore, we expect the following

regularity criteria concerned with ‖Λβu‖Lr,s.

Theorem 3.4.11 Let d � 3, α ∈ (0, 1/2] and u0 ∈ Hm+α with m � 4, so

that there exists a classical solution u ∈ C([0, T );Hm+α∩C2) to the fractional

Landau-Lifshitz equation (3.4.57). Then for any 0 < T <∞, if∫ T

0

‖Λ2αu(t)‖L∞dt <∞,

and ∫ T

0

‖Λβu(·, t)‖Lsdt <∞,

for some β � 2α+
d

s
and 1 < s <∞, then the local solution can be extended

into a global classical solution and remains in L∞(0, T ;Hm+α).

Remark 3.4.6 When α < 1/2, we can choose s sufficiently large such that

we can choose β < 1/2 to reduce the differentiability requirement of Z as

required in Theorem 3.4.10, therefore the theorem is meaningful.
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Proof Repeating the arguments used in Theorem 3.4.10, we easily prove that

sup
0�t�T

‖u‖H1+α � C‖u0‖H1+α .

Now we go to the global estimates for ‖ΔΛαu‖L2.

Multiply the equation (3.4.57) with Δ2Λ2αZ to obtain

1

2

d

dt
‖ΔΛαu‖2L2 =(Δ(u × Λ2αu,ΔΛ2αu))

=(Δu × Λ2αu+ 2∇u×∇Λ2αu,ΔΛ2αu)

=(Λα(Δu× Λ2αu) + 2Λα(∇u×∇Λ2αu),ΔΛαu)

= : I + II.

(3.4.80)

The following proof is divided into three cases, according to 2α < β � 3α

and β > 3α.

Case 1. 2α < β � 3α.

For I, we have

|I| =|(Λα(Δu× Λ2αu),ΔΛαu)|
�C‖ΔΛαu‖L2

(‖ΔΛαu‖L2‖Λ2αu‖L∞ + ‖Δu‖Lp‖Λ3αu‖Lq

)
�C‖ΔΛαu‖L2

(
‖ΔΛαu‖L2‖Λ2αu‖L∞ + ‖∇Λαu‖θ+δ

L2 ‖Λβu‖2−(θ+δ)
Ls

)
,

where we have used the Gagliardo-Nirenberg interpolation inequality and the

constants 2 � p, q �∞, q 
=∞, 0 � θ, δ � 1 satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

p
+

1

q
=

1

2
,

1− d
p
= θ(1 + α− d

2
) + (1− θ)

(
β − d

s

)
,

3α− d
p
= δ

(
1 + α− d

2

)
+ (1− δ)

(
β − d

s

)
.

Since 2α+
d

s
< β, we find θ + δ � 1. Choosing θ + δ = 1, we have

|I| � C‖ΔΛαu‖2L2(‖Λ2αu‖L∞ + ‖Λβu‖Ls).

For the second term II, by Gagliardo-Nirenberg interpolation inequality

for the fractional Sobolev spaces, we have

|II| � C‖ΔΛαu‖2L2‖Λβu‖Ls.

Therefore, combining the estimates for I and II, we have

1

2

d

dt
‖ΔΛαu‖2L2 � C‖ΔΛαu‖2L2(‖Λ2αu‖L∞ + ‖Λβu‖Ls),
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which implies that

sup
0�t�T

‖ΔΛαu(t)‖2L2 � C‖‖ΔΛαu0‖2L2‖e
∫

T
0

(‖Λ2αu‖L∞+‖Λβu‖Ls )dt.

Case 2. β > 3α.

For the first term I, we have

|I| =|(Λα(Δu × Λ2αu),ΔΛαu)

�‖ΔΛαu‖L2

(‖ΔΛαu‖L2‖Λ2αu‖L∞ + ‖Δu‖Lp‖Λ3αu‖Lq

)
where

1

p
+

1

q
=

1

2
and q ∈ [2,∞). Choosing p =

2d

d− 2α
> 2 and q =

d

α
<∞,

we have

‖Δu‖Lp � C‖ΔΛαu‖L2,

and

‖Λ3αu‖Lq � C‖Λβu‖Ls

thanks to the condition β � 2α+
d

s
and Lemma 3.4.11. Hence

|I| � C‖ΔΛαu‖2L2

(‖Λ2αu‖L∞ + ‖Λβu‖Ls

)
.

For the second term,

|II| �C|(Λα(∇u×∇Λ2αu),ΔΛαu)|
�C‖ΔΛαu‖L2

(‖∇Λαu‖Lp1‖∇Λ2αu‖Lq1 + ‖∇u‖Lp2‖∇Λ3αu‖Lq2

)
= : C‖ΔΛαu‖L2 (II1 + II2) .

The terms in the parentheses (· · · ) can be handled similarly, by using the

Gagliardo-Nirenberg interpolation inequality and adjusting the index p1, q1, p2
and q2 appropriately. We then obtain

|II| � C‖ΔΛαu‖2L2

(‖Λ2αu‖L∞ + ‖Λβu‖Ls

)
.

Therefore, in the case β > 3α, we get the bound

sup
0�t�T

‖ΔΛαu‖L2 � C.

Higher order estimates can be obtained by induction. By interpolation

between m− 1 + α and m+ α,

‖u‖Hm � C‖u‖αHm−1+α‖u‖1−α
Hm+α ,

we recover all the integer order bound for the solution. The proof is complete.

It will be very interesting if one can prove the global existence of smooth

solutions when the regularity criteria is dropped.
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3.5 Fractional QG equations

This section considers the following inviscid two-dimensional quasigeostrophic

(QG) equation

θt + u ·∇θ = 0 (3.5.1)

as well as the two-dimensional viscous QG equation

θt + u ·∇θ + κ(−Δ)αθ = 0, (3.5.2)

where θ = θ(x, t) is a real valued function of x and t, 0 � α < 1 and

κ > 0 are real numbers. As mentioned in Chapter 1, θ represents potential

temperature, u represents the fluid velocity, which can be represented by the

stream function ψ

u = (u1, u2) =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
, (−Δ)1/2ψ = −θ, (3.5.3)

and ψ is identified with the pressure. In what follows, the spatial domain is

either periodic when x ∈ T2 or the whole space when x ∈ R2. Hereinafter,

we usually denote Λ = (−Δ)1/2. Introducing the Riesz operator, u can be

expressed as

u = (∂x2Λ
−1θ,−∂x1Λ

−1θ) = (−R2θ,R1θ) =: R⊥θ,

where Rj , j = 1, 2 are Riesz operators

R̂jf(k) = −i kj|k| f̂(k), k ∈ Z2\{0},

R̂jf(ξ) = −i ξj|ξ| f̂(ξ), ξ ∈ R2\{0}.

In case of R2, the Riesz operator can be expressed in terms of the singular

integral

Rjf(x) = CP.V.

∫
R2

f(x− y)yj
|y|3 dy, j = 1, 2,

where C is a constant. By Calderon-Zygmund theory of singular integral,

there exists a constant C = Cp for any p ∈ (1,∞) such that

‖u‖Lp � Cp‖θ‖Lp. (3.5.4)

In what follows, we will also consider the nonhomogeneous QG equation

θt + u · ∇θ + κ(−Δ)αθ = f, (3.5.5)
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where f is a known function.

In what follows, we will present some of the recent results for the two-

dimensional fractional QG equation, such as the existence and uniqueness of

its solutions, inviscid limit, and long-time behavior. For more details, readers

are referred to [22, 34, 39, 40, 52–56, 58, 119, 120, 125, 190, 197, 220, 221, 223]

and the references therein. In particular, [39,54] proved existence of smooth

solutions for subcritical case, and [52,58] proved global existence of solutions

with small initial data in L∞. Recently, [125] proved the global well-posedness

for the critical 2D dissipative quasi geostrophic equation based on a non-

local maximum principle involving appropriate moduli of continuity, and [34]

showed that solutions of the quasi-geostrophic equation with initial L2 data

and critical diffusion (−Δ)1/2 are locally smooth for any space dimension

based on the De Giorgi iteration idea. Under the supercritical situation, [40]

proved global existence for small initial data in a scale invariant Besov space.

3.5.1 Existence and uniqueness of solutions

By a weak solution of (3.5.5), we mean a function θ ∈ L∞(0, T ;L2(T2)) ∩
L2(0, T ;Hα(T 2)) such that∫

T2

θ(T )ϕdx−
∫
T2

θ0ϕdx−
∫ T

0

∫
T2

θu ·∇ϕdxdt

+κ

∫ T

0

∫
T2

Λαθ · Λαϕdxdt =

∫ T

0

∫
T2

fϕdxdt,

for any ϕ ∈ C∞(T2).

Theorem 3.5.1 Let T > 0 be arbitrary, θ0 ∈ L2(T2) and f ∈ L2(0, T ;

L2(T2)), then there exists at least one weak solution θ ∈ L∞(0, T ;L2(T2)) ∩
L2(0, T ;Hα(T 2)) for two-dimensional QG equation.

By Faedo-Galerkin method, we can construct approximate solutions θn

such that ‖θn(t)‖L2 � C‖θ0‖L2 . By selecting a subsequence if necessary, θn

converges to a weak solution of (3.5.5). Indeed, it suffices to consider the

convergence for the nonlinear terms∫
T2

θnun ·∇ϕdx = − (−1)j+1

2

∫
T2

2∑
j=1

R{j}(θn)
[
Λ,
∂ϕ

∂xj

]
(Λ−1θn)dx,

(3.5.6)

where

[
Λ,
∂ϕ

∂xj

]
= Λ

∂ϕ

∂xj
− ∂ϕ
∂xj

Λ denotes the commutator and {j} = 2 when

j = 1 and {j} = 1 when j = 2. Then the right hand side of (3.5.6) can be
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rewritten as ∫
T2

2∑
j=1

R{j}(θn)Kj(θn)dx.

It can be shown thatKj is a compact operator depending on the test function

ϕ, from which it follows the convergence of the nonlinear terms.

In general, weak solution of the equation is not unique. However, one can

show that weak solution is unique among strong solutions.

Theorem 3.5.2 Suppose that α ∈ (1/2, 1], T > 0 and p, q satisfy relations

p � 1, q > 0,
1

p
+
α

q
= α− 1

2
.

Then for any θ0 ∈ L2, the two-dimensional QG equation admits at most one

solution θ ∈ L∞(0, T ;L2) ∩ L2(0, T ;Hα) such that θ ∈ Lp(0, T ;Lq).

Proof Suppose that θ1 and θ2 are two different weak solutions with the same

initial data. Then θ = θ1 − θ2 satisfies

∂tθ + u ·∇θ1 + u2 ·∇θ + κΛ2αθ = 0,

where u = u1 − u2 = R⊥θ1 − R⊥θ2. Taking inner product of this equation

with ψ = −Λ−1θ and using
∫
T2 ψu ·∇θ1 = 0 yield∣∣∣∣∫

T2

θu2 · ∇ψ
∣∣∣∣ � κ‖ψ‖2Hα+1

2
+ C(κ)‖θ2‖

1
1−β

Lp ‖ψ‖2H1/2 ,

where β =
1

α

(
1

2
+

1

p

)
and C(κ) = Cκ−

β
1−β . Then

d

dt
‖ψ‖2H1/2 � C(κ)‖θ2‖

1
1−β

Lp ‖ψ‖2H1/2 ,

from which it follows that ψ = 0 and hence θ = 0.

By applying the energy method, the existence and uniqueness of local

smooth solution for the inviscid QG equation can be proved, as it did in the

monographs [151, 152].

Theorem 3.5.3 Let κ = 0, and θ0 ∈ Hk(R2) with k � 3 being an integer,

then there exists T∗ > 0 such that there exists a unique local smooth solution

θ ∈ Hk(R2) for the two-dimensional QG equation on [0, T∗). Furthermore,

if T∗ <∞, then ‖θ(·, t)‖Hk →∞ as t↗ T∗.
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To give blow up criteria similar to the Beale-Kato-Majda criteria for

the Euler equation [18], we introduce α(x, t) = D(x, t)ξ · ξ, and α∗(t) =

maxξ∈R2 α(x, t) where ξ(x, t) =
∇
⊥θ

|∇⊥θ| represents the direction vector of

∇
⊥θ and D =

1

2
((∇u) + (∇u)t) is the symmetric part of the velocity gradi-

ent.

Theorem 3.5.4 Suppose that θ = θ(x, t) is the unique smooth solution of

the two-dimensional inviscid QG equation with initial data θ0 ∈ Hk(k � 3),

then the following statements are equivalent:

(1) 0 � t < T∗ <∞ is maximum existence interval of solution Hk;

(2) when T ↗ T∗,∫ T

0

‖∇θ‖L∞(s)ds→∞, T → T∗;

(3) α∗(t) satisfy ∫ T

0

α∗(s)ds→∞, T → T∗. (3.5.7)

Proof Similar to [18], it is easy to show that (1) and (2) are equivalent. It then

suffices to show that (1) and (3) are equivalent. Since from Riesz operator,

û(ξ) =
i(−ξ2, ξ1)
|ξ| θ̂(ξ), one can show by Sobolev theorem that

α∗(t)�C‖∇u(t)‖L∞(R2) � C‖∇u(t)‖Hk−1

�C‖u‖Hk � C‖θ(t)‖Hk , ∀k � 3, (3.5.8)

where C is a constant. Hence, if (3.5.7) holds, then integrating (3.5.8) over

[0, T ] yields ∫ T

0

‖θ(s)‖Hkds→∞, T → T∗.

Therefore [0, T∗) is the maximal existence interval of θ(x, t).

On the contrary, if ∫ T∗

0

α∗(s)ds �M <∞,

then it follows ∫ T∗

0

‖∇⊥θ(s)‖L∞ds � eM‖∇⊥θ0‖L∞ <∞. (3.5.9)
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In fact, based on (1.3.7) and definition of α∗, one obtains

d

dt
‖∇⊥θ(t)‖L∞ � α∗(t)‖∇⊥θ(t)‖L∞ .

(3.5.9) then follows from the Gronwall inequality. The proof is complete.

Theorem 3.5.5 Let α ∈ (0, 1), κ > 0, Ω = R2 and θ0 ∈ Ḣs, then the

following assertions hold.

(1) If s = 2 − 2α, then there exists constant C0 such that for any weak

solution of (3.5.2) satisfying ‖Λsθ0‖L2 � κ/C0 there holds ‖Λsθ(t)‖L2 �

‖Λsθ0‖L2 for all ∀t > 0 and θ ∈ L2(0,∞; Ḣs+α). The solution is unique if

θ0 ∈ L2.

(2) If s ∈ (2 − 2α, 2 − α], then there exists T > 0 depending on κ

and ‖Λsθ0‖L2, such that for any weak solution of (3.5.2), there holds θ ∈
L∞(0, T ; Ḣs) ∩ L2(0, T ; Ḣs+α) and θ is unique if θ0 ∈ L2.

(3) If s > 2−α, there exists T > 0 depending on κ, ‖θ0‖L2 and ‖Λsθ0‖L2

such that any weak solution θ of (3.5.2) belongs to L∞(0, T ;Hs) ∩ L2(0, T ;

Ḣs+α) if θ0 ∈ Hs and is unique.

(4) If s > 2− 2α, then there exists a constant C0 > 0 such that if

‖θ0‖
s−2(1−α)

s

L2 ‖Λsθ0‖
2(1−α)

s

L2 � κ/C0, (3.5.10)

then weak solution of equation (3.5.2) is unique and

‖Λsθ(t)‖L2 � ‖Λsθ0‖L2.

Furthermore, if (3.5.10) holds strictly, then θ ∈ L2(0,∞; Ḣs+α).

Proof First, we note (u · ∇(Λsθ),Λsθ) = 0 since ∇ · u = 0. Taking L2 inner

product of (3.5.2) with θ, one has

1

2

d

dt
‖θ‖2L2 + κ‖Λαθ‖2L2 � 0.

Integration then yields θ ∈ L∞(0,∞;L2) ∩ L2(0,∞; Ḣα). Taking L2 inner

product of (3.5.2) with Λ2sθ yields

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 = −(Λs(u ·∇θ)− u ·∇(Λsθ),Λsθ). (3.5.11)

Since Λs and ∇ commute, one has from commutator estimates and (3.5.4)

that

|(Λs(u ·∇θ)− u ·∇(Λsθ),Λsθ)| =|(Λs(u ·∇θ)− u · (Λs
∇θ),Λsθ)|

�C‖Λs(u ·∇θ)− u · (Λs
∇θ)‖L2‖Λsθ‖L2

�C
(‖∇u‖Lp1‖Λsθ‖Lp2

+ ‖Λsu‖Lp2‖∇θ‖Lp1

)‖Λsθ‖L2

�C‖Λθ‖Lp1‖Λsθ‖Lp2‖Λsθ‖L2 ,

(3.5.12)
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where p1, p2 > 2 and
1

p1
+

1

p2
=

1

2
. In particular by selecting p1 =

2

α
and

p2 =
2

1− α , one has from (3.5.11) and (3.5.12)

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 � C‖Λ2−αθ‖L2‖Λs+αθ‖L2‖Λsθ‖L2 , (3.5.13)

thanks to the Sobolev embedding

‖Λθ‖Lp1 � C‖Λ2−αθ‖L2 , ‖Λsθ‖Lp2 � C‖Λs+αθ‖L2 .

Case 1. When s = 2− 2α.

In this case,

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+α‖2L2 � C‖Λsθ‖2L2‖Λs+α‖2L2 .

If ‖Λsθ0‖L2 � κ/C, then for any t � 0, there holds for all t > 0

‖Λsθ(t)‖L2 � ‖Λsθ0‖L2 �
κ

C
.

Hence, θ exists in the Ḣs for all t > 0 and is uniformly bounded. Furthermore,

if ‖Λsθ0‖L2 < κ/C strictly, then θ ∈ L2(0,+∞; Ḣs+α).

Case 2. When s ∈ (2(1− α), 2 − α].

Recall the Gagliardo-Nirenberg inequality

‖Λ2−αθ‖L2 � C‖Λs+αθ‖βL2‖Λsθ‖1−β
L2 , β =

2− α− s
α

∈ [0, 1).

Then by using (3.5.13) and Young’s inequality, we obtain

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 �C‖Λs+αθ‖1+β

L2 ‖Λsθ‖2−β
L2

�
κ

2
‖Λs+αθ‖2L2 + C(κ)‖Λsθ‖

2(2−β)
1−β

L2 .

(3.5.14)

Therefore, one has

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 � C(κ)‖Λsθ‖

2(3α+s−2)
2α+s−2

L2 (3.5.15)

and by ignoring the positive term on the LHS and direct integration

‖Λsθ‖2L2 � ‖Λsθ0‖2L2

[
1− tC(κ)α

s− 2 + 2α
‖Λsθ0‖−

s−2+2α
α

L2

]
.
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This inequality shows local existence in the Ḣs for any initial data θ0 ∈ Ḣs.

Furthermore, (3.5.15) implies within the interval of existence that∫ t

0

‖Λs+αθ(s)‖2L2ds �
1

κ
‖Λsθ0‖2L2 +

C(κ)

κ

∫ t

0

‖Λsθ(s)‖
2(3α+s−2)
2α+s−2

L2 ds <∞.

It is standard to derive global existence when the initial data is small.

Since α < 1, then 1 + β + (2 − β) s

s+ α
> 2. Let γ ∈ (0, 2 − β) then

1+β+
sγ

s+ α
= 2, i.e., γ=

(s+ α)(2α − 2 + s)

s(s+ α)
=

2α− 2 + s

s
and 2−β−γ > 0.

From the interpolation inequality

‖Λsθ‖L2 � C‖Λs+αθ‖
s

s+α

L2 ‖θ‖
α

s+α

L2 ,

it follows that

‖Λsθ‖2−β
L2 = ‖Λsθ‖γL2‖Λsθ‖2−β−γ

L2 � C‖Λs+αθ‖
sγ

s+α

L2 ‖θ‖
αγ
s+α

L2 ‖Λsθ‖2−β−γ
L2 .

(3.5.16)

Using (3.5.14) and (3.5.16), one has

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 �C‖Λs+αθ‖2L2‖θ‖

αγ
s+α

L2 ‖Λsθ‖2−β−γ
L2

=C‖Λs+αθ‖2L2‖θ‖
s−2(1−α)

s

L2 ‖Λsθ‖
2(1−α)

s

L2 .

Therefore if initial values satisfies (3.5.10), then global existence in Ḣs fol-

lows.

Case 3. When s > 2− α.

It follows from the Gagliardo-Nirenberg inequality that

‖Λ2−αθ‖L2 � C‖Λsθ‖
2−α

s

L2 ‖θ‖
s+2−α

s

L2 .

Then from (3.5.13) and Young’s inequality,

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 �C‖Λs+αθ‖L2‖Λsθ‖

s+2−α
s

L2 ‖θ‖
s−2+α

s

L2

�
κ

2
‖Λs+αθ‖2L2 +

C

κ
‖Λsθ‖

2(s+2−α)
s

L2 ‖θ‖
2(s−2+α)

s

L2 .

(3.5.17)

If θ0 ∈ L2, then

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 �

C

κ
‖θ0‖

2(s−2+α)
s

L2 ‖Λsθ‖
2(s+2−α)

s

L2 . (3.5.18)
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Ignoring the positive term on the LHS and integrating over [0, T ] then yield

‖Λsθ‖2L2 � ‖Λsθ0‖2L2

[
1− Ct(2− α)

sκ
‖θ0‖

2(s−2+α)
s

L2 ‖Λsθ0‖
2−2α

s

L2

]− s
2−α

.

Therefore, one obtains the local existence of solutions in Hs for any given

initial data θ0 ∈ Hs for s > 2 − α. Furthermore, θ ∈ L2(0, T ; Ḣs+α) follows

by integrating (3.5.18) over [0, T ]. Similar to Case 2, it is standard that small

initial data implies global existence in Hs. The details are omitted for clarity.

So far, the proof is formal since we only provide the a priori estimates.

In order to give a rigorous proof, we can make use of the standard method of

retard mollification (cf. [33]) to first obtain as above the uniform bounds for

the mollified solutions and then pass to the limit to obtain the same bounds

for the weak solution θ. The approximate solution can be constructed as

follows. Let θn satisfy

∂tθn + un ·∇θn + Λ2αθn = 0, (3.5.19)

where un = Sδn(θn) is

Sδn(θn) =

∫ ∞

0

φ(τ)R⊥θn(t− δnτ)dτ,

and δn → 0. The function φ is smooth and non-negative, supported on [1, 2]

and

∫ ∞

0

φ(t)dt = 1. For any n, (3.5.19) is linear and un(t) only depends on

θn in [t− 2δn, t− δn].
To complete the proof, we need to show uniqueness. First we state the

following proposition, whose proof will be postponed.

Proposition 3.5.1 Let κ > 0, α > 0 and θ is a weak solution of the two-

dimensional QG equation (3.5.2) with initial data θ0 ∈ L2. If moreover for

some ε ∈ (0, α] and q <∞, there holds∫ T

0

‖Λ1−α+εθ(s)‖qLpds <∞, 1

p
+
α

q
=
α+ ε

2
,

then the weak solution is unique on [0, T ].

Using the proposition, we immediately know the uniqueness of the weak

solution in the following cases.

1. When κ>0, α ∈ (0, 1), s=2(1−α), θ0∈L2 and ‖Λsθ0‖L2<κ/C0 holds

strictly. In this case, the solution θ ∈ L2(0,∞;Hs+α) ∩ θ ∈ L∞(0,∞;Hs)

is global. By interpolation, θ satisfy the criterion in Proposition 3.5.1 and

uniqueness follows.
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2. When κ > 0, α ∈ (0, 1), s � 2(1 − α) and θ0 ∈ L2. Similarly, from

interpolation uniqueness follows.

3. When κ > 0, α ∈ (0, 1), s > 2(1 − α) and θ0 ∈ L2. In this case, one

has θ ∈ L∞(0,∞;Hs). Since s > 2(1− α), one can choose q < ∞ such that

Hs ↪→ H1−α+ε,p. Therefore, θ ∈ Lq(0, T ;H1−α+ε,p) and uniqueness follows.

Proof of Proposition 3.5.1 Suppose that θ1, θ2 are two solutions of (3.5.2)

and ui = R⊥θi, i = 1, 2. Let θ = θ1 − θ2 and u = u1 − u2, then

θt + u1 ·∇θ + u ·∇θ2 + κΛ2αθ = 0.

Therefore, by taking inner product with ϕ, one has

(θt, ϕ) + κ(Λ
αθ,Λαϕ) = −(u1 ·∇θ, ϕ)− (u ·∇θ2, ϕ).

Since u is divergence free, letting ϕ = θ then yields

1

2

d

dt
‖θ‖2L2 + κ‖Λαθ‖2L2 = −(u ·∇θ2, ϕ) � C‖∇θ2‖L∞‖θ‖2L2 ,

from which it follows by Gronwall inequality that

‖θ‖2L2 � C‖θ0‖2L2 exp

{∫ t

0

‖∇θ2‖L∞dτ

}
. (3.5.20)

Let α > 0 and ε ∈ (0, α], then since ∇ · u = 0, one has

−(u ·∇θ2, θ) = −(Λα−ε(θu),Λ−α+ε∇θ2) � ‖Λ1−α+εθ2‖Lp1‖Λα−ε(θu)‖
Lp′1
,

where by calculus inequalities

‖Λα−ε(θu)‖
Lp′

1
�C‖θ‖Lq1‖u‖Ḣα−ε,q2 + C‖u‖Lq1‖θ‖Ḣα−ε,q2

�C‖θ‖Lq1‖θ‖Ḣα−ε,q2 ,

where
1

q1
+

1

q2
=

1

p′1
= 1− 1

p1
. Therefore

1

2

d

dt
‖θ‖2L2 + κ‖θ‖2Ḣα � C‖θ‖Lq1‖θ‖Ḣα−ε,q2 ‖θ2‖Ḣ1−α+ε,p1 .

Furthermore, by Gagliardo-Nirenberg inequality

‖θ‖Lq1 �C‖θ‖1−β
L2 ‖θ‖βḢα

, β =
1

α

(
1− 2

q1

)
∈ (0, 1);

‖θ‖Ḣα−ε,q2 �C‖θ‖γ
Ḣα
‖θ‖1−γ

L2 , γ =
1

α

(
1 + α− ε− 2

q2

)
∈ (0, 1),
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which yields

1

2

d

dt
‖θ‖2L2 + κ‖θ‖2Ḣα � C‖θ2‖Ḣ1−α+ε,p1‖θ‖2−(β+γ)

L2 ‖θ‖β+γ

Ḣα
.

Let p2 = 2/(β + γ), then by Young inequality

1

2

d

dt
‖θ‖2L2 + κ‖θ‖2Ḣα �

κ

2
‖θ‖2

Ḣα + C(κ)‖θ2‖p
′
2

Ḣ1−α+ε,p1
‖θ‖2L2 ,

where p′2 = p2/(p2 − 1) = 2/(2− (β + γ)). Thus

d

dt
‖θ‖2L2 + κ‖θ‖2Ḣα � C‖θ2‖p

′
2

Ḣ1−α+ε,p1
‖θ‖2L2 ,

from which it follows from Gronwall inequality that

‖θ‖2L2 � C‖θ0‖2L2 exp

{∫ T

0

‖θ2‖p
′
2

Ḣ1−α+ε,p1
dτ

}
.

We complete the proof by identifying p1 = p, p′2 = q and noting β + γ =
1

α

(
α+ ε+

2

p1

)
.

Remark 3.5.1 By (3.5.20), the solution is unique if

∫ T

0

‖∇θ‖L∞dt < ∞,

which is the BKM blow up criterion for (3.5.2). Refer to Theorem 3.5.4.

In particular, when α ∈ (1/2, 1], we have

Theorem 3.5.6 Let α ∈ (1/2, 1] and s � 0 satisfy s + 2α > 2, then if

θ0 ∈ Hs(T2), there holds for solution of the two dimensional EQ equation

(3.5.2) that

‖Λsθ(t)‖L2 � C, ∀t � T,
where C is constant depending only on T and ‖θ0‖Hs .

Proof Taking inner product of (3.5.1) and Λ2sθ yields

1

2

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 = − ((u ·∇θ),Λ2sθ

)
.

By maximum principle, Lemma 3.5.1 and multiplicative estimates,

| ((u ·∇θ),Λ2sθ
) | � κ

2
‖Λs+αθ‖2L2 + C(κ)‖Λsθ‖2L2 .

The result follows from Gronwall inequality.

For later applications, we make the Lp-estimates in the following
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Lemma 3.5.1 Let θ be a solution of the 2D QG equation, then for any

p ∈ (1,∞), there holds

‖θ(t)‖Lp � ‖θ0‖Lp .

Proof Recall that for any p ∈ (1,∞), there holds∫
|θ|p−2θΛsθdx �

1

p

∫
|Λs/2θp/2|2dx.

Therefore, multiplying the 2D QG equation by p|θ|p−2θ, integrating over

x ∈ T2 and noting ∇ · u = 0, one has

d

dt
‖θ‖pLp + κ

∫
|Λαθp/2|2dx � 0,

completing the proof since κ � 0.

3.5.2 Inviscid limit

This subsection considers the inviscid limit of the 2D QG equation when κ→
0. In Theorem 3.5.4, we have obtained local existence of smooth solutions

for κ � 0. In what follows, we denote the solutions by (θκ, uκ) when κ > 0,

and simply by (θ, u) when κ = 0.

Theorem 3.5.7 Let Ω = R2 or T2, θ and θκ are solutions of two-

dimensional QG equations (3.5.1) and (3.5.2) with the same initial data

θ0 ∈ Hs with s � 3, respectively. If [0, T∗) is maximal time interval of

existence, then for any t < T∗,

‖θ(t)− θκ(t)‖L2 � Cκ,

where C is constant depending on θ0 and T∗ only. In particular, C does not

depends on κ.

Proof Let Θ = θκ − θ and U = uκ − u. Then Θ satisfy

∂tΘ+ uκ ·∇Θ+ U ·∇θ + κΛ2α(Θ + θ) = 0.

Taking inner product with Θ yields

1

2

d

dt
‖Θ(t)‖2L2 + κ‖ΛαΘ‖2L2 =(uκ ·∇Θ,Θ) + (U ·∇θ,Θ) + κ(Λ2αθ,Θ)

= I1 + I2 + I3.

It follows that I1 = 0 by integration by parts. For I2 and I3, we have

|I2| �‖∇θ‖L∞‖U‖L2‖Θ‖L2 = ‖∇θ‖L∞‖Θ‖2L2,

|I3| �κ
2

2
‖Λ2αθ‖2L2 +

1

2
‖Θ‖2L2.
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It then follows that

d

dt
‖Θ‖2L2 + κ‖ΛαΘ‖2L2 � (2‖∇θ‖L∞ + 1)‖Θ‖2L2 + κ2‖θ‖2H2α .

By Gronwall inequality, we then have

‖Θ‖2L2 � e
∫

t
0
(2‖∇θ‖L∞+1)ds‖Θ0‖2L2 + κ2

∫ t

0

e
∫

t
τ
(2‖∇θ‖L∞+1)ds‖θ‖2H2αdτ.

Since Θ0 = 0, it then follows from Theorem 3.5.4 that ‖Θ‖L2 � Cκ, com-

pleting the proof.

Next, we state the inviscid limit result in space Hm(R2). For this we first

note

Lemma 3.5.2 Let m � 2, θ ∈ Hm+1 and u ∈ Hm with ∇ · u = 0, then

‖u ·∇θ‖Hm �C‖u‖Hm‖θ‖Hm+1 , (3.5.21)

|(u ·∇θ, θ)m| �C‖u‖Hm‖θ‖2Hm , (3.5.22)

|(u ·∇θ, θ)2| �C‖u‖H3‖θ‖2H2 , (3.5.23)

where (·, ·) represents scalar product in Hm.

Proof It suffices to note that Hm, m � 2 is an algebra.

Theorem 3.5.8 Let α ∈
(
1

2
, 1

]
, θ0 ∈ Hm, m � 3, then

(1) there exists 0 < T0 � T depending on ‖θ0‖Hm but independent of κ,

such that there exists a unique solution of (3.5.2)

θκ ∈ C([0, T0];Hm) ∩ AC([0, T0];Hm−1) ∩ L1(0, T0;H
m+α). (3.5.24)

Furthermore, {θκ}κ�0 is uniformly bounded in C([0, T0];H
m).

(2) the limit θ(t) := lim
κ→0

θκ(t) exists strongly in Hm−1 and weakly in Hm

uniformly for t ∈ [0, T0]. And θ is a solution of (3.5.1) such that

θ ∈ C([0, T0];Hm) ∩ AC([0, T0];Hm−1).

Proof The existence of smooth solutions have already been shown in Theorem

3.5.5 and 3.5.6.

Now, we show that {θκ} is uniformly bounded. Taking Hm inner product

with θκ, one has

1

2

d

dt
‖θκ‖2Hm + κ(Λ2αθκ(t), θκ(t))m � C‖θκ‖3Hm . (3.5.25)
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From the positivity of the second term on the LHS, it follows

d

dt
‖θκ‖Hm � C‖θκ‖2Hm .

By comparison principle, we have ‖θκ(t)‖Hm � ϕ(t), where ϕ(t) is solution

of the ODE
dϕ

dt
= Cϕ2(t) (3.5.26)

with initial data ϕ(0) = ‖θ0‖Hm . From classical theory of ODEs, there exist

T0 > 0 and ϕ such that ϕ is absolutely continuous in [0, T0] and satisfy

(3.5.26). In particular, it follows the local existence of smooth solutions by

Faedo-Galerkin approximation and such a priori estimates. It can be seen

that ϕ and T0 are independent of κ. From (3.5.25), there exists a continuous

function ψ on [0, T0] depending only on ‖θ0‖Hm such that

κ

∫ t

0

(Λ2αθκ(t), θκ(t))mds � ψ(t), ∀t ∈ [0, T0]. (3.5.27)

Let κ1 < κ2, Θ = θκ1 − θκ2 and U = uκ1 − uκ2 , then

∂Θk

∂t
+ κ1Λ

2αΘ+ (κ1 − κ2)Λ2αθκ2 = −U ·∇θκ1 = uκ2 ·∇Θ.

Taking Hm−1 inner product with Θ, and using (3.5.4) and Lemma 3.5.2, one

obtains

1

2

d

dt
‖Θ‖2Hm−1 � (κ2−κ1)(Λ2αθκ2 ,Θ)m−1+C2C(‖θκ1‖Hm+‖θκ2‖Hm)‖Θ‖2m−1.

Since ‖θκ‖Hm is uniformly bounded in [0, T0], we have

d

dt
‖Θ‖Hm−1 � κ2‖Λ2αθκ2‖Hm−1 +K‖Θ‖Hm−1 ,

where K = Cϕ(T0) is a constant independent of κ1 and κ2. It follows

‖Θ‖Hm−1 �κ2e
Kt

∫ t

0

‖Λ2αθκ2(s)‖Hm−1ds

�
√
κ2te

Kt

(
κ2

∫ t

0

‖Λ2αθκ2(s)‖2Hm−1ds

)1/2

,

where we have used Θ0 = 0.

Since

‖Λ2αθκ2‖2Hm−1 ∼ ‖(I + Λ2)−1/2Λ2αθκ2‖2Hm � ‖Λ2α−1θκ2‖2Hm ,
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then for 2α− 1 � α,

‖Λ2αθκ2‖2Hm−1 � ‖Λαθκ2‖2Hm = (Λ2αθκ2 , θκ2)m.

It then follows from (3.5.27) that

‖Θ‖Hm−1 �
√
κ2te

Ktψ(t)1/2,

yielding

lim
κ2→0

‖Θ(t)‖Hm−1 = 0.

Therefore, the limit θ(x, t) = limκ→0 θκ(x, t) exists strongly in Hm−1, and

is uniform in [0, T0]. Thus θ(·, t) ∈ Hm−1 is a continuous function of time.

Moreover, ‖θκ‖Hm is bounded in [0, T0] thanks to (3.5.26), hence θ(t) ∈ Hm

for any t ∈ [0, T0], θκ ⇀ θ(t) weakly in Hm and uniformly in [0, T0] and θ(t)

is weakly continuous in Hm.

We have already shown that θκ belongs to the class of functions in (3.5.24),

hence uκ · ∇θκ(t) ⇀ u · ∇θ(t) weakly in Hm−1 and uniformly in [0, T0].

Therefore, u ·∇θ(t) is weakly continuous in Hm−1. Next we show that θ is

a solution of (3.5.1). Fix κ > 0, integrating (3.5.1) over [t1, t2] then yields

θκ(t2)− θκ(t1) = −
∫ t2

t1

κΛ2αθκ + uκ ·∇θκdτ.

Let ζ ∈ Hm−1 be a smooth function, then taking inner product of the above

equation with ζ in Hm−1 yields

(θ(t2)− θ(t1), ζ)m−1 = −
∫ t2

t1

(u ·∇θ, ζ)m−1dτ.

When κ→ 0, obviously κ(Λ2αθκ, ζ)m−1 = κ(θκ,Λ
2αζ)m−1 → 0. Therefore,

θ(t2)− θ(t1) = −
∫ t2

t1

u ·∇θdτ.

It then follows that θ is a solution of (3.5.1) belonging to

θ ∈ L∞(0, T0;H
m) ∩ AC([0, T0];Hm−1).

Uniqueness follows from Proposition 3.5.1. Finally, since θ is weakly contin-

uous in Hm and lim supt→0 ‖θ(t)‖Hm � ‖θ0‖Hm , it is easy to show θ is right

continuous at t = 0 and hence right continuous at any t ∈ [0, T0]. By time

reverse, the left continuity of θ(t) ∈ Hm is obtained. The proof is complete.

Remark 3.5.2 1. Theorem 3.5.8 still holds if the 2D QG equation has an

external force term f ∈ L1(0, T ;Hm), m � 3.

2. Theorem 3.5.8 still holds in the periodic case.
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The following theorem concerns the inviscid limit of weak solutions with

initial data in L2.

Theorem 3.5.9 Let θ0 ∈ L2(T2), θ, θκ are weak solutions of equation

(3.5.1) and (3.5.2) with the same initial data θ0, respectively. Then for any

T > 0 and any ϕ ∈ L2(T2),

lim sup
κ→0

(θκ(·, t)− θ(·, t), ϕ) = 0, ∀t � T.

Proof Consider the Galerkin approximate sequence of solutions θn ∈ Sn and

θnκ ∈ Sn, where Sn = span{eimx}, 0 < |m| � n. Then there are suitable

subsequences such that θnκ → θκ and θn → θ weakly in L2(T2). Therefore

when n is large enough

|(θκ(·, t)− θ(·, t), ϕ)| �ε+ |(θnκ − θn, ϕ)|
�ε+ ‖ϕ‖L2‖θnκ − θn‖L2

�ε+ Cnκ,

where in the last step, we have used the inviscid limit of smooth solutions in

Theorem 3.5.7. The proof is complete.

3.5.3 Decay and approximation

This subsection considers the decay and approximation of the solutions of

the 2D QG equation.

Theorem 3.5.10 Let α ∈ (0, 1], θ0 ∈ L1(R2) ∩ L2(R2). Then there exists

a weak solution θ of equation (3.5.2) such that

‖θ(·, t)‖L2(R2) � C(1 + t)
− 1

2α ,

where C is a constant depending on ‖θ0‖L1 and ‖θ0‖L2.

Proof Taking Fourier transform of the equation to obtain

∂tθ̂ + |ξ|2αθ = −û ·∇θ.

Since ∇·u = 0, |û · ∇θ| � |ξ|‖θ‖2L2 by Hölder inequality, and hence it follows

from the Gronwall inequality that

|θ̂(ξ, t)| � |θ̂0(ξ)| + |ξ|
∫ t

0

‖θ‖2L2dτ � ‖θ0‖L1 + |ξ|‖θ0‖2L2t. (3.5.28)

Taking inner product of equation (3.5.2) with θ to obtain

1

2

d

dt

∫
R2

|θ|2 +
∫
R2

|Λαθ|2 = 0,
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which implies by Plancherel identity that

d

dt

∫
R2

|θ̂|2 + 2

∫
R2

|ξ|2α|θ̂|2 = 0.

For the second term, one has∫
R2

|ξ|2α|θ̂|2 �

∫
B(t)c

|ξ|2α|θ̂|2 � g2α(t)

∫
B(t)c

|θ̂|2

=g2α(t)

∫
R2

|θ̂|2 − g2α(t)
∫
B(t)

|θ̂|2,

where g ∈ C([0,∞);R+) is to be determined, B(t) = {ξ ∈ R2 : |ξ| < g(t)}
and B(t)c is its complement. From (3.5.28) it then follows

d

dt

∫
bfR2

|θ̂|2 + 2g2α(t)

∫
R2

|θ̂|2

�2πg2α(t)

∫ g(t)

0

[
‖θ0‖L1 + r

∫ t

0

‖θ(τ)‖2L2dτ

]2
rdr,

which yields by integrating on [0, t]

e2
∫ t
0 g2α(τ)dτ

∫
R2

|θ̂|2

�‖θ0‖2L2 +

∫ t

0

e2
∫ s
0
g2α(τ)dτ

[
C1g

2α+2(s) + C2sg
2α+4(s)

∫ s

0

‖θ(τ)‖4L4dτ

]
ds,

where C1 = 2π‖θ0‖2L1 and C2 = π. Let g2α(t) =

(
1

2
+

1

2α

)
[(e+t) ln(e+t)]−1,

then e2
∫ t
0
g2α(τ)dτ = [ln(e + t)]1+

1
α , and hence

‖θ‖2L2 � C[ln(e + t)]−1− 1
α .

Let g2α =
1

2α(t+ 1)
, then e2

∫
t
0
g2α(τ)dτ = (1 + t)1/α, thus

‖θ(t)‖2L2 � C(1 + t)−1/α + C(1 + t)1−
2
α

∫ t

0

‖θ(s)‖2L2 [ln(e + s)]−1− 1
αds.

It then follows from Gronwall inequality that

‖θ(t)‖2L2 � C(1 + t)−1/α, α � 1,

where C depends on ‖θ0‖L1 and ‖θ0‖L2. So far, we have proved the theorem

formally. It can be made rigorous by the retard mollification method in the

proof of Theorem 3.5.5.
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Similarly, we have

Theorem 3.5.11 Let α ∈ (0, 1], θ0 ∈ L1(R2)∩L2(R2). If f ∈ L1([0,∞);L2),

and there exists constant C such that

‖f(·, t)‖L2 � C(1 + t)−1− 1
α , |f̂(ξ, t)| � C|ξ|α, (3.5.29)

then there exists a weak solution θ of the QG equation such that

‖θ(·, t)‖L2 � C(1 + t)−
1
2α .

We will establish derivative estimates of solutions.

Theorem 3.5.12 Let α ∈ (1/2, 1], β � α and
2

2α− 1
< q < ∞. Suppose

that θ0 ∈ L1 ∩ L2, Λβθ0 ∈ L2 and f ∈ L1([0,∞];Lq ∩ L2) satisfies (3.5.29)

and Λβ−αf ∈ L2((0,∞);L2). Then the solution θ of (3.5.5) satisfies

‖Λβθ(t)‖L2 � C0(1 + t)
− 1

2α + C1

(∫ t

0

‖Λβ−αf(s)‖2L2ds

)1/2

, ∀t � 0,

(3.5.30)

where C0, C1 depend only on θ0 and f .

Proof We only give the formal proof. Take the inner product of (3.5.5) with

Λ2βθ(t) to obtain

1

2

d

dt

∫
R2

|Λβθ(t)|2dx+κ
∫
R2

|Λα+βθ(t)|2dx

= −
∫
R2

(u ·∇θ)Λ2βθdx +

∫
R2

fΛ2βθdx = I1 + I2.

(3.5.31)

For the term I2, we have

|I2| � κ

8

∫
R2

|Λα+βθ(t)|2dx+ 2

κ

∫
R2

|Λβ−αf |2dx. (3.5.32)

Next we will show that for I1, we have

|I1| � κ

8
‖Λα+βθ(t)‖2L2 + C0(θ0, κ, f)‖Λs+1− 2

p θ‖2L2 , (3.5.33)

where s = β − α + 1,
1

p
+

1

q
+

1

2
. Indeed, since u = (u1, u2) and ∇ · u = 0,

then u ·∇θ = ∇ · (uθ). Using Plancherel theorem and Hölder inequality, we
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obtain∣∣∣∣∫
R2

(u ·∇θ)Λ2βθdx

∣∣∣∣ = ∣∣∣∣∫
R2

(ξ1θ̂u1(ξ) + ξ2θ̂u2(ξ))|ξ|2β θ̂(ξ)dξ
∣∣∣∣

�

2∑
i=1

∫
R2

|ξ|β−α+1|θ̂ui(ξ)||ξ|α+β |θ̂(ξ)|dξ

�‖Λβ−α+1(θu)‖L2‖Λα+βθ‖L2

�
κ

8
‖Λα+βθ‖2L2 +

2

κ
‖Λs(θu)‖2L2 ,

(3.5.34)

where s = β − α+ 1. By multiplicative estimates, we obtain

‖Λs(θu)‖L2 � C(‖u‖Lq‖Λsθ‖Lp + ‖θ‖Lq‖Λsu‖Lp).

By the boundedness of Riesz operator, for any p ∈ (2,∞) there exists constant

C such that ‖Λsu‖Lp � C‖Λsθ‖Lp and ‖u‖Lq � C‖θ‖Lq . Therefore,

‖Λs(θu)‖L2 � C‖θ‖Lq‖Λsθ‖Lp , i = 1, 2. (3.5.35)

On the other hand, multiplying (3.5.5) with q|θ|q−2θ and integrating over

R2, one has

d

dt
‖θ‖qLq � q

(∫
|θ|q−2θfdx−

∫
|θ|q−2θ(u ·∇θ)dx− κ

∫
|θ|q−2θ(−Δ)αθ

)
.

Since ∇ · u = 0, the second item on right hand side is zero, and by the

positivity of the fractional Laplacian (−Δ)α, the third term on the right

hand side is nonnegative, we obtain

d

dt
‖θ‖qLq � q

∫
|θ|q−2θfdx � q‖f‖Lq‖θ‖q−1

Lq .

This leads to the Lp estimates of the solution,

‖θ‖Lq � ‖θ0‖Lq +

∫ t

0

‖f(τ)‖Lqdτ. (3.5.36)

Inserting this into (3.5.35) and noting the hypothesis f ∈ L1(0,∞;Lq), one

obtains

‖Λs(θu)‖L2 � C(θ0, f)‖Λsθ‖Lp � C(θ0, f)‖Λs+1− 2
p θ‖L2 .

Inserting this into (3.5.34), one then obtains (3.5.33), where C(κ, θ0, f) =
4

κ
C(θ0, f)

2. Finally, from (3.5.31), (3.5.32) and (3.5.33), we obtain

1

2

d

dt
‖Λβθ‖2L2dx+

3κ

4
‖Λα+βθ‖2L2dx � C0‖Λγθ‖2L2 +

2

κ
‖Λβ−αf‖2L2 , (3.5.37)
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where C0 = C(κ, θ, f) and γ = s+ 1− 2

p
= β − α+ 2

(
1− 1

p

)
.

Let BM = {ξ : |ξ|2 � M}, where M > 0 is to be determined. Choose

2

2α− 1
< q < ∞, then

d

2
>

1

p
=

1

2
− 1

q
> 1 − α and

1

p
+ α − 1 > 0. In this

case, γ = α+ β − 2

(
1

p
+ α− 1

)
< α+ β and hence

‖Λγθ‖2L2 =

∫
BM

|ξ|2γ |θ̂(t)|2dξ +
∫
Bc

M

|ξ|2γ |θ̂(t)|2dξ

�M2γ‖θ(t)‖2L2 +M
−4( 1

p+α−1)‖Λα+βθ(t)‖2L2 .

Lete M be sufficiently large such that M−4
(

1
p+α−1

)
<

κ

4C0
then yields

C0‖Λγθ(t)‖2L2 �
κ

4
‖Λα+βθ(t)‖2L2 + C0M

2γ‖θ(t)‖2L2 . (3.5.38)

Furthermore, since

‖Λα+βθ‖2L2 �

∫
Bc

M

|ξ|2(α+β)|θ̂|2dξ �M2α

∫
Bc

M

|ξ|2β |θ̂|2dξ

=M2α‖Λβθ‖2L2 −M2α

∫
BM

|ξ|2β |θ̂|2dξ,

then we obtain

‖Λα+βθ(t)‖2L2 �M2α‖Λβθ‖2L2 −M2(α+α)‖θ(t)‖2L2 . (3.5.39)

From Theorem 3.5.11, (3.5.37), (3.5.38) and (3.5.39), we have

d

dt
‖Λβθ(t)‖2L2 + κM‖Λβθ(t)‖2L2 � C̃0M

c(1 + t)−
1
α +

2

κ
‖Λβ−αf(t)‖2L2 ,

(3.5.40)

where C̃0 is a constant depending on f , θ0 and κ and c = max{2γ, 2α+2β}.
Let ν = κM2α, then multiplying (3.5.40) with eνt yields

‖Λβθ(t)‖2L2 �e−νt‖Λβθ0‖2L2 + C̃0M
c

∫ t

0

e−ν(t−s)(s+ 1)−
1
αds

+
2

κ

∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖2L2ds.

By observing ∫ t

0

e−ν(t−s)(s+ 1)−
1
α ds � C(1 + t)−

1
α

and ∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖2L2ds �

∫ t

0

‖Λβ−αf(s)‖2L2ds,

we thus complete the proof of Theorem 3.5.12.
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Corollary 3.5.1 Let α ∈
(
1

2
, 1

]
, m � α, and suppose that θ is a smooth

solution of (3.5.2) with initial data θ0 ∈ L1(R2) ∩ Hm(R2), then for any

t � 0, there holds

‖θ(t)‖Hm � C(1 + t)−
1
2α , ‖u(t)‖Hm � C(1 + t)−

1
2α ,

where C only depends on the initial data. Furthermore, if m � 1 and r ∈
[2,∞), then

‖Λγθ(t)‖Lr � Cr(1 + t)
− 1

2α , ‖Λγu(t)‖Lr � Cr(1 + t)
− 1

2α , 0 � γ � β − 1,

where Cr is constant depending on initial data and r.

Corollary 3.5.2 Let β > 1, then under the assumptions of Theorem 3.5.12,

‖θ(t)‖L∞ � C,

where constant C depends on f and θ0.

Proof It suffices to show that θ̂(t) ∈ L1 and ‖θ̂(t)‖L1 is uniformly bounded.

In fact, if θ ∈ Hβ, then∫
R2

|θ̂(ξ)|dξ � C
(∫

R2

(1 + |ξ|2)β |θ̂(ξ)|2dξ
) 1

2

,

where C2 =
∫
R2(1 + |ξ|2)−βdξ <∞.

The following theorem shows that when β = 1, we can get L∞ estimates

of the solution. We need only to provide L1 bound of its Fourier transform.

Lemma 3.5.3 Let β = 1, then under the assumptions of Theorem 3.5.11,

if moreover θ̂0 ∈ L1 and f̂ ∈ L1(0,∞;L1),

‖θ̂(t)‖L1 � C, ∀t � 0

for some constant C > 0.

Proof From Theorem 3.5.11, there exists constant C � 0 such that ‖∇θ(t)‖2L2

= ‖Λθ(t)‖L2 � C for all t � 0. Using Fourier transform, θ̂ can be expressed

as

θ̂ = e−κ|ξ|2αtθ̂0 −
∫ t

0

e−κ|ξ|2α(t−s)û ·∇θds+H(t),

where H(t) =

∫ t

0

e−κ|ξ|2α(t−s)f̂(s)ds. By the assumption of f , ‖H(t)‖L1 � C
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is uniformly bounded and

‖θ̂(t)‖L1 � ‖θ̂0‖L1 +

∫ t

0

‖e−κ|ξ|2α(t−s)û ·∇θ‖L1ds+ C. (3.5.41)

In the following, we will show that the second term on the RHS is uni-

formly bounded. For this we let ε > 0 to be determined and

I =

∫ t−ε

0

‖û ·∇θ‖L1ds, II =

∫ t

t−ε

‖e−κ|ξ|2α(t−s)û ·∇θ‖L1ds, if ε � t;

I = 0, II =

∫ t

t−ε

‖û ·∇θ‖L1ds, if ε > t � 0.

We first estimate II. When t > ε, then

II �

∫ t

t−ε

‖e−κ|ξ|2α(t−s)‖L2‖û ·∇θ‖L2ds

� C

∫ t

t−ε

1

(t− s) 1
2α

‖∇θ‖L2‖u‖L∞ds

� C sup
t�0
‖∇θ‖L2 sup

0�s�t
‖θ̂(s)‖L1ε1−

1
2α ,

where we have used the fundamental estimate ‖u(t)‖L∞ � C‖û(t)‖L1 �

C‖θ̂(t)‖L1 . Since ‖∇θ(t)‖L2 is bounded in time, we can select ε > 0 such

that

II �
1

2
sup

0�s�t
‖θ̂(s)‖L1 , ∀t � ε. (3.5.42)

When t < ε, similarly we obtain

II � C sup
t�0
‖∇θ‖L2 sup

0�s�t
‖θ̂(s)‖L1

∫ t

0

(t− s)− 1
2α ds � C sup

0�s�t
‖θ̂(s)‖L1ε1−

1
2α .

Thus (3.5.42) still holds.

We next estimate I. When t � ε, then for any s � 0, ‖u(s)‖L2 =

‖θ(s)‖L2 � C(1 + s)−
1
2α � C and ‖∇θ(s)‖L2 � C, thus

I �

∫ t−ε

0

‖e−κ|ξ|2α(t−s)‖L1‖û ·∇θ‖L∞ds � C

∫ t−ε

0

1

(t− s)1/α ‖û ·∇θ‖L∞ds

�C

∫ t−ε

0

1

(t− s)1/α ‖u‖L2‖∇θ‖L2ds � C

∫ t−ε

0

1

(t− s)1/α ds

�

{
Cε1−

1
α , α < 1;

C log(1/ε), α = 1.
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Since ε is fixed, we have I � C either when α < 1 or α = 1, i.e., I is uniformly

bounded in time. By (3.5.42) and (3.5.41), we obtain

‖θ̂(t)‖L1 � C +
1

2
sup

0�s�t
‖θ̂(s)‖L1 , ∀t � 0,

where C is independent of t. Therefore, we complete the proof.

Next we consider the approximation to the QG equation by linear equa-

tions. Let Θ(t) satisfy the linear equation

∂tθ + Λ2αθ = 0, θ|t=0 = θ0.

Theorem 3.5.13 Let α ∈ (0, 1], θ0 ∈ L1(R2) ∩ L2(R2) and θ is a weak

solution of 2D QG equation with initial data θ0. Then there exists some

constant C > 0 depending only on ‖θ0‖L1 and ‖θ0‖L2 such that

‖θ(t)−Θ(t)‖L2(R2) � C(1 + t)
1
2−

1
α .

Proof Let w = θ −Θ, then w satisfies

∂tw + Λ2αw = −u ·∇θ. (3.5.43)

Take the L2 inner product of this equation with w to obtain

d

dt

∫
|w|2 + 2

∫
|Λαw|2 =

∫
Θ(u ·∇θ)dx, (3.5.44)

where we have used the fact
∫
R2(u ·∇θ)θ = 0. From Proposition 3.1.2 and

Theorem 3.5.10, the right hand side of (3.5.44) is bounded by∣∣∣∣∫ Θ(u ·∇θ)dx
∣∣∣∣ � ‖∇Θ‖L∞‖θ‖2L2 � C(1 + t)−

2
α .

Similar to the proof of Theorem 3.5.10, we obtain

d

dt

∫
|ŵ|2 + 2g2α(t)

∫
|ŵ|2 � 2g2α(t)

∫
|ξ|�g(t)

|ŵ|2 + C(1 + t)− 2
α , (3.5.45)

where g(t) is to be determined. On the other hand, since α � 1, by taking

Fourier transform of (3.5.43), and by analogy of the proof of Theorem 3.5.10,

one obtains

|w(ξ, t)| � |ξ|
∫ t

0

‖θ(s)‖2L2ds � |ξ|
∫ t

0

(1 + s)−
1
α ds � C|ξ|.

Let g2α(t) =
β

2(1 + t)
, then we get by integrating (3.5.45)

(1 + t)β
∫
|ŵ|2 � C

[
(1 + s)β−

2
α ds+

∫ t

0

(1 + s)βg4(s)ds

]
.
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Therefore, we obtain

‖w‖2L2 � C(1 + t)1−
2
α ,

completing the proof.

3.5.4 Existence of attractors

This subsection considers the existence of attractors for the two-dimensional

QG equation. We first introduce some general concepts of attractors. For

more details of attractors in infinite dimensional dynamical systems, readers

may refer to Temam [213].

Definition 3.5.1 Let (W,d) be a metric space. A semi-flow in (W,d) is

defined by a family of mappings S(t) :W →W , t � 0 such that

(1) for any fixed t � 0, S(t) is continuous in W ,

(2) for any fixed w ∈W , S(0)w = w, and

(3) for any w ∈ W and s, t ∈ [0,∞), S(s)S(t)w = S(s+ t)w.

Definition 3.5.2 Let S(t) be a semi-flow in the metric space (W,d), a set

A ⊂W is called a global attractor if

(1) A is a non-empty compact subset,

(2) A is invariant, i.e., S(t)A = A for any t � 0, and

(3) limt→+∞ d(S(t)B,A ) = 0 for any bounded set B ⊂W , where d(A,B)

:= supx∈A infy∈B d(x, y).

Definition 3.5.3 (absorbing set). A set B ⊂ W is called absorbing or an

absorbing set, if for any bounded subset B0 ⊂ W , there exists t1(B0) such

that S(t)B0 ⊂B when t � t1.

Uniformly compact The operators S(t) are uniformly compact for t large,

if for every bounded set B there exists t0 depending possibly on B such

that ∪t�t0S(t)B is relatively compact in W .

Theorem 3.5.14 Let S(t) be a uniformly compact semi-flow in a metric

space W , and there exists a bounded absorbing set B. Then the ω-limit set

of B, A = ω(B) is a maximal, compact attractor, where the ω-limit set of

B ⊂W are defined as

ω(B) :=
⋂
τ�0

⋃
t�τ

S(t)B.

In applications, x ∈ ω(B)-limit is and only if there exist sequences xn ∈ B

and tn →∞ such that S(tn)xn → x when n→∞.

For completeness, we next introduce some concepts of weak attractors (cf.

[23,198]). The purpose of introducing weak attractors is to deal with the case
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when semi-flows is not uniformly compact with respect to d. Suppose that

there exists another metric δ in W . Roughly speaking, the weak attractor

is bounded in the d-topology, compact in the δ-topology, and the dynamic

maps d-bounded sets into sets that are d-bounded and δ-compact.

Definition 3.5.4 The semi-flow S(t) is called d/δ uniformly compact, if

for arbitrary d-bounded set B ⊂ W , there exists t0 possibly depending on B

such that ∪t�t0S(t)B is relatively compact in the δ-topology of W .

A set B ⊂ W is called a d-absorbing set if B is d-bounded and for any

d-bounded set B0 ⊂W there exists t1(B0) such that S(t)B0 ⊂ B when t � t1.

For any B ⊂W , its weak ω-limit set ωδ(B) can be defined as

ωδ(B) :=
⋂
τ�0

⋃
t�τ

S(t)B
δ
,

where the closure is taken in the δ-topology.

Similarly, x ∈ ωδ(B) if and only if there exist sequences xn ∈ B and

tn →∞ such that δ(S(tn)xn, x)→ 0 when n→∞.

Definition 3.5.5 A set A ⊂W is called a global d/δ weak attractor, if

(1) A is non-empty, d-bounded and δ-compact,

(2) A is invariant, i.e., S(t)A = A for all t � 0, and

(3) for any d-bounded set B ⊂W , limt→+∞ δ(S(t)B,A ) = 0.

Theorem 3.5.15 Let S(t) be a semi-flow in the metric space (W,d) and δ

be another metric in W such that S(t) : W → W is δ-continuous ∀t � 0. If

there exists a d-bounded absorbing set B and S(t) is d/δ uniformly compact,

then ωδ(B) is a global weak attractor.

Proof Denote A = ωδ(B).

(1) By definition of uniformly compact, there exists t0(B) such that

∪t�t0S(t)B is relatively δ-compact in W . That is,
⋃
t�τ

S(t)B
δ
is δ-compact

when τ � t0(B). By definition, A is the intersection of a family of non-

empty, decreasing, δ-compact sets, and thus is non-empty and δ-compact.

(2) Next we show S(t)A = A . Let x ∈ S(t)A , then there exists y ∈ A

such that x = S(t)y. By definition, there exist sequences {yn} and tn → ∞
such that δ(S(tn)yn, y) → 0 when n → ∞. By the semigroup property and

δ-continuity of S(t), one has

S(t+ tn)yn = S(t)S(tn)yn
δ−→ S(t)y = x,

as n→∞. Therefore, x ∈ A .
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We also need to show S(t)A ⊃ A . Let x ∈ A , then there exist se-

quences {yn} and tn → ∞ such that S(tn)yn
δ−→ x. When tn � t, we have

S(tn)yn = S(t)S(tn − t)yn. Since S(t) is d/δ-uniformly compact, we can

select a subsequence tnk
such that S(tnk

− t)ynk

δ−→ ỹ ∈W . As tnk
− t→∞,

it follows ỹ ∈ A and hence

S(tnk
)ynk

= S(t)S(tnk
− t)ynk

δ−→ S(t)ỹ = x,
by δ-continuity of S(t). Therefore x ∈ S(t)A .

(3) We prove by contradiction. Suppose that there exists a d-bounded set

B0 ⊂ W such that δ(S(t)B0,A ) does not tend to zero as t → ∞. That is

there exist α > 0, tn → ∞ and un ∈ B0 such that δ(S(tn)un,A ) � α > 0.

Since B absorbs B0, there exists τ = τ(B0) such that vn := S(τ)un ∈ B and

thus there exist sequences sn = tn − t→∞ and vn ∈ B such that

δ(S(sn)vn,A ) � α > 0. (3.5.46)

On the other side, since S(t) is d/δ-uniformly compact S(sn)vn has a δ-limit

in W , which belongs to A by definition of weak ω-limit set. This contradicts

with (3.5.46), completing the proof.

Here we are interested in existence of strong attractors of two-dimensional

QG equation (3.5.5). Readers who are interested in weak attractors can

refer to [22]. Let Ω = [0, 2π]2 and suppose that θ and f have mean zero

over Ω without loss of generality. That is, θ̄ :=
1

|Ω|
∫
Ω
θdx = 0 and f̄ :=

1

|Ω|
∫
Ω
fdx = 0. Otherwise, we can consider (3.5.5) with θ replaced by θ − θ̄

and f replaced by f − f̄ . The main result is as follows.

Theorem 3.5.16 Let α ∈
(
1

2
, 1

]
, κ > 0, s > 2(1− α) and f ∈ Hs−α ∩ Lp

do not depend on time. Then the solution operator S : S(t)θ0 = θ(t), ∀t > 0

well defines a semigroup in Hs, and

(1) for any fixed t > 0, S(t) is continuous in Hs;

(2) for any θ0 ∈ Hs, S : [0, t]→ Hs is continuous;

(3) for any t > 0, S(t) is a compact operator in Hs;

(4) {S(t)}t�0 has a global attractor A in Hs. A is compact and connected

in Hs, is the maximal bounded absorbing set and minimal invariant set in Hs

and attracts all bounded subsets in Hs in the norm of Hs for any s > 2(α−1);
(5) if α > 2/3, then A attracts all bounded subsets of all periodic functions

in the space L2 in the Hs-norm for any s > 2(α− 1).

Proof The rest of this section is dedicated to the proof of Theorem 3.5.16.

The proof is divided into three parts.
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1. A priori estimates and proof of (3).

Firstly we provide some useful a priori estimates. Let s > 2(1−α). Take
L2 inner product of (3.5.5) with θ to obtain

1

2

d

dt
‖θ‖2L2 + κ‖Λαθ‖2L2 = (f, θ) �

κ

2
‖Λαθ‖2L2 +

1

2κ
‖Λ−αf‖2L2,

from which it follows

d

dt
‖θ‖2L2 + κ‖Λαθ‖2L2 �

1

κ
‖Λ−αf‖2L2. (3.5.47)

Let λ1 denote the eigenvalue of Λ, then since θ has mean zero over Ω,

d

dt
‖θ‖2L2 + κλ2α1 ‖θ‖2L2 �

1

κλ2α1
‖f‖2L2.

By Gronwall inequality, one has

‖θ(t)‖2L2 �

(
‖θ0‖2L2 − F

2

μ1

)
e−μ1t +

F 2

μ1
, (3.5.48)

where μ1 = κλ2α1 and F = ‖f‖L2. It follows that there exists an absorbing

set in L2 with radius ‖θ0‖2L2 + F 2/μ1. Furthermore, by integrating (3.5.47)

over [t, t+ 1], one has

‖θ(t+ 1)‖2L2 + κ

∫ t+1

t

‖Λαθ(s)‖2L2ds �‖θ(t)‖2L2 +
1

κ
‖Λ−αf‖2L2

�

(
‖θ0‖2L2 − F

2

μ1

)
e−μ1t

+
F 2

μ1
+

1

κ
‖Λ−αf‖2L2 .

(3.5.49)

Therefore there exists t∗ = t∗(‖θ0‖2L2) such that
∫ t+1

t
‖Λαθ(s)‖2L2ds indepen-

dent of the initial data θ0 when t � t∗.

Suppose p � 2, multiply (3.5.5) by p|θ|p−2θ and integrate over Ω to obtain

d

dt
‖θ‖pLp + κ‖Λαθp/2‖2L2 � p

∫
Ω

f |θ|p−2θdx,

thanks to the divergence free condition ∇ · u = 0. Therefore

d

dt
‖θ‖pLp + κλ

2α‖θ‖pLp � p‖f‖Lp‖θp−1‖Lp′ = p‖f‖Lp‖θ‖p−1
Lp ,

following
d

dt
‖θ‖Lp +

κλ2α

p
‖θ‖Lp � ‖f‖Lp.
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Thus

‖θ(t)‖Lp �

(
‖θ0‖Lp − p‖f‖Lp

κλ2α1

)
e−

κλ2α
1
p t +

p‖f‖Lp

κλ2α1
. (3.5.50)

It follows that ‖θ‖Lp is uniformly bounded and there exists an absorbing ball

in Lp for any θ0 ∈ Lp, for any p ∈ [2,∞).

Next we consider uniform a priori estimate in Hs when s > 2(1 − α).
Let α ∈ (1/2, 1) and θ0 ∈ Hs. We let r = s if s ∈ (2(1 − α), 1) and let r

be arbitrary in (2(1 − α), 1) if s ∈ [1,∞). Then θ0 ∈ Hs ⊂ Hr ⊂ Lp, where

1

p
=

1− r
2

< α− 1

2
. Therefore θ, u ∈ L∞(0,+∞;Lp) thanks to (3.5.50). On

the other hand, by taking Hs inner product with θ, one has

d

dt
‖Λsθ‖2L2 + κ‖Λs+αθ‖2L2 �

1

κ
‖Λs−αf‖2L2 + C0(‖θ‖Lp + ‖u‖Lp)‖Λs+βθ‖2L2

�
1

κ
‖Λs−αf‖2L2 + C‖Λs+βθ‖2L2 ,

where s > 0, p ∈ [2,∞) and β =
1

2
+

1

p
< α. By Gagliardo-Nirenberg

inequality,

‖Λs+βθ‖L2 �C‖Λs+αθ‖
β
α

L2‖Λsθ‖1−
β
α

L2

�
κ

2
‖Λs+αθ‖2L2 +

C

κ
‖Λsθ‖2L2 ,

for any
1

p
∈
[
0, α− 1

2

)
. Therefore,

d

dt
‖Λsθ‖2L2 +

κ

2
‖Λs+αθ‖2L2 �

1

κ
‖Λs−αf‖2L2 +

C

κ
‖Λsθ‖2L2 .

When s � α, by uniform Gronwall inequality and (3.5.49), we know that

‖Λsθ‖L2 is uniformly bounded with respect to ‖θ0‖Hs and there exists an

absorbing set in Hs. Furthermore, by integrating this inequality over [t, t+1],

we get ∫ T

0

‖Λs+αθ(t)‖2L2dt <∞, (3.5.51)

and is uniformly bounded with respect to ‖θ0‖Hs . It follows the uniform

boundedness of ‖Λsθ‖L2 when s > 2(1 − α) by uniform Gronwall inequality

with a bootstrapping argument and the existence of an absorbing set in Hs

for s > 2(1 − α). Since the embedding Hs1 ↪→↪→ Hs1 is compact for all

s2 > s1, and there exists an absorbing set Hs when s > 2(1 − α), we know

that S(t) is compact in Hs for all t > 0.



February 6, 2015 16:57 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-3 page 226

226 Chapter 3 Fractional Partial Differential Equations

2. Proof of (2).

For any fixed θ0 ∈ Hs, we regard S(t)θ0 as a function from R+ to Hs.

We will show that this map is continuous. Since we have already shown

θ ∈ L2(0, T ;Hs+α), to show θ ∈ C([0, T ];Hs) it suffices to show that Λsθt ∈
L2(0, T ;H−α). Let ϕ ∈ Hα be arbitrary, then

(Λsθt, ϕ) = −(Λs(u ·∇θ), ϕ) − (Λs+2θ, ϕ) + (Λsf, ϕ).

Therefore

|(Λsθt, ϕ)| �
(‖Λs−α(u ·∇θ)‖L2 + ‖Λs+αθ‖L2 + ‖Λs−αf‖L2

) ‖Λαϕ‖L2 ,

from which it follows

‖Λsθt‖H−α � ‖Λs−α(u ·∇θ)‖L2 + ‖Λs+αθ‖L2 + ‖Λs−αf‖L2. (3.5.52)

Since ∇ · u = 0, we have

‖Λs−α(u ·∇θ)‖L2 = ‖Λs−α
∇(θu)‖L2 � ‖Λ1+s−α(θu)‖L2 . (3.5.53)

Let α ∈ (1/2, 1) and θ0 ∈ Hs. We let r = s if s ∈ (2(1 − α), 1) and let r

be arbitrary in (2(1 − α), 1) if s ∈ [1,∞). Then θ0 ∈ Hs ⊂ Hr ⊂ Lp, where

1

p
=

1− r
2

< α − 1

2
� 1/2. Therefore θ, u ∈ L∞(0,+∞;Lp) by (3.5.50).

Moreover, by multiplicative estimates

‖Λ1+s−α(θu)‖L2 �C(‖θ‖Lp‖Λ1+s−αu‖Lq + ‖u‖Lp‖Λ1+s−αθ‖Lq)

�C‖θ‖Lp‖Λ1+s−αθ‖Lq ,
(3.5.54)

where
1

p
+

1

q
=

1

2
. Denote q∗ =

1

1− α , then q =
2

r
< q∗. Since

1

q∗
+

(s+ α)− (1 + s− α)
2

=
1

2
, then

‖Λ1+s−αθ‖Lq � C‖Λ1+s−αθ‖Lq∗ � C‖Λs+αθ‖L2 . (3.5.55)

It follows from (3.5.52)-(3.5.55)

‖Λsθt‖H−α � (C‖θ‖Lp + 1)‖Λs+αθ‖L2 + ‖Λs−αf‖L2.

Therefore,
∫ T

0
‖Λsθt(s)‖2H−αds <∞ thanks to (3.5.50) and (3.5.51).

3. Proof of (1).

Finally, we show that for any fixed t > 0, the solution operator S(t) is
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continuous from Hs to itself. For this purpose, we let θ and η are two

solutions of the 2D QG equation with initial data θ0 and η0, respectively.

Let ζ = θ − η, w = u− v for u = R⊥θ and v = R⊥η, then ∇ · w = 0 and

(u ·∇θ, ϕ)− (v · η, ϕ) =(u ·∇θ, ϕ)− (u ·∇η, ϕ) + (u ·∇η, ϕ)− (v ·∇η, ϕ)
=(u ·∇ζ, ϕ) + (w ·∇η, ϕ),

which implies

(ζt, ϕ) + κ(Λ
αζ,Λαϕ) = −(u ·∇ζ, ϕ) + (w ·∇η, ϕ). (3.5.56)

Since ∇ · u = 0, (u · ∇ζ, ζ) = 0 and letting ϕ = ζ and using Gagliardo-

Nirenberg inequality yield

1

2

d

dt
‖ζ‖2L2 + κ‖Λαζ‖2L2 =− (w · ∇η, ϕ)

�C‖Λη‖Lp1‖ζ‖Lq‖w‖Lq � C‖Λη‖Lp1‖ζ‖2Lq

�C‖η‖W1,p1 ‖ζ‖2(1−β)
L2 ‖ζ‖2βHα

�
κ

2
‖ζ‖2Hα + C‖η‖p′2

W1,p1
‖ζ‖2L2 ,

where
1

p1
+

2

q
= 1 and β =

1

αp1
∈ (0, 1). Therefore,

d

dt
‖ζ‖2L2 + κ‖ζ‖2Hα � C‖η‖p′2

W1,p1
‖ζ‖2L2 ,

where p2 = 1/β = αp1 and p′2 = p2/(p2 − 1) =
1

1− β . From Gronwall

inequality, it follows

‖ζ‖2L2 � C‖ζ(0)‖L2e
∫ T
0
‖η(s)‖

p′2

W1,p1
ds
.

We let r = s when s ∈ (2(1 − α), 2 − α) and let r be arbitrary in (2(1 −
α), 2−α) when s ∈ [2−α,+∞), then Hs ⊂ Hr. Let p1 = 2/(2− r − α) > 1,

then p′2 = 2α/(3α+ s− 2) ∈ (1, 2] and hence

Lp′2(0, T ;W 1,p1) ⊂ Lp′2(0, T ;Hr+α) ⊂ L2(0, T ;Hr+α) ⊂ L2(0, T ;Hs+α).

Denote C1(η, T ) :=
∫ T

0
‖η(s)‖p′2

W1,p1
ds, then

C1(η, T ) �

∫ T

0

‖η(s)‖2Hs+αds < +∞.

Therefore,

κ

∫ T

0

‖ζ(s)‖2Hαds � ‖ζ(0)‖2L2

{
1 + CC1(η, T )e

C1(η,T )
}
.
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By Riesz Lemma from real analysis, we have ‖ζ(t)‖Hα → 0 for a.e. t >

0 if ‖ζ(0)‖L2 goes to zero. By the continuity of ‖ζ(t)‖Hα in t, we know

‖ζ(t)‖Hα → 0 for every t. Therefore, ‖S(t)‖ is continuous in Hs when s ∈
(2(1− α), α].

When s > α, to prove (1) in Theorem 3.5.16 we need only to show the

Lipshitz continuity of the solution operator in Hs. We only treat the case

when α ∈
(
1

2
, 1

)
while the case when α = 1 can be treated similarly to the

2D Navier-Stokes equations. Letting ϕ = Λ2αζ (3.5.56) then yields

1

2

d

dt
‖Λsζ‖2L2 + κ‖Λs+αζ‖2L2 =(Λs(u ·∇ζ)− u ·∇(Λsζ),Λsζ)

− (Λs−α(w ·∇η),Λs+αζ
)
= I1 + I2.

For the term I2, one has

|I2| = |(Λs−α(w ·∇η),Λs+αζ)| � C‖Λs−α(w ·∇η)‖2L2 +
κ

4
‖Λs+αζ‖2L2 .

By multiplicative estimates,

‖Λs−α(w ·∇η)‖L2 �C(‖Λs−αw‖Lp1‖∇η‖Lp2 + ‖w‖Lq1‖Λs−α+1η‖Lq2 )

�C(‖Λs−αζ‖Lp1‖Λη‖Lp2 + ‖ζ‖Lq1‖Λs−α+1η‖Lq2 ),

where p1, p2, q1, q2 > 2,
1

p1
+

1

p2
=

1

2
and

1

q1
+

1

q2
=

1

2
. Selecting p1 =

2

1− α ,

p2 =
2

α
, q1 =

1

1− α and q2 =
2

2α− 1
, we have

‖Λs−αζ‖Lp1 � C‖Λsζ‖L2 , |Λη‖Lp2 � C‖Λ2−αη‖L2 � C‖Λs+αη‖L2

‖ζ‖Lq1 � C‖Λ2α−1ζ‖L2 � C‖Λαζ‖L2 � C‖Λsζ‖L2 ,

‖Λs−α+1η‖Lq2 � C‖Λs+αη‖L2.

Therefore

|I2| � C‖Λs+αη‖2L2‖Λsζ‖2L2 +
κ

4
‖Λs+αζ‖2L2 .

For the term I1, we have

|I1| =| (Λs(u ·∇ζ)− u · (Λs
∇ζ),Λsζ) |

�C‖Λs(u ·∇ζ)− u · (Λs
∇ζ)‖L2‖Λsζ‖2L2 ,

since ∇ and Λ commute. By commutator estimates, we obtain

‖Λs(u ·∇ζ) − u · (Λs
∇ζ)‖L2 � C(‖∇u‖Lp1‖Λsζ‖Lp2 + ‖Λsu‖Lq1‖∇ζ‖Lq2 )

� C(‖Λθ‖Lp1‖Λsζ‖Lp2 + ‖Λsθ‖Lq1‖∇ζ‖Lq2 ),
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where p1, p2, q1, q2 > 2,
1

p1
+

1

p2
=

1

2
and

1

q1
+

1

q2
=

1

2
. Selecting p1 =

2

α
,

p2 =
2

1− α , q1 =
2

1− α and q2 =
2

α
, we get

‖Λθ‖Lp1 � C‖Λ2−αθ‖L2 � C‖Λs+αθ‖L2 , |Λsζ‖Lp2 � C‖Λs+αζ‖L2

‖Λsθ‖Lq1 � C‖Λs+αθ‖L2 , ‖Λζ‖Lq2 � C‖Λ2−αζ‖L2 � C‖Λs+αζ‖L2 .

It follows that

|I1| �C‖Λs+αθ‖L2‖Λs+αζ‖L2‖Λsζ‖L2

�C‖Λs+αθ‖2L2‖Λsζ‖2L2 +
κ

4
‖Λs+αζ‖2L2 .

Therefore

d

dt
‖Λsζ‖2L2 + κ‖Λs+αζ‖2L2 � C(‖Λs+αθ‖2L2 + ‖Λs+αη‖2L2)‖Λsζ‖2L2 ,

which implies by integration in time that

‖Λsζ(t)‖2L2 � C‖Λsζ(0)‖2L2e
∫

t
0
(‖Λs+αθ‖2

L2+‖Λ
s+αη‖2

L2 )ds.

Notice that ∫ t

0

(‖Λs+αθ‖2L2 + ‖Λs+αη‖2L2)ds <∞.

We complete the proof of continuity in (1).

Finally, item (4) can be proved by (1), (2), (3) and Theorem 3.3.8. For

item (5), we note that α > 2(1 − α) since α > 2

3
, and thus for any θ0 ∈ L2,

there holds for any T > 0 that∫ T

0

‖Λαθ‖L2 <∞

and

‖θ(t+ 1)‖2L2 + κ

∫ t+1

t

‖Λαθ(s)‖2L2ds � ‖θ(t)‖2L2 +
1

κ
‖Λ−αf‖2L2.

The proof is complete.

3.6 Fractional Boussinesq approximation

The study of flows in the Earth’s mantle consists of thermal convection in

a highly viscous fluid. For a description of dynamics of flows of an incom-

pressible fluid in processes where the thermal effects play an essential role,
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the Boussinesq approximation is a reasonable model to present essential phe-

nomena of such flows. In this section, we study the fractional Boussinesq

approximation for the non-Newtonian fluids [109]

ut + u ·∇u−∇ · τ(e(u)) = −∇π+ ηθ, (3.6.1)

∇ · u = 0, (3.6.2)

θt + u ·∇θ + κΛ2αθ = 0, (3.6.3)

subject to the initial values

u(0) = u0, θ(0) = θ0,

with the periodic boundary conditions

u(x, t) = u(x+ Lχi, t), θ(x, t) = θ(x + Lχi, t), t > 0, x ∈ Ω, (3.6.4)

where Ω = [0, L]2, L > 0 and {χi}2i=1 is the natural basis of R
2. The unknown

vector function u denotes the velocity of the fluid, the scalar function π

represents the pressure and η = (0, 1) is a unit vector in R2. θ is the scalar

temperature, Λ2α(0 < α < 1) is the power of the square root of the Laplacian

Λ = (−Δ)
1
2 and κ > 0 is the thermometric conductivity. τij(e(u)) is a

symmetric stress tensor

τij(e(·)) = 2μ0(ε+ |e|2)
p−2
2 eij − 2μ1Δeij , ε > 0, i, j = 1, 2, (3.6.5)

eij(·) = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, |e(u)|2 =

2∑
i,j=1

|eij(u)|2,

where μ0, μ1 > 0 are constants. There are many fluid materials, for example,

liquid foams, polymeric fluids such as oil in water, blood, etc., satisfying such

constitutive relation. If μ0μ1 
= 0 in the constitutive relation (3.6.5), the fluids

are called bipolar. While μ0 
= 0, μ1 = 0, the fluids are said to be monopolar,

because only the first derivative of the velocity is involved in the stress tensor,

such as the Ladyzhenskaya’s model. While p = 2, μ0 
= 0, μ1 = 0, equation

(3.6.1) turns out to be the famous Navier-Stokes equation. The fluids are

shear thinning in the case of 1 < p < 2, and shear thickening in the case of

p > 2. For definiteness, we consider the case 1 < p < 2 in the following.

The objective of this section is to study the existence, uniqueness and the

long time behavior of weak solutions. First of all, we give the definition of

weak solution as follows.
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Definition 3.6.1 Let u0, θ0 be given. A couple (u, θ) is called a weak solution

of fractional Boussinesq approximate (3.6.1)-(3.6.4), if for all T > 0 and

1 < p < 2,

u ∈ L∞(0, T ; Ḣσ) ∩ Lp(0, T ; Ḣ1,p) ∩ L2(0, T ; V̇σ), ut ∈ L2(0, T ;V ′),

θ ∈ L∞(0, T ; Ḣ) ∩ L2(0, T ; Ḣα),

and satisfy

−
∫ T

0

∫
Ω

u
∂ψ

∂t
dx+

∫ T

0

∫
Ω

ui
∂uj
∂xi
ψjdxdt+ μ1

∫ T

0

∫
Ω

ΔuΔψdxdt

+ 2μ0

∫ T

0

∫
Ω

(ε + |e(u)|2) p−2
2 eij(u)eij(ψ)dx

=

∫ T

0

∫
Ω

θψ2dxdt+

∫
Ω

u0ψ(0)dx,

for every ψ = (ψ1, ψ2) ∈ L∞(0, T ; V̇σ)∩W 1,p(0, T ; Ḣ1,p) with ψ(T ) = 0, and

−
∫ T

0

∫
Ω

θϕtdx+

∫ T

0

∫
Ω

ui
∂ϕ

∂xi
θdx+κ

∫ T

0

∫
Ω

(Λαθ)(Λαϕ)dxdt =

∫
Ω

θ0ϕ(0)dx,

for ϕ ∈ L∞(0, T ; Ḣ) ∩W 1,2(0, T ; Ḣα) with ϕ(T ) = 0.

The spaces appeared in the above definition are defined as follows. First

we let Ω = [0, L]2(L > 0) denote the periodic domain. Lq(Ω) denotes the

Lebesgue space with norm ‖ · ‖Lq for q ∈ [1,∞]. C (I,X) denotes the space

of continuous functions from the interval I to X and Lq(0, T ;X) denotes

the space of all measurable functions u on [0, T ] valued into X , with the

norm ‖u‖qLq(0,T ;X) =
∫ T

0
‖u(t)‖qXdt, for 1 � q <∞ and when ‖u‖L∞(0,T ;X) =

ess supt∈[0,T ] ‖u(t)‖X when q =∞. Hs and Ḣs denote the Sobolev spaces as

before. We also define a space of smooth periodic functions with zero integral

as follows:

V := {v ∈ C∞per(Ω) :
∫
Ω

vdx = 0},

where per represents that v is periodic with respect to x. Let Hs
per be the

completion of C∞per(Ω) in the Hs norm. Actually, if v ∈ Hs
per, we can deduce

v ∈ Ḣs for s � 0. In the following, we always assume v ∈ Ḣs and the zero

mean condition
∫
Ω
vdx = 0 is included in Ḣs. The Hs

per-norm is equivalent to

Hs-norm under the zero integral condition. In this case, the Sobolev embed-

ding theorems are also valid [192]. The space Hs satisfying the divergence

free is denoted by

Hs
σ := {u ∈ Hs| ∇ · u = 0},
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and the space Ḣs satisfying the divergence free is denoted by

Ḣs
σ := {u ∈ Ḣs| ∇ · u = 0}.

In particular, when s = 0, Ḣ = Ḣ0, Hσ = H0
σ, Ḣσ = Ḣ0

σ, respectively. We

also let (·, ·) denote the inner product of Ḣσ. When s = 2, V̇σ = Ḣ2
σ, and V

′
σ

is the dual space of V̇σ.

We also define a continuous trilinear form as follows,

b(u, υ, ω) =

∫
Ω

ui
∂υj
∂xi
ωjdx , u, υ, ω ∈ Ḣ1 ,

which has the properties : b(u, υ, ω) = −b(u, ω, υ), and b(u, υ, υ) = 0. In

particular,

(B(u), ω) = b(u, u, ω) =

∫
Ω

ui
∂uj
∂xi

ωjdx u, ω ∈ Ḣ1.

For u ∈ V̇σ, the operator Ap(·) : V̇σ → V ′ is defined by

(Ap(u), υ) =

∫
Ω

γ(u)eij(u)eij(v)dx, u, υ ∈ V̇σ,

where γ(u) = (ε+ |e(u)|2) p−2
2 .

Consider the following eigenvalue problem −Δu = λu, with periodic

boundary conditions. Let A = −Δ, according to Rellich theorem, A−1 is

compact in Ḣ , then

Aωn = λnωn, ωn ∈ D(A), (3.6.6)

where {ωn}∞n=1 are the eigenfunctions and also are basis of V̇ , λn > 0 and

λn → ∞, when n → ∞. On the other hand, for the fractional diffusion

operator Λ2α(0 < α < 1), we have

Λ2αωn = λαnωn.

Now, we apply Galerkin method to construct weak solution. We start

with some useful a priori estimates, where the commutator estimates play

an important role. Then by the compactness method, we can take the limit

for the approximating solutions, whose limit is a weak solution of Boussinesq

approximation. Finally, uniqueness is also established.

Lemma 3.6.1 Assume that u ∈ L∞(0, T ; Ḣσ)∩L2(0, T ; V̇σ), then the func-

tion B(u(t)) defined by

(B(u(t)), φ) = b(u(t), u(t), φ), ∀φ ∈ V̇σ
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belongs to L2(0, T ;V ′), and the function Ap(u(t)) defined by,

(Ap(u(t)), φ) = 2μ0

∫
Ω

(ε+ |e(u)|2) p−2
2 eij(u)eij(φ)dx

belongs to L2(0, T ;V ′).

For the detailed proof, one can refer to [27].

Let {ωn} be the normalized eigenfunctions defined as (3.6.6). Then {ωn}
forms an orthonormal basis of Ḣσ, which is also a basis of Ḣα. Let

um(t) =
m∑
i=1

him(t)ωi(x), θm(t) =
m∑
i=1

jim(t)ωi(x).

We consider the following abstract approximating equation

(umt, ωi) + (um ·∇um, ωi) + 2μ0((ε+ |e(um)|2) p−2
2 e(um), e(ωi))

+ μ1(Δum,Δωi) = (ηθm, ωi),
(3.6.7)

(θmt, ωi) + (um ·∇θm, ωi) + κ(Λαθm,Λ
αωi) = 0, (3.6.8)

with the initial conditions

(um(0), ωi) = (u0m, ωi), (θm(0), ωi) = (θ0m, ωi), (3.6.9)

where u0m → u0 in Ḣσ, θ0m → θ0 in Ḣs ∩ L2.

From the local existence and uniqueness theory of ODEs, the local in

time existence and uniqueness of solutions to equations (3.6.7)-(3.6.9) are

obtained. In order to prove the global solution, we will show some a priori

estimates independent of m.

Lemma 3.6.2 Suppose that α ∈ (0, 1), u0 ∈ Ḣσ, θ0 ∈ Ḣs ∩ L2, with

2(1 − α) � s � 2 − α, for any 0 < T < ∞, and the approximating solution

(um, θm) to (3.6.7)-(3.6.9), there holds the following estimates

sup
0�t�T

‖um(t)‖ � C,
∫ T

0

‖um(σ)‖22dσ � C,

sup
0�t�T

‖θm(t)‖ � C, sup
0�t�T

‖θm(t)‖s � C,

∫ T

0

‖θm(σ)‖2s+αdσ � C.

Proof Multiplying (3.6.8) with jim and summing up the equation, we get

1

2

d

dt
‖θm‖2 + κ‖Λαθm‖2 = 0,
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where we have used the divergence free condition ∇ · um = 0. Therefore, for

any T > 0,

‖θm(t)‖2 + 2κ

∫ T

0

‖Λαθm(s)‖2ds � ‖θ0‖2,

which gives the basic uniform boundedness of θm in L2, and the property

θm ∈ L2(0,+∞; Ḣα), which are independent of m.

Multiplying (3.6.7) with him and summing up the equation, we have

1

2

d

dt
‖um‖2 + 2μ0

∫
Ω

(ε+ |e(um)|2) p−2
2

eij(um)eij(um)dx + μ1‖Δum‖2 = (ηθm, um),

where we have used the divergence free condition. Noting that the second

term in the left hand side is nonnegative, we drop it in the following compu-

tation. Applying the Young’s inequality yields

1

2

d

dt
‖um‖2 + μ1‖Δum‖2 �

‖θm‖2
2

+
1

2
‖um‖2.

For any T > 0, we have from Gronwall inequality that for any t ∈ [0, T ]

‖um(t)‖2 � et‖u0‖2 +
∫ t

0

et−s‖θm(s)‖2ds

� eT (‖u0‖2 +
∫ T

0

‖θm(s)‖2ds),

which gives the basic uniform boundedness of um in Ḣσ, and the boundedness

of um in L2(0,∞; V̇σ), which are independent of m.

Multiplying (3.6.8) with λsi jim and summing up the equation, we obtain

1

2

d

dt
‖Λsθm‖2 + κ‖Λs+αθm‖2 = −(Λs(um ·∇θm)− um ·∇(Λsθm),Λsθm),

where we have used the condition ∇ ·um = 0, and (um ·∇(Λsθm),Λsθm) = 0.

Next we estimate the right hand side of the above equality. Noting that Λs

and ∇ are commutable, then

|(Λs(um ·∇θm)− um ·∇(Λsθm),Λsθm)|
= |(Λs(um ·∇θm)− um · (Λs

∇θm),Λsθm)|
� C‖Λs(um ·∇θm)− um · (Λs

∇θm)‖‖Λsθm‖.

Since for any p1, p2 > 2 with
1

p1
+

1

p2
=

1

2
, we have

‖Λs(um ·∇θm)− um · (Λs
∇θm)‖

�C‖∇um‖Lp1‖Λsθm‖Lp2 + ‖Λsum‖Lp2‖∇θm‖Lp1 .
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We can select p1 =
2

α
, p2 =

2

1− α such that

‖∇um‖Lp1 � C‖Λ2−αum‖, ‖∇θm‖Lp1 � C‖Λ2−αθm‖,

‖Λsum‖Lp2 � C‖Λs+αum‖, ‖Λsθm‖Lp2 � C‖Λs+αθm‖.
Thus, we have

‖Λs(um ·∇θm)− um · (Λs
∇θm)‖

� C(‖Λ2−αum‖‖Λs+αθm‖+ ‖Λs+αum‖‖Λ2−αθm‖)
= C(‖um‖2−α‖Λs+αθm‖+ ‖um‖s+α‖Λ2−αθm‖).

From the assumption 2(1 − α) � s � 2 − α, we can apply the Sobolev

embedding Ḣ2 ↪→ Ḣ2−α, and Ḣ2 ↪→ Ḣs+α, then

‖Λs(um ·∇θm)− um · (Λs
∇θm)‖ � C(‖um‖2‖Λs+αθm‖+ ‖um‖2‖Λ2−αθm‖),

and

|(Λs(um ·∇θm)− um ·∇(Λsθm),Λsθm)| (3.6.10)

�C‖um‖2‖Λsθm‖(‖Λs+αθm‖+ ‖Λ2−αθm‖).

From the ε-Young’s inequality,

C‖um‖2‖Λsθm‖‖Λs+αθm‖ � κ

4
‖Λs+αθm‖2 + C

2

κ
(‖um‖22‖Λsθm‖2). (3.6.11)

For the second term in the right hand side of (3.6.10), noticing the assumed

condition 2− α � s+ α, if 2− α = s+ α, the estimate is similar to (3.6.11),

if 2− α < s+ α, we can apply the Gagliardo-Nirenberg inequality,

‖Λ2−αθm‖ � C‖θm‖1−β‖Λs+αθm‖β, 0 < β =
2− α
s+ α

< 1.

Thus

‖um‖2‖Λ2−αθm‖‖Λsθm‖ � C‖um‖2‖Λsθm‖‖θm‖1−β‖Λs+αθm‖β
� C‖um‖22‖Λsθm‖2 + ‖Λs+αθm‖2β

� C‖um‖22‖Λsθm‖2 + κ
4
‖Λs+αθm‖2 + C,

where the last inequality is due to the ε-Young inequality.

Then

1

2

d

dt
‖Λsθm‖2 + κ

2
‖Λs+αθm‖2 � C(‖um‖22‖Λsθm‖2) + C,
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noticing that
∫ T

0
‖um(s)‖22ds � C, then

‖Λsθm(t)‖2 � C‖Λsθm0‖2 expC
∫ t
0
‖um(s)‖22ds +CT � C,

and ∫ T

0

‖Λs+αθm(σ)‖2dσ � C,

where the constant is independent of m.

Now, we can prove

Theorem 3.6.1 Suppose that α ∈ (0, 1), u0 ∈ Ḣσ, θ0 ∈ Ḣs ∩ L2, with

2(1 − α) � s � 2 − α, then there exists a unique couple weak solution (u, θ)

to equations (3.6.1)-(3.6.4), such that

u ∈L∞(0, T ; Ḣσ) ∩ Lp(0, T ; Ḣ1,p) ∩ L2(0, T ; V̇σ),

θ ∈L∞(0, T ; Ḣs) ∩ L2(0, T ; Ḣs+α), ∀T > 0.

Proof Existence: From the above a priori estimates, then we can extract a

subsequence still denoted by um such that for any T > 0,

{um} converges to u weakly star in L∞(0, T ; Ḣσ),

{um} converges to u weakly in L2(0, T ; V̇σ),

{θm} converges to θ weakly star in L∞(0, T ; Ḣs),

{θm} converges to θ weakly in L2(0, T ; Ḣs+α).

Combining Lemma 3.6.1, we have {umt} is uniformly bounded in L2(0, T ;V ′),

thus {um} converges to u strongly in L2(0, T ; Ḣ1). Then by a standard

procedure we can pass the limitm→∞, the above convergences are sufficient

to pass the limit in the linear term.

The difficulties in the limiting process, lie in the nonlinear terms. We

notice that ∫ T

0

∫
Ω

um ·∇um φdxdt = −
∫ T

0

∫
Ω

um ·∇φumdxdt,∫ T

0

∫
Ω

um ·∇θm φdxdt = −
∫ T

0

∫
Ω

um ·∇φ θmdxdt.

Thus, both convective terms are handled by the strong convergence of um in

L2(0, T ; Ḣ).



February 6, 2015 16:57 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-3 page 237

3.6 Fractional Boussinesq approximation 237

On the other hand, for 1 < p < 2, φ ∈ C
∞,∫ t

0

∫
Ω

[(ε+ |e(um(s))|2) p−2
2 eij(um(s))

− (ε+ |e(u(s))|2) p−2
2 eij(u(s))]eij(φ)dxds

�|
∫ t

0

∫
Ω

(ε+ |e(um)|2) p−2
2 eij(um − u)eij(φ)dxds|

+ |
∫ t

0

∫
Ω

[(ε + |e(um)|2) p−2
2 − (ε + |e(u)|2) p−2

2 ]eij(u)eij(φ)dxds|

=A1 +A2.

(3.6.12)

Obviously,

A1 � ε
p−2
2

∫ t

0

‖e(um − u)‖‖e(φ)‖ds � C
∫ t

0

‖um − u‖1‖φ‖1ds.

If |e(um)| < |e(u)|, by mean value theorem, there exists ξ such that |e(um)| <
ξ < |e(u)|, and

(ε + |e(um)|2) p−2
2 − (ε+ |e(u)|2) p−2

2

=
p− 2

2
(ε+ ξ2)

p−4
2 (|e(um)|2 − |e(u)|2)

�
p− 2

2
(ε+ |e(u)|2) p−4

2 (2|e(u)|)(|e(um)| − |e(u)|)

� (p− 2)(ε + |e(u)|2) p−4
2 |e(u)||e(um)− e(u)|,

then

A2 � (p− 2)

∫ t

0

∫
Ω

(ε + |e(u)|2) p−2
2 |e(um − u)||e(φ)|dxds

� (p− 2)ε
p−2
2

∫ t

0

‖e(um − u)‖‖e(φ)‖ds

� C

∫ t

0

‖um − u‖1‖φ‖1ds.

For the case of |e(um)| > |e(u)|, the result can be obtained similarly.

From the above estimates, we deduce that∫ t

0

∫
Ω

[(ε+|e(um(s))|2) p−2
2 eij(um(s))−(ε+ |e(u(s))|2) p−2

2 eij(u(s))]eij(φ)dxds

� C

∫ t

0

‖um(s)− u(s)‖1‖φ‖1ds

� C

(∫ t

0

‖um(s)− u(s)‖21ds
) 1

2
(∫ t

0

‖φ‖21ds
) 1

2

,
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where the constant is independent of m. The convergence of (3.6.12) can

be deduced from the strong convergence of um in L2(0, T ; Ḣ1). Finally, by

a standard procedure, we can show (u, θ) is a weak solution to equations

(3.6.1)-(3.6.4).

Uniqueness: Now suppose that (u1, θ1), (u2, θ2) are two solutions of

the fractional Boussinesq approximation with the same initial data. Let

u = u1 − u2, θ = θ1 − θ2, then

ut + u1·∇u1 − u2 ·∇u2 − 2μ0∇ · [(ε+ |e(u1)|2)
p−2
2 e(u1)

− (ε+ |e(u2)|2)
p−2
2 e(u2)] + μ1Δ

2u = ηθ,
(3.6.13)

θt + u1 ·∇θ1 − u2 ·∇θ2 + κΛ2αθ = 0. (3.6.14)

Multiplying (3.6.13) with u and taking the inner product in L2, then

1

2

d

dt
‖u‖2 + μ1‖u‖22 � |(ηθ, u)|+ |(u ·∇u2, u)|, (3.6.15)

where we have used the divergence free condition ∇ ·u = 0, and the property

(−∇ · [(ε + |e(u1)|2)
p−2
2 e(u1)− (ε + |e(u2)|2)

p−2
2 e(u2)], u1 − u2) � 0.

Obviously,

|(ηθ, u)| � 1

2
‖u‖2 + 1

2
‖θ‖2,

and

|(u ·∇u2, u)| � ‖u‖L∞‖∇u2‖‖u‖
� C‖u‖2‖u2‖2‖u‖
�
μ1
4
‖u‖22 + C‖u2‖22‖u‖2.

Multiplying (3.6.14) with θ and taking the inner product in L2, we have

(u1 ·∇θ1, θ)− (u2 ·∇θ2, θ) =(u1 ·∇θ1, θ)− (u1 ·∇θ2, θ)
+ (u1 ·∇θ2, θ)− (u2 ·∇θ2, θ)

=(u1 ·∇θ, θ) + (u ·∇θ2, θ).

From the divergence free condition ∇ · u = 0,

1

2

d

dt
‖θ‖2 + κ‖Λαθ‖2 � |(u ·∇θ2, θ)|, (3.6.16)

and from the Hölder inequality and Sobolev embedding, we know

|(u ·∇θ2, θ)| � ‖u‖L∞‖∇θ2‖‖θ‖ � C‖u‖2‖∇θ2‖‖θ‖.
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Noticing 2(1− α) � s � 2− α, we have

|(u ·∇θ2, θ)| � C‖u‖2‖θ2‖s+α‖θ‖
�
μ1
4
‖u‖22 + C‖θ2‖2s+α‖θ‖2.

Combining the above estimates together, we have

1

2

d

dt
(‖u‖2 + ‖θ‖2) +

(
μ1
2
‖u‖22 + κ‖Λαθ‖2

)
�

(
1

2
+ C‖ θ2‖2s+α

)
‖θ‖2 +

(
1

2
+ C‖u2‖22

)
‖u‖2.

Taking the maximum of

{
1

2
+ C‖u2‖22,

1

2
+ C‖θ2‖2s+α

}
= A (t), we have

‖u(t)‖2 + ‖θ(t)‖2 � exp
∫ t
0
2A (s)ds(‖u(0)‖2 + ‖θ(0)‖2).

From above proof, we know

∫ t

0

A (s) is bounded, which completes proof of

uniqueness.

Remark 3.6.1 The a priori estimates obtained in this section are indepen-

dent of the periodic domain Ω. Thus let |Ω| → ∞, suppose that α ∈ (0, 1),

u0 ∈ Hσ, θ0 ∈ Hs, with 2(1−α) � s � 2−α, we directly obtain the existence

and uniqueness of weak solution to the initial value problem.

In the rest of this section, we consider the decay of velocity and tem-

perature. For simplicity, we set the constant κ = 1. Now, we consider the

following equations with dissipative condition in the whole space R2:

ut+u ·∇u−∇·
(
2μ0(ε+ |e(u)|2)

p−2
2 e(u)−2μ1Δe(u)

)
= −f(u)+ηθ, (3.6.17)

∇ · u = 0, (3.6.18)

θt + u ·∇θ + Λ2αθ = 0, (3.6.19)

where f(u) satisfies the condition

(f(u), u) � l‖u‖2, for some l > 0.

The conditions of f(u) are the dissipative conditions, which play an important

role in proving the decay of solution. To obtain the decay of temperature,

we first show

Lemma 3.6.3 Let u0 ∈ Hσ, θ0 ∈ L2 ∩ L1. Then

|θ̂(ξ, t)| � ‖θ0‖L1 + C|ξ|t.
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Proof The Fourier transform of the temperature satisfies the following equa-

tion:

θ̂t + F [(u ·∇)θ] + |ξ|2αθ̂ = 0,

and

F [(u ·∇)θ] = F [∇ · (θu)] �
∑
i

∫
Ω

|ui||θ||ξi|dx � |ξ|‖u‖‖θ‖.

Thus, we have

θ̂t + |ξ|2αθ̂ � |ξ|‖u‖‖θ‖.

Now using exp(t|ξ|2α) as a multiplier, then

d

dt
(θ̂ expt|ξ|

2α

) � expt|ξ|
2α

(|ξ|‖u‖‖θ‖).

Integrating in time over [0, t], it follows that

θ̂(ξ, t) � exp−t|ξ|2α θ̂0(ξ) +

∫ t

0

exp−|ξ|
2α(t−s)(|ξ|‖u‖‖θ‖)ds

� ‖θ0‖L1 +

∫ t

0

|ξ|‖u‖‖θ‖ds

� ‖θ0‖L1 + C|ξ|t,

where the last inequality is due to the uniform boundedness of velocity and

temperature.

Now, we present the main decay results of temperature and velocity.

Theorem 3.6.2 Let (u(t), θ(t)) be a solution of equations (3.6.17)-(3.6.19),

assume initial value u0 ∈ Hσ, θ0 ∈ L2∩L1, 2(1−α) � s � 2−α, (f(u), u) �
l‖u‖2, for some l > 0. Then

Case 1: when 0 < α <
1

2
,

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

)2

⎞⎟⎟⎟⎠ ,
‖θ(t)‖2 �

C

(1 + t)2
.
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Case 2: when α =
1

2
,

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

)
⎞⎟⎟⎠ ,

‖θ(t)‖2 �
C

(1 + t)
.

Case 3: when
1

2
< α < 1,

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

) 2
α−2

⎞⎟⎟⎟⎠ ,
‖θ(t)‖2 �

C

(1 + t)
2
α−2

.

Proof First, we consider the L2 decay of temperature, then the decay of

velocity can be obtained by the decay of the temperature. Taking inner

product of (3.6.19) with θ in L2, we obtain

d

dt
‖θ‖2 + 2‖Λαθ‖2 = 0.

This energy equality is the starting point of the Fourier splitting method.

The idea is to obtain an ordinary differential inequality for the energy norm

of the temperature. This is obtained by working in the frequency space and

splitting the space into two appropriately chosen time dependent subspaces.

By Parseval’s equality,

d

dt

∫
R2

|θ̂(ξ, t)|2dξ + 2

∫
R2

|ξ|2α|θ̂(ξ, t)|2dξ = 0. (3.6.20)

Multiplying (3.6.20) with (1 + t)2, then

d

dt
[(1 + t)2

∫
R2

|θ̂(ξ, t)|2dξ] + 2(1 + t)2
∫
R2

|ξ|2α|θ̂(ξ, t)|2dξ

=2(1 + t)

∫
R2

|θ̂(ξ, t)|2dξ. (3.6.21)

Let B(t) = {ξ ∈ R2|(1 + t)|ξ|2α � 1}, then

(1 + t)

∫
R2

|ξ|2α|θ̂(ξ, t)|2dξ � (1 + t)

∫
B(t)c

|ξ|2α|θ̂(ξ, t)|2dξ

�

∫
R2

|θ̂(ξ, t)|2dξ −
∫
B(t)

|θ̂(ξ, t)|2dξ.
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From (3.6.21), we can deduce that

d

dt
[(1 + t)2

∫
R2

|θ̂(ξ, t)|2dξ] � 2(1 + t)

∫
B(t)

|θ̂(ξ, t)|2dξ. (3.6.22)

To obtain decay of the temperature, we need an intermediate estimate for

the Fourier transform of the temperature for frequency values in B(t). From

(3.6.22) and Lemma 3.6.3

d

dt
[(1 + t)2

∫
R2

|θ̂(ξ, t)|2dξ] � 2(1 + t)

∫
B(t)

(C + C|ξ|t)2dξ.

Let M2α =
1

1 + t
. We have for the term of the right hand side

∫
B(t)

(1 + |ξ|t)2dξ =
∫ 2π

0

∫ M

0

(1 + rt)2rdrdτ

� 4π

∫ M

0

(r + r3t2)dr

� 4π

(
1

2

1

(1 + t)
1
α

+
1

4

t2

(1 + t)
2
α

)
.

Then

d

dt
[(1 + t)2

∫
R2

|θ̂(ξ, t)|2dξ] � C
[

1

(1 + t)
1
α−1

+
1

(1 + t)
2
α−3

]
,

which yields by integrating in time over [0, t],

(1 + t)2
∫
R2

|θ̂(ξ, t)|2dξ � ‖θ0‖2 + C
∫ t

0

[
1

(1 + s)
1
α−1

+
1

(1 + s)
2
α−3

]
ds.

(3.6.23)

Case 1: 0 < α <
1

2
. In this case,

2

α
− 2 >

1

α
> 2 and hence

(1 + t)2
∫
R2

|θ̂(ξ, t)|2dξ �‖θ0‖2 + C
∫ t

0

[
1

(1 + s)
1
α−1

+
1

(1 + s)
2
α−3

]ds
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�‖θ0‖2 + C

⎡⎢⎢⎣ 1(
2− 1

α

)
(1 + t)

1
α−2

+
1(

4− 2

α

)
(1 + t)

2
α−4

− 3

4− 2

α

⎤⎥⎥⎦
�‖θ0‖2 + C

⎡⎢⎣ 1

(1 + t)
1
α−2

+
1

(1 + t)
2
α−4

+
3

2

α
− 4

⎤⎥⎦ .

Noting
1

α
> 2, the last term in the right hand of inequality is nonnegative.

Then the above inequality gives the following estimate

∫
R2

|θ̂(ξ, t)|2dξ � ‖θ0‖2
(1 + t)2

+ C

⎡⎢⎢⎣ 1

(1 + t)
1
α

+
1

(1 + t)
2
α−2

+
3(

2

α
− 4

)
(1 + t)2

⎤⎥⎥⎦
�

C

(1 + t)2
.

Case 2: α =
1

2
. In this case,

1

α
− 1 = 1,

2

α
− 3 = 1, and hence

∫
R2

|θ̂(ξ, t)|2dξ � ‖θ0‖2
(1 + t)2

+ C
ln(1 + t)

(1 + t)2
�

C

(1 + t)
.

Case 3:
1

2
< α < 1. In this case, 0 <

2

α
− 2 <

1

α
< 2, and hence

∫
R2

|θ̂(ξ, t)|2dξ � ‖θ0‖
2

(1 + t)2
+ C

⎡⎢⎢⎣ 1(
2− 1

α

)
(1 + t)

1
α

+
1(

4− 2

α

)
(1 + t)

2
α−2

− 3(
4− 2

α

)
(1 + t)2

⎤⎥⎥⎦
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�
‖θ0‖2
(1 + t)2

+ C

⎡⎢⎢⎣ 1(
2− 1

α

)
(1 + t)

1
α

+
1(

4− 2

α

)
(1 + t)

2
α−2

⎤⎥⎥⎦
�

C

(1 + t)
2
α−2

,

where the last term in the right hand of the first inequality is negative and

hence dropped.

After obtaining the decay of the temperature, now we consider the decay

of the velocity. Taking inner product of (3.6.17) with u in L2, we obtain

1

2

d

dt
‖u‖2 + μ1‖Δu‖2 + 2μ0

∫
Ω

(ε + |e(u)|2) p−2
2 |e(u)|2dx = (ηθ, u)− (f(u), u),

which gives

1

2

d

dt
‖u‖2 � (ηθ, u) + (−f(u), u).

Obviously,

(ηθ, u) �
l ‖u‖2
2

+
‖θ‖2
2 l
.

Combining the restricted condition for f(u), then (−f(u), u) � −l‖u‖2. Thus

1

2

d

dt
‖u‖2 � − l ‖u‖

2

2
+
‖θ‖2
2 l
.

From the decay of the temperature, we know

Case 1: 0 < α <
1

2
. In this case,

d

dt
‖u‖2 + l ‖u‖2 � ‖θ‖

2

l
�

C

l (t+ 1)2
.

Applying the Gronwall inequality,

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l

∫ t

0

exp−l(t−s)(s+ 1)−2ds.

We divide the integral into two parts,
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∫ t

0

exp−l(t−s)(s+ 1)−2ds =exp−lt

[∫ t
2

0

expls(s+ 1)−2ds

+

∫ t

t
2

expls(s+ 1)−2ds

]

�
exp−lt

l

⎡⎢⎢⎢⎣(exp lt
2 −1) + 1(

t

2
+ 1

)2 (exp
lt− exp

lt
2 )

⎤⎥⎥⎥⎦

�
exp−lt

l

⎡⎢⎢⎢⎣exp lt
2 +

explt(
t

2
+ 1

)2

⎤⎥⎥⎥⎦
�

exp−
lt
2

l
+

1

l

(
t

2
+ 1

)2 .

From the above estimates, we have

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

)2

⎞⎟⎟⎟⎠ .

Case 2: α =
1

2
. In this case,

d

dt
‖u‖2 + l ‖u‖2 �

‖θ‖2
l

�
C

l (t+ 1)
.

Similarly, we can obtain the following inequality

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l

∫ t

0

exp−l(t−s)(s+ 1)−1ds,

and ∫ t

0

exp−l(t−s)(s+ 1)−1ds �
exp−

lt
2

l
+

1

l

(
t

2
+ 1

) ,
then

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

)
⎞⎟⎟⎠ .
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Case 3:
1

2
< α < 1. In this case,

d

dt
‖u‖2 + l ‖u‖2 � ‖θ‖

2

l
�

C

l (t+ 1)
2
α−2

.

Similarly, we can obtain the following inequality

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l

∫ t

0

exp−l(t−s)(s+ 1)−
(

2
α−2

)
ds,

and ∫ t

0

exp−l(t−s)(s+ 1)−( 2
α−2)ds �

exp−
lt
2

l
+

1

l

(
t

2
+ 1

) 2
α−2

,

then

‖u(t)‖2 � exp−lt ‖u0‖2 + C
l2

⎛⎜⎜⎜⎝exp−
lt
2 +

1(
t

2
+ 1

) 2
α−2

⎞⎟⎟⎟⎠ .
Obviously, if t tends to infinity, the L2 norm of velocity tends to zero.

Remark 3.6.2 f(0) = 0, f ′(u) � l > 0 is a special case satisfying the

restricted condition for f(u).

Remark 3.6.3 Furthermore, the result of Theorem 3.6.2 can be modified

as follows:

Case 1: 0 < α <
1

2
,

‖u(t)‖2 � exp−lt ‖u0‖2 + C

l2
(
t

2
+ 1

)2 ,

‖θ(t)‖2 �
C

(1 + t)2
.

Case 2: α =
1

2
,

‖u(t)‖2 � exp−lt ‖u0‖2 + C

l2
(
t

2
+ 1

) ,
‖θ(t)‖2 �

C

(1 + t)
.
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Case 3:
1

2
< α < 1,

‖u(t)‖2 � exp−lt ‖u0‖2 + C

l2
(
t

2
+ 1

) 2
α−2

,

‖θ(t)‖2 �
C

(1 + t)
2
α−2

.

Remark 3.6.4 If α = 1, the proof becomes complex, the above method is

invalid. In fact, we cannot obtain the decay estimates of temperature similar

to inequality (3.6.23), but by other ways we can solve this problem. First,

multiplying equation (3.6.20) with f(t) = (ln(e+t))3, by Plancherel’s theorem

and detailed calculation, we can obtain

‖θ(t)‖ � C

ln(e + t)
.

Then, multiplying equation (3.6.20) with f(t) = (1 + t)2, the corresponding

decay estimates can be obtained.

3.7 Boundary value problems

This section introduces the boundary value problems of fractional differen-

tial equations by the harmonic extension method. In recent years, many

researchers explored the properties of fractional Laplacian and related frac-

tional partial differential equations defined on a domain with boundaries from

different points of view. In particular, Ma et al investigated the regional

fractional Laplacian by the concept of generators of random processes. They

obtained some integration by parts formulae and existence and uniqueness of

some boundary value problems were obtained, cf. [98—100]. Caffarelli et al

obtained some important results on boundary value problems and obstacle

problems of the “elliptic” equation with fractional Laplacian based on the

harmonic extension method, spectral decomposition and the Sobolev trace

theorem. The basic idea is to transform the nonlocal problem with fractional

Laplacian to a local problem in a higher dimensional space, cf. [31, 32].

Cabre and Tan [30] considered the positive solutions of nonlinear problems

with fractional Laplacian. We only make a simple introduction here and

the interested readers may refer to the literature above and the references

therein.

Consider the case when α = 1/2. Let u be a smooth solution of the

problem
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Δu(x, y) = 0 x ∈ Rd, y > 0

u(x, 0) = g(x), x ∈ Rd.
(3.7.1)

Letting T : g �→ −uy(x, 0), then we have (T ◦ T )(g)(x) = T (−uy(x, 0))(x) =
uyy(x, 0) = −Δxg(x). By integration by part, we know that T is a positive

operator, thus T = (−Δ)1/2 and (−Δ)1/2g(x) = −uy(x, 0). In other words,

the operator (−Δ)1/2 coincides with the Dirichlet to Neumann operator in

the upper half space of Rd+1.

Now, we consider a general fractional Laplacian (−Δ)α/2. Consider the

Dirichlet problem

Δxu+
a

y
uy + uyy = 0 x ∈ Rd, y > 0 (3.7.2)

and

u(x, 0) = g(x), x ∈ Rd, (3.7.3)

where g : Rd → R and u : Rd × [0,∞) → R. The equation (3.7.2) can also

be rewritten as

∇ · (ya∇u) = 0, (3.7.4)

where ∇ = (∇x,∇y). By taking coordinate transform z =

(
y

1− a
)1−a

, we

have yauy = uz and (3.7.4) is transformed into a non-divergence form

Δxu+ z
−2a
1−auzz = 0. (3.7.5)

It can be shown that there exists some constant C such that

C(−Δ)α/2g(x) = −uz(z, 0), α = 1− a. (3.7.6)

To this end, we first derive a Poisson formula. Consider the “n+ 1 + a-

dimensional” Laplace equation (3.7.2). When n > 1 + a, the fundamental

solution at the origin can be expressed as Γ(X) = Cn+1+a|X |1−n−a, where

Cn+1+a = n
n+1+a

2 Γ

(
n+ 1 + a

2
− 1

)
/4 and X = (x, y). It can be directly

checked that Γ is a solution of (3.7.2) when y 
= 0 and limy→0+ y
auy = −Cδ0.

Using the transform z =

(
y

1− a
)1−a

yields the fundamental solution

Γ̃(x, z) = Cn+1+a
1

(|x|2 + (1− a)2|z|2/(1−a))
n−1+a

2

,

which solves (3.7.5) when z 
= 0 and uz(x, z)→ −δ0 as z → 0.

On the other hand, letting P (x, y) = Cn,ay
1−a/(|x|2 + |y|2)n+1−a

2 , then

the solution of (3.7.2)-(3.7.3) can be expressed by the Poisson formula
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u(X) =

∫
Rd

P (x− ξ, y)g(ξ)dξ.

The corresponding Poisson kernel of (3.7.5) can be obtained by

P̃ (x, z) = Cn,a
z

(|x|2 + (1 − a)2|z|2/(1−a))
n+1−a

2

. (3.7.7)

By the Poisson formula, we can compute by definition of the fractional Lapla-

cian

uz(z, 0) = lim
z→0

u(x, z)− u(x, 0)
z

= lim
z→0

1

z

∫
Rd

P̃ (x− ξ, z)(g(ξ)− g(x))dξ

= lim
z→0

1

z

∫
Rd

C

(|x− ξ|2 + (1− a)2|z|2/(1−a))
n+1−a

2

(g(ξ)− g(x))dξ

= CP.V.

∫
Rd

g(ξ)− g(x)
|x− ξ|n+1−a

dξ

= −C(−Δ)
1−a
2 g(x),

where the limit in the third step exists as long as g is regular enough. On

the other hand, direct computation yields yauy =

(
1

1− a
)−a

uz. Therefore,

(3.7.6) follows.

By employing the extension method, one can obtain some important re-

sults similar to the Harnack inequality. Let u : Rd × [0,∞) → R be a

solution of (3.7.2) such that limy→0 y
auy(x, y) = 0 for |x| � r, then the ex-

tension ũ(x, y) is a weak solution of (3.7.4) in BR = {(x, y) : |x|2+|y|2 � R2},
where ũ(x, y) = u(x, y) for y � 0 and ũ(x, y) = u(x,−y) for y < 0. Indeed,

let h ∈ C∞0 (BR) be a test function and ε > 0, then by (3.7.2) and integration

by parts we have∫
BR

∇ũ ·∇h|y|adX =

∫
BR\{|y|<ε}

+

∫
BR∩{|y|<ε}

=

∫
BR\{|y|<ε}

∇ · (|y|ah∇ũ)dx

+

∫
BR∩{|y|<ε}

∇ũ ·∇h|y|adX

=

∫
BR\{|y|=ε}

hũy(x, ε)ε
adx

+

∫
BR∩{|y|<ε}

∇ũ ·∇h|y|adX.

(3.7.8)
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The second term on the RHS clearly goes to zero since |y|a|∇u|2 is locally

integrable and the first term converges to zero if εaũy(x, ε) → 0 as ε →
0. Therefore, ũ is a weak solution of (3.7.4) in the BR across y = 0 if

εaũy(x, ε)→ 0 as ε→ 0.

We have the following

Theorem 3.7.1 Let f : Rd → R be a nonnegative function such that

(−Δ)sf = 0 on Br. Then there exists a constant C = C(s, d) such that

sup
Br/2

f � C inf
Br/2

f.

Let u be the extension of f that solves (3.7.2). Since f is non-negative,

so is u. By reflecting it through the hyperplane y = 0, since (−Δ)α/2f = 0,

then u is weak solution of (3.7.4). Theorem 3.7.1 follows from [84].

To further expound the idea of harmonic extension in treating the bound-

ary value problems, we continue to consider the nonlinear problem in a

smooth domain D ⊂ Rd{
(−Δ)1/2u = f(u), in D,

u|∂D = 0, and u > 0 in D,
(3.7.9)

Here (−Δ)1/2 is defined by the eigenvalue problem of the standard Laplacian.

Let {λk, ϕk} be eigenvalues and corresponding eigenfunction of the problem

−Δϕk = λkϕk, such that ϕk|∂D = 0 and ‖ϕk‖L2(D) = 1, (3.7.10)

then (−Δ)1/2 is defined by

u =

∞∑
k=1

ckϕ �→ (−Δ)1/2u =

∞∑
k=1

ckλ
1/2
k ϕk,

which clearly maps H1
0 (D) to L2(D). For a given function u defined on D,

consider its extension v on the cylindrical region C = D × (0,∞) such that

v = 0 on ∂LC = ∂D × (0,∞). Similar to the case of Rd, the fractional

Laplacian can be constructed by the extension method. Let v satisfy⎧⎨⎩Δv = 0 and v > 0 in C,
v = 0, on ∂LC and

∂v

∂n
= f(v) on D × {0},

then the trace u = Trv on D× {0} is a solution of (3.7.9). Indeed, since ∂yv

is still harmonic and vanishes on ∂LC, it follows that (−Δ)1/2u = −vy(·, 0).
Let H1

0,L(C) = {v ∈ H1(C)|v = 0 a.e. on ∂LC} equipped with the norm

‖v‖ =
(∫

C
|∇v|2dxdy

)1/2

and TrD be the trace operator defined by TrDv =
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v(·, 0). It then follows that TrDv ∈ H1/2(D). We define V0(D) = {u =

TrDv : v ∈ H1
0,L(C)}.

Proposition 3.7.1 Let l(x) = dist(x, ∂D), then

V0(D) =

{
u ∈ H1/2(D) :

∫
D

u2(x)

l(x)
dx <∞

}
=

{
u ∈ L2(D) : u =

∞∑
k=1

bkϕk such that

∞∑
k=1

b2kλ
1/2
k <∞

}
,

(3.7.11)

and is a Banach space under the norm ‖u‖V0(D)=

{
‖u‖2

H1/2(D)
+

∫
D

u2

l
dx

}1/2

.

Proposition 3.7.2 Let u =
∞∑
k=1

bkϕk ∈ V0(D), then there exists a unique

harmonic extension v ∈ H1
0,L(C) in C of u having the expression

v(x, y) =

∞∑
k=1

bkϕk(x) exp{−λ1/2k y}, ∀(x, y) ∈ C.

Thus the operator (−Δ)1/2 is given by the Dirichlet-Neumann map

(−Δ)1/2u =
∂v

∂n

∣∣∣∣
D×{0}

=

∞∑
k=1

bkλ
1/2
k ϕk.

These two propositions will be proved in what follows. We first give some

properties of the space H1
0,L(C). Let D1,2(Rd+1

+ ) be the closure of smooth

functions compactly supported on Rd+1
+ under the norm ‖w‖D1,2(Rd+1

+ ) =

(
∫
R

d+1
+
|∇w|2dxdy)1/2. Then, for w ∈ D1,2(Rd+1

+ ), there holds the Sobolev

trace inequality(∫
Rd

|w(x, 0)|2d/(d−1)dx

)(d−1)/2d

� C(d)

(∫
R

d+1
+

|∇w(x, y)|2dxdy
)1/2

.

(3.7.12)

From [137], there exists an optimal constant C(d) = (d− 1)σ
1/d
d /2 as well as

w ∈ D1,2(Rd+1
+ ) such that equality in (3.7.12) hold, where σd is the Lebesgue

measure of the d-dimensional unit sphere.

When d � 2, we let 2∗ =
2d

d− 1
. Let v ∈ H1

0,L(C) and extend it to Rd+1
+ \C

by zero. Then the extended function can be approximated by functions that

are compactly supported on R
d+1

+ . It then follows from the Sobolev trace

inequality that
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(∫
D

|v(x, 0)|2∗dx
)1/2∗

� C

(∫
C

|∇v(x, y)|2dxdy
)1/2

, d � 2.

It then follows by Hölder inequality that(∫
D

|v(x, 0)|qdx
)1/q

� C

(∫
C

|∇v(x, y)|2dxdy
)1/2

,

where 1 � q � 2∗ for d � 2 and 1 � q < ∞ for d = 1. That is,

TrD(H1
0,L(C)) ↪→ Lq(D) continuously and the embedding is compact since

TrD (H1
0,L (C)) ↪→ H1/2 (D) and H1/2 (D) ↪→ Lq (D) compactly. Here,

‖ · ‖H1/2(D) is given by

‖u‖2H1/2(D) =

∫
D

∫
D

|u(x)− u(x̃)|2
|x− x̃|d+1

dxdx̃ +

∫
D

|u(x)|2dx. (3.7.13)

The space H1
0,L(C) can also be characterized as follows.

Lemma 3.7.1 There exists some constant C depending on D such that∫
D

|v(x, 0)|2
l(x)

dx � C

∫
C

|∇v(x, y)|2dxdy, ∀v ∈ H1
0,L(C)

where l(x) = dist(x, ∂D).

Proof First consider d = 1 and D = (0, 1). For x0 ∈ (0, 1/2), we have

v(x0, 0) = v(t, x0 − t)|x0
t=0 =

∫ x0

0

(∂xv − ∂yv)(t, x0 − t)dt.

So that,

|v(x0, 0)|2 � x0

∫ x0

0

2|∇v(t, x0 − t)|2dt.

Dividing the equation by x0, integrating with respect to x0 on (0, 1/2) and

taking the change of variables x = t, y = x0 − t, we finally obtain∫ 1/2

0

|v(x0, 0)|2
x0

dx0 � 2

∫ 1/2

0

dx

∫ 1/2

0

|∇v|2dy � 2

∫
C

|∇v|2dxdy.

When x0 ∈ (1/2, 1), the lemma can be proved in a similar manner.

In the case of high spatial dimensions, suppose D = {x = (x′, xd) : |x′| <
1, 0 < xd < 1/2} and v = 0 on {xd = 0, |x′| < 1} × (0,∞). According to the

results from one-dimensional case, we see that as long as |x′| < 1∫ 1/2

0

|v(x, 0)|2
xd

dxd � C

∫ 1/2

0

∫ ∞

0

|∇v|2dxddy.
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Integration with respect to x′ then yields∫
D

|v(x, 0)|2
xd

dx =

∫
D

∫ 1/2

0

|v(x, 0)|2
xd

dx′dxd � C

∫
C

|∇v|2dxdy.

The results for a general domain can be derived by boundary flatten skills.

From this lemma, we can indeed prove the first equality in Proposition

3.7.1. Let u ∈ H1/2(D) satisfy

∫
D

u2

l
< ∞. Let ũ be the extension of u in

all of Rd by assigning ũ = 0 in Rd\D, then there exists a constant C such

that

‖ũ‖2H1/2(Rd) � C

{
‖u‖2H1/2(D) +

∫
D

u2(x)

l(x)
dx

}
<∞,

where ‖ũ‖2
H1/2(Rd)

is given by (3.7.13) withD being replaced byRd. Thus ũ ∈
H1/2(Rd) is the trace in Rd = ∂Rd+1

+ of a certain function ṽ ∈ H1(Rd+1
+ ).

Next, there exists a local bi-Lipschitz maps that maps Rd+1
+ into D × [0,∞)

being identity on D× {0} and maps Rd\D into ∂D× [0,∞). By composing

such a bi-Lipschitz map with the function ṽ, we obtain a H1
0,L(C) function,

whose trace is u on D×{0}. Therefore, the first equation of (3.7.11) is valid.

For a given function u ∈ V0(D), consider the following minimizing prob-

lem

inf

{∫
C

|∇v|2dxdy : v ∈ H1
0,L(C), and v(·, 0) = u in D

}
. (3.7.14)

By definition, the set of v is nonempty. By lower weak semi-continuity

and compact embedding TrD(H1
0,L(C)) ↪→ Lq(D), there exists minimizer

v ∈ H1
0,L(C) which is the harmonic extension of u to C vanishing on ∂LC.

Furthermore, the minimizer is unique. This can be seen from the inequality

0 � J

(
v1 − v2

2

)
=

1

2
J(v1) +

1

2
J(v2)− J

(
v1 + v2

2

)
� 0,

where J(v) =

∫
C

|∇v|2dxdy.
To study the relationship between v and u, we denote v = h(u) to be the

harmonic extension from u to C vanishing on ∂LC. By divergence theorem

and Lemma 3.7.1, we know there exists a constant C such that

‖u‖V0(D) � C‖h(u)‖H1
0,L(C), ∀u ∈ V0(D).

On the other hand, h is bijective from V0(D) to H, the subspace of H1
0,L(C)

made of harmonic functions in H1
0,L(C). Moreover, since V0(D) and H are
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both Banach spaces, the open mapping theorem gives that there exists a

constant C such that

‖h(u)‖H1
0,L(C) � C‖u‖V0(D), ∀u ∈ V0(D). (3.7.15)

Let V0(D) be the dual space of by V∗0 (D) whose norm is given by

‖g‖V∗0 (D) = sup
u∈V0(D),‖u‖V0(D)=1

{〈u, g〉}.

Let ξ ∈ V0(D) be a smooth function, then from divergence theorem, it follows∫
C

∇v∇ηdxdy =

∫
D

∂v

∂n
ξdx,

which yields by (3.7.15) that∣∣∣∣ ∫
D

∂v

∂n
ξdx

∣∣∣∣ � C‖u‖V0(D)‖ξ‖V0(D).

Therefore,
∂v

∂n
|D ∈ V∗0 (D) and

∥∥∥∥∂h(u)∂n

∥∥∥∥
V∗0 (D)

� C‖u‖V0(D). Thus we have

Lemma 3.7.2 The operator (−Δ)1/2 : u �→ ∂v

∂n
|D×{0} is a linear bounded

mapping from V0(D) to V∗0 (D), where v = h(u) ∈ H1
0,L(C) is the harmonic

extension of u in C vanishing on ∂LC.

In what follows, we consider the spectral representation of (−Δ)1/2 and

the corresponding structure of the space V0(D). Let u ∈ V0(D) ⊂ L2(D)

have the expansion u =
∞∑
k=1

bkϕk and consider

v(x, y) =
∞∑
k=1

bkϕk(x) exp{−λ1/2k y}, y > 0.

Obviously, v(x, 0) = u(x) and Δv(x, y) = 0 when y > 0. On the other hand,∫ ∞

0

∫
D

|∇v|2dxdy =
∫ ∞

0

∫
D

{|∇xv|2 + |∂yv|2}dxdy

=2
∞∑
k=1

b2kλk

∫ ∞

0

exp
{− 2λ

1/2
k y

}
dy

=2

∞∑
k=1

b2kλk
1

2λ
1/2
k

=

∞∑
k=1

b2kλ
1/2
k .
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This shows that v ∈ H1
0,L(C) if and only if

∞∑
k=1

b2kλ
1/2
k <∞. Therefore, if this

condition holds, then v ∈ H1
0,L(C) and hence v = h(u). This is the second

equality in Proposition 3.7.1.

By direct calculation of −∂v
∂y

∣∣∣∣
y=0

yields (−Δ)1/2u =
∞∑
k=1

bkλ
1/2
k ϕk ∈

V∗0 (D). Therefore, Proposition 3.7.2 holds.

Next, we consider the inverse of (−Δ)1/2.

Definition 3.7.1 Let B : g �→ TrDv be a map from V∗0 (D) to V0(D), where

v is the unique weak solution of the problem⎧⎨⎩Δv = 0, in C
v = 0, on ∂LC and

∂v

∂n
= g(x) on D × {0}.

(3.7.16)

That is, v ∈ H1
0,L(C) and satisfies∫
C

∇v∇ξdxdy = 〈g, ξ(·, 0)〉, ∀ξ ∈ H1
0,L(C). (3.7.17)

The existence and uniqueness of the weak solutions follows from the Lax-

Milgram theorem by studying the functional in H1
0,L(C):

I(v) =
1

2

∫
C

|∇v|2dxdy − 〈g, v(·, 0)〉, g ∈ V∗0 (D).

It is obvious that the operator B is the inverse operator of (−Δ)1/2 and

(B ◦B)g = (−Δ)−1g. Furthermore, we have

Proposition 3.7.3 B ◦ B|L2(D) = (−Δ)−1 : L2(D)→ L2(D) is a bounded

linear operator, where (−Δ)−1 is the inverse Laplacian in D with zero Dirich-

let boundary conditions.

The operator B : L2(D) → L2(D) is self-adjoint. For arbitrary v1, v2 ∈
H1

0,L(C), there holds∫
C

(v2Δv1 − v1Δv2)dxdy =
∫
D

(
v2
∂v1
∂n
− v1 ∂v2

∂n

)
dx,

from which it follows ∫
D

Bg2 · g1dx =

∫
D

Bg1 · g2dx,

and ∫
D

v2(x, 0)(−Δ)−1/2v1(x, 0)dx =

∫
D

v1(x, 0)(−Δ)−1/2v2(x, 0)dx.
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Taking ξ = v in (3.7.17) and using the compactness of the embedding

TrD(H1
0,L(C)) ↪→ H1/2(D), we know B is a positive and compact opera-

tor on L2(D). From the spectral theory of compact self-adjoint operator,

all the eigenvalues of B are positive real numbers and the corresponding

eigenvectors consists of an orthonormal basis of L2(D). Furthermore, such

eigenvalues and eigenvectors can be expresses in an explicit form. This leads

to the following

Proposition 3.7.4 Let {ϕk} be an orthonormal basis of L2(D) with {λK}
being the corresponding Dirichlet eigenvalues, forming a spectral decomposi-

tion of −Δ in D with Dirichlet boundary conditions as in (3.7.10). Then for

all k � 1, there holds{
(−Δ)−1/2ϕk = λ

1/2
k ϕk , in D

ϕk = 0, on ∂D.
(3.7.18)

In particular, {ϕk} is also a basis formed by the eigenfunctions of (−Δ)1/2,

with eigenvalues {λ1/2k }.

We end this section by giving a result of the following problem{
(−Δ)1/2u = f(x), in D

u = 0, on ∂D,
(3.7.19)

where f ∈ V∗0 (D) andD is a smooth bounded domain inRd. By the extension

method, the solution of the problem can be represented by u = TrDv for

some v ∈ H1
0,L being the solution of (3.7.16) and v(x, 0) = u ∈ V0(D). The

following proposition is parallel to the regularity results of W 2,p estimates

and Schauder estimates in elliptic equations, whose proof is omitted here for

simplicity, cf. [30].

Proposition 3.7.5 Let α ∈ (0, 1), D be a C2,α bounded domain in Rd,

g ∈ V∗0 (D), v ∈ H1
0,L(C) be the weak solution of (3.7.16) and u = TrDv be

the weak solutions of (3.7.19). Then,

(1) if g ∈ L2(D), then u ∈ H1
0 (D),

(2) if g ∈ H1
0 (D), then u ∈ H2(D) ∩H1

0 (D),

(3) if g ∈ L∞(D), then v ∈W 1,q(D×(0, R)) for all R > 0 and 1 < q <∞.

In particular, v ∈ Cα(C) and u ∈ Cα(D),

(4) if g ∈ Cα(D) and g|∂D = 0, then v ∈ C1,α(C) and u ∈ C1,α(D), and

(5) if g ∈ C1,α(D) and g|∂D = 0, then v ∈ C2,α(C) and u ∈ C2,α(D).
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Chapter 4

Numerical Approximations in

Fractional Calculus

Recent decades have witnessed a fast growing applications of fractional calcu-

lus to diverse scientific and engineering fields regarding anomalous diffusion,

constitutive modelling in viscoelasticity, signal processing and control, fluid

mechanics, image processing, and researches on soft matter behaviors, to

just mention a few. Compared to integer-order calculus, fractional calcu-

lus has the capacity of providing a more simple and accurate description

of complex mechanical and physical processes featuring history dependency

and space nonlocality, and has thus induced the occurrences of a series of

fractional differential equations. Although the analytical solutions of some

of fractional differential equations are obtainable, yet these solutions are ex-

pressed in terms of special functions which are usually difficult for numerical

evaluation, and the solutions are even inaccessible for some of fractional non-

linear equations. These naturally lead to a rapid increasing developments of

numerical methods for fractional differential equations. Due to the history

dependency and space nonlocality of fractional calculus, numerical solution

of fractional differential equations usually characterizes extremely high com-

putational cost and memory requirements. Even though a high-performed

computer is employed, it is still difficult to perform a long-time or large-

domain simulation, whose operations are found to increase exponentially with

time. Up to now, the “short memory principle” has been proposed to reduce

the computational effort, but this principle, as pointed out by Ford et al,

will yield instability in numerical computations for some specific problems,

which implies the applicability of the “short memory principle” seems not

very appealing. It is therefore an open issue how to successfully implement

the long-time simulation for fractional calculus. On the other hand, less

are now known about the systematic analyzes on the stability of numerical

methods concerning fractional calculus, together with the solution techniques

for high-dimensional fractional differential equations, especially for nonlinear

257
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equations.

The succeeding three chapters mainly concern numerical methods for

solving fractional differential equations. These methods include: (1) finite

difference methods based on Euler explicit, Euler implicit, Crank-Nicolson,

and predictor-corrector schemes; (2) series approximation methods compris-

ing Adomain decomposition method, variational iteration method, homotopy

perturbation method, homotopy analysis method and differential transform

method; (3) finite element method; and (4) other methods such as spectral

methods, mesh-free methods, etc. The above methods possess their respec-

tive merits and drawbacks, and are applicable for problems having different

governing equations and initial and/or boundary value conditions. It should

be also noted that much less are known about the rigorous theoretical anal-

yses, such as stability and convergence analyses, of some existing methods.

Before embarking upon the numerical methods for fractional differential

equations, we first present some typical discretization schemes for fractional

derivative (or integral). These schemes are mainly based on the definition

of Grünwald-Letnikov fractional derivative (or integral), the numerical dis-

cretization of Riemann-Liouville fractional derivative (or integral), the nu-

merical integration formulas, and the extensions of conventional finite differ-

ence schemes.

Throughout the chapter, unless stated otherwise, we always assume f(t)

a sufficiently smooth function defined on [a, T ], along with the notations

tj = a+ jh, f(tj) = fj, j = 0, 1, · · · , [(T − a)/h] and

b
(α)
j = (j + 1)1−α − j1−α,

where [x] takes the integer part of x, being the maximum integer that does

not exceed x.

4.1 Fundamentals of fractional calculus

There have been different types of definitions of fractional derivatives, and

different fractional derivatives are usually associated with different discretiza-

tion schemes and thus with different stability and convergence analyses. It

suffices in this section to mention the following three types of fractional

derivatives that usually appear in the fractional differential equations of prac-

tical interest.

1. Grünwald-Letnikov fractional derivative

Integer-order derivatives can take the form of the limit of backward dif-

ference quotient of the corresponding order:
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df(t)

dt
= lim

h→0

1

h

(
f(t)− f(t− h)

)
,

df2(t)

dt2
= lim

h→0

1

h2

(
f(t)− 2f(t− h) + f(t− 2h)

)
,

...

dnf(t)

dtn
= lim

h→0

1

hn

n∑
k=0

(−1)k
( n
k

)
f(t− kh)

= lim
h→0

1

hn

∞∑
k=0

(−1)kΓ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
f(t− kh), n ∈ N,

(4.1.1)

where
(
n
k

)
= 0 for k > n.

Extending the integer-order derivative above to arbitrary-order derivative,

i. e., replacing the differential order n in (4.1.1) by an arbitrary real number

α, leads to the standard Grünwald-Letnikov fractional derivative:

GLDαf(t) = lim
h→0

1

hα

∞∑
k=0

(−1)kΓ(α + 1)

Γ(k + 1)Γ(α− k + 1)
f(t− kh), α > 0. (4.1.2)

Given a function f(t) defined on [a, T ] and vanishing for t < a, the Grünwald-

Letnikov fractional derivative can be written as

GLDαf(t) = lim
h→0

1

hα

[(t−a)/h]∑
k=0

ω
(α)
k f(t− kh), α > 0, (4.1.3)

where ω
(α)
k = (−1)k

( α
k

)
=

(−1)kΓ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
is called the Grünwald-

Letnikov coefficients.

Also, according to [158], a shifted Grünwald-Letnikov formula is defined

as

GLDαf(t) = lim
h→0

1

hα

[(t−a)/h+p]∑
k=0

ω
(α)
k f(t− (k − p)h), α > 0. (4.1.4)

2. Riemann-Liouville fractional integral and derivative

n-th order integral, where n is an positive integer, can be written as

0D−nf(t) =
1

Γ(n)

∫ t

0

(t− τ)n−1f(τ)dτ, (4.1.5)

and replacing the n in (4.1.5) by the arbitrary real number α yields Riemann-

Liouville fractional integral, which reads

aD−αf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ. (4.1.6)
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By letting β = m− α(m− 1 < β � m) for integer m, the Riemann-Liouville

fractional derivative of order β takes the form of

aDβf(t)=a Dm
aD−αf(t)

=
dm

dtm

[ 1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ
]
.

(4.1.7)

In particular, for a = −∞, (4.1.7) is called the Liouville fractional deriva-

tive. It is trivial that if f(t) vanishes for t � a, Riemann-Liouville and

Liouville fractional derivatives are just the same.

3. Caputo fractional derivative

Caputo fractional derivative is defined by

C
a Dαf(t) =

⎧⎨⎩
1

Γ(m− α)
∫ t

a

(t− τ)m−α−1f (m)(τ)dτ
]
, m− 1 < α < m,

f (m)(t), α = m.
(4.1.8)

where m is a positive integer. Particularly, if a = 0, then C
a Dαf(t) is abbre-

viated to CDαf(t).

4. Relations among three types of fractional derivatives and the essential

difference between fractional- and integer-order derivatives

Proposition 4.1.1 [218] Let m− 1 < α � m,m ∈ N, f(t) ∈ Cm[a, b], then

it holds that
GLDαf(t) = aDαf(t). (4.1.9)

Proposition 4.1.2 [218] If, for m − 1 < α � m,m ∈ N, aDαf(t) and the

(m− 1)-th order derivative of f(t) at t = a are both bounded, then

C
a Dαf(t)= aDα[f − Tm−1[f ; a]](t)

= aDαf(t)−
m−1∑
k=0

f (k)(a)

Γ(k − α+ 1)
(t− a)k−α,

(4.1.10)

where Tm−1[f ; a] is the (m− 1)-th order Taylor expansion of f :

Tm−1[f ; a] =

m−1∑
k=0

(t− a)k
k!

f (k)(a).

Remark 4.1.1 1. Riemann-Liouville and Grünwald-Letnikov fractional

derivatives are equivalent under a condition that is easy to satisfy for many

practical problems, and we thus allow this equivalence without further explicit

statement.

2. Caputo and Riemann-Liouville fractional derivatives are equivalent if

f (k)(a) = 0, k = 0, 1, · · · ,m− 1.
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3. If the conditions of Proposition 4.1.2 hold, then the relation among

three types of derivatives afore-mentioned will be given by:

GLDαf(t) =

m−1∑
k=0

f (k)(a)

Γ(k − α+ 1)
(t− a)k−α + C

a Dαf(t) = aDαf(t). (4.1.11)

4. The essential difference between fractional differential operator and its

integer-order counterpart is: the former is a non-local operator whereas the

latter is a local one. The integral nature of fractional derivatives or integral

underlies the very nonlocality of our interest.

4.2 G-Algorithms for Riemann-Liouville fractional

derivative

From the definition of Grünwald-Letnikov definition (4.1.3), a simple but ef-

fective approach to approximate the Riemann-Liouville fractional derivative

Dαf(t) is to remove the limit symbol in the definition of Grünwald-Letnikov

fractional derivative, thereby leading to a discretization scheme in form of

truncated series. We call the resulting scheme the Grünwald-Letnikov ap-

proximation scheme. The scheme is commonly used to evaluate the Riemann-

Liouville fractional derivative because of the equivalence between the deriva-

tive and Grünwald-Letnikov fractional derivative, and is one of the numerical

methods that have ever been utilized to approximate fractional derivative (or

integral) in researches of early period (see Chapter 7 in [179] and §8.2 in [176]).

The Grünwald-Letnikov approximation scheme can be given by

aDα
t f(t) ≈ h−α

[(t−a)/h]∑
k=0

ω
(α)
k f(t− kh) :=

(
aDαf(t)

)
GL
. (4.2.1)

Letting f(a) = 0, taking h =
t− a
N

and using the relation

ω
(α)
j = (−1)j

( α
j

)
=
( j − α− 1

j

)
=

Γ(j − α)
Γ(−α)Γ(j + 1)

, (4.2.2)

we obtain the following detailed approximation scheme

aDα
t f(t) ≈

(
t− a
N

)−α

Γ(−α)
N−1∑
j=0

Γ(j − α)
Γ(j + 1)

f

(
t− j

(
t− a
N

))
. (4.2.3)

In particular, for a = 0, the scheme amounts to

0Dα
t f(t) ≈

t−αNα

Γ(−α)
N−1∑
j=0

Γ(j − α)
Γ(j + 1)

f

(
t− jt

N

)
, (4.2.4)



February 6, 2015 18:25 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-4-wx page 262

262 Chapter 4 Numerical Approximations in Fractional Calculus

which we call the “G1-algorithm”.

G1-algorithm can be written in a compact form as(
aDα

t f(tn)
)
G1

= h−α
n∑

k=0

ω
(α)
k fn−k, (4.2.5)

which is also called the “fractional backward difference quotient” approxima-

tion scheme.

Similarly, using the definition of shifted Grünwald-Letnikov fractional

derivative (4.1.4) produces the approximation scheme below:

aDα
t f(t) ≈ h−α

[(t−a)/h+p]∑
k=0

ω
(α)
k f(t− (k − p)h) :=

(
aDαf(t)

)
GS(p)

, (4.2.6)

and we call it the shifted Grünwald approximation scheme, abbreviated to

“GS(p)-algorithm”.

Generally, for the non-negative integer p, the GS(p)-algorithm can be rep-

resented by:

(
aDα

t f(tn)
)
GS(p)

= h−α

[(t−a)/h]+p∑
k=0

ω
(α)
k fn−k+p. (4.2.7)

The Grünwald-Letnikov coefficients above ω
(α)
j = (−1)j

(
α
j

)
are actually

the Taylor expansion coefficients of generating function ω(z) = (1− z)α, and
these coefficients can be secured using the following recursion relations:

ω
(α)
0 = 1, ω

(α)
j =

(
1− α+ 1

j

)
ω
(α)
j−1, j = 1, 2, · · · . (4.2.8)

In addition, Oldham and Spanier [176] presented in 1974 the approxima-

tion schemes given by

aD−1
t f(t) = lim

h→0
h

[ t−a
h − 1

2 ]∑
j=0

f

(
t−

(
j +

1

2

)
h

)
(4.2.9)

aD1
t f(t) = lim

h→0
h−1

[ t−a
h + 1

2 ]∑
j=0

(−1)jf
(
t−
(
j − 1

2

)
h

)
. (4.2.10)

These schemes feature fast convergence, from which one can derive an im-

proved Grünwald-Letnikov fractional derivative defined by (i.e., letting p =
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α/2 in Eq.(4.1.4))

aDα
t f(t) = lim

h→0

h−α

Γ(−α)
[(t−a)/h+α/2]∑

j=0

Γ(j − α)
Γ(j + 1)

f

(
t−

(
j − 1

2
α

)
h

)
. (4.2.11)

Letting a = 0 rewrites (4.2.11) to

0Dα
t f(t) = lim

h→0

h−α

Γ(−α)
[t/h+α/2]∑

j=0

Γ(j − α)
Γ(j + 1)

f

(
t−
(
j − 1

2
α

)
h

)
. (4.2.12)

Removal of the limit operation in above equation produces the “fractional

central difference quotient” approximation scheme, which is usually called

the “G2-algorithm”. This scheme needs the functional values at the non-grid

points and thus requires function interpolation. For instance, a three-point

interpolating formula reads:

f

(
t−

(
j − 1

2
α

)
h

)
≈
(
α

4
+
α2

8

)
f(t− (j − 1)h)

+

(
1− α

2

4

)
f(t− jh)

+

(
α2

8
− α

4

)
f(t− (j + 1)h),

(4.2.13)

then the corresponding G2-algorithm can be presented by:(
aDα

t f(tn)
)
G2

=h−α

n−1∑
j=0

ω
(α)
j

(
fn−j +

1

4
α
(
fn−j+1 − fn−j−1

)
+
1

8
α2
(
fn−j+1 − 2fn−j + fn−j−1

))
.

(4.2.14)

Remark 4.2.1 G1-,G2- and GS- algorithms are all developed from the

definition of Grünwald-Letnikov fractional derivative or integral, and they

can thus be used to approximate either the fractional derivative (α � 0) or

fractional integral (α � 0).

Theorem 4.2.1 [158] Suppose f(t) ∈ L1(R) and f ∈ ℘α+1(R), and let

Ahf(t) = h
−α

∞∑
k=0

ω
(α)
k f(t− (k − p)h), (4.2.15)

where p is non-negative real number, and Af(t) = ∞Dαf(t) be the Liou-

ville fractional derivative (namely, the Riemann-Liouville fractional deriva-

tive with a = −∞, see (4.1.7)), then, as h −→ 0,

Ahf(t) = Af(t) +O(h), t ∈ R. (4.2.16)
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Proof Let f̂(k) = F{f(t); k} =
∫ ∞

−∞

eiktf(t)dt be the Fourier transform of

f(t), then F{f(t− h); k} = eikhf̂(k).

For arbitrary complex number z and α > 0 it holds that

(1− z)α =
∞∑
k=0

(−1)k
(
α
k

)
zk =

∞∑
k=0

ω
(α)
k zk, (4.2.17)

thus the Fourier transform of (4.2.15) yields

F{Ahf(t); k}= h−α

∞∑
m=0

ω
(α)
k eik(m−p)hf̂(k)

= h−αe−ikphf̂(k)

∞∑
m=0

ω
(α)
k eikmh

= h−αe−ikphf̂(k)(1 − eikh)

= (−ik)αφ(−ikh)f̂(k),

(4.2.18)

where

φ(z) =
(1− e−z

z

)α
ezp = 1 +

(
p− α

2

)
z + O(|z|2). (4.2.19)

It is straightforward to see that there exists some c > 0, such that

|φ(−ix) − 1| � c|x|, ∀x ∈ R.

So that we have

F{Ahf(t); k}= (−ik)αf̂(k) + (−ik)αf̂(k)[φ(−ikh)− 1]
= F{Af(t); k}+ ϕ̂(h, k), (4.2.20)

where ϕ̂(h, k) = (−ik)α[φ(−ikh) − 1]f̂(k), and |ϕ̂(h, k)| � |k|αc|hk||f̂(k)|.
Since f(t) ∈ L1(R), and f ∈ ℘α+1(R), we see that

I =

∫ ∞

−∞

(1 + |k|)α+1|f̂(k)|dk <∞.

Accordingly, we finally obtain

|ϕ(h, x)| = | 1
2πi

∫ ∞

−∞

e−ikxϕ̂(h, k)dk| � Ich.

Remark 4.2.2 1. From (4.2.19), it can been seen that for p = α/2, the error

of Ah takes its minimum and a second-order accuracy is accordingly achieved,

but note that interpolation should be used to derive the functional values

at non-grid points. The corresponding approximation scheme is (4.2.11),

namely, the G2-algorithm.
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2. Avoiding interpolation can simplify the computation. This can be done

by letting tn − (k − p)h be the grid points, where we need to find an optimal

non-negative integer p, such that |p−α/2| is minimum. It is obvious that for

0 < α � 1, p = 0 is acceptable; while for 1 < α � 2, p = 1 is optimal.

3. If f(t) = 0 for t � 0, then Ahf(t) is comprised of a finite number

of terms, and Af(t) is equivalent to Riemann-Liouville fractional derivative.

This indicates that when f(t) is sufficiently smooth at t = a and f(a) = 0,

G-algorithms can achieve first-order accuracy, which leads to the following

conclusion:

Corollary 4.2.1 [179, 218] Suppose f ∈ Cn[a, T ], α � 0, N = (T − a)/h ∈
N, then the finite Grünwald-Letnikov fractional differential operator

(
aDαf(t)

)
Gs(p)

= h−α
N+P∑
k=0

ω
(α)
k f(t− (k − p)h) (4.2.21)

is the first-order approximation of Riemann-Liouville fractional differential

operator aDα
t if f(a) = 0, namely,(

aDαf(t)
)
Gs(p)

= Dα
t f(t) +O(h)⇔ f(a) = 0.

Otherwise, if f(a) 
= 0, then it holds that(
Dαf(t)

)
Gs(p)

= Dα
t f(t) +O(h) + O(f(a)).

Next we use Gs(p)−algorithm to evaluate the fractional derivative of sin(x)

at x = 1. By using the properties of fractional calculus [179], the explicit

expressions of the fractional derivative are given by

Dαsint =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t1−α

∞∑
i=0

(−1)it2i
Γ(2i+ 2− α) , 0 < α < 1;

t2−α

∞∑
i=0

(−1)i+1t2i+1

Γ(2i+ 4− α) , 1 < α < 2.

(4.2.22)

The errors of Gs(p) are tabulated in Table 4.2.1. It can be observed that

the convergence of the algorithm is of the first-order, which originates from

the fact that the errors halve when the step h halves. Moreover, through

comparing the errors, we see that taking p = 0 and p = 1 turns out to be

sensible and optimal when α = 0.2 and α = 1.6, respectively. This conclusion

is in accordance with the discussions given in the remarks mentioned above.
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Table 4.2.1 Absolute errors from Gs(p)-algorithm for different

approximation step h

h
α = 0.2 α = 1.6

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

0.1 −0.0032 0.0243 0.0412 0.0890 −0.0214 −0.1249
0.05 −0.0016 0.0132 0.0254 0.0439 −0.0108 −0.0637
0.01 −3.1650e−004 0.0028 0.0058 0.0087 −0.0022 −0.0130
0.005 −1.5826e−004 0.0014 0.0030 0.0043 −0.0011 −0.0065
0.001 −3.1653e−0052.8447e−0045.9954e−004 8.6735e−004−2.1676e−004 −0.0013
0.0005−1.5827e−0051.4234e−0043.0024e−004 4.3362e−004−1.0838e−004−6.5022e−004

4.3 D-Algorithm for Riemann-Liouville fractional

derivative

In 1997, Kai Diethelm [65] presented the numerical integration formulas (see

[64]) for finite-part integrals in order to approximate the fractional integral

and derivative.

Lemma 4.3.1 [179, 218] Given m− 1 < α < m,m ∈ N, α /∈ N and f(t) ∈
Cm[0, T ], Reimann-Liouville fractional derivative can be expressed in terms

of Hadamard finite-part integral:

Dαf(t) =
1

Γ(−α)
∫ t

0

f(τ)

(t− τ)α+1
dτ. (4.3.1)

Similarly, Caputo fractional derivative can also be represented by a Hadamard

finite-part:

CDαf(t) =
1

Γ(−α)
∫ t

0

f(τ) − Tm−1[f ; 0](τ)

(t− τ)α+1
dτ. (4.3.2)

To discretize (4.3.1), transform the variable interval from [0, t] to [0, 1],

and select equispaced grid points tj = jh. We thus have the Reimann-

Liouville fractional derivative (4.3.1) written by

0Dα
t f(tn) =

t−α
n

Γ(−α)
∫ 1

0

f(tn − tnξ)
ξα+1

dξ =
t−α
n

Γ(−α)
∫ 1

0

gn(ξ)

ξα+1
dξ, (4.3.3)

where gn(ξ) = f(tn − tnξ).
So far, the numerical approximation of Reimann-Liouville fractional deriva-

tive has been transformed to the approximation of Hadamard finite-part in-

tegral ∫ 1

0

g(ξ)

ξα+1
dξ.
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The compound integration quadrature formula [64] given by Diethellm

can be employed in numerical evaluation of the above integral, whose proce-

dure can be described as: (1) Partition the integration interval [0, 1] as 0 =

x0 < x1 < · · · < xn = 1; (2) Interpolate the integrand g: construct the piece-

wise interpolating polynomial of degree d, i. e. g̃d, each fragment of which is

the interpolating function on the sub-interval [xl−1, xl](l = 1, 2, · · · , n) with
respect to d + 1 equispaced points xl−1 +

μ

d
(xl − xl−1), μ = 0, 1, · · · , d; (3)

Exactly compute the weighted integration of g̃d with weight function ξ−α−1.

Ultimately, we obtain the numerical integration formula:

Qn[g] =

∫ 1

0

g̃d(ξ)

ξα+1
dξ,

which depends on n, d, α and selection of grid points.

In particular, taking xk = k/j, k = 0, 1, · · · , j and making piecewise

linear interpolation, i. e. letting d = 1, yields

Qn[g] ≈
n∑

k=0

wk,ng(k/n)

where

wk,n=
nα

α(1− α)

⎧⎨⎩
−1, k = 0
2k1−α − (k − 1)1−α − (k + 1)1−α, 1 � k � n− 1
(α− 1)n−α − (n− 1)1−α + n1−α, k = n

=
nα

α(1− α)

⎧⎪⎨⎪⎩
−1, k = 0

b
(α)
k−1 − b(α)k , 1 � k � n− 1

(α− 1)n−α + b
(α)
n−1, k = n.

(4.3.4)

With the weighting factors wk,n just derived, the approximation scheme of

the Reimann-Liouville fractional derivative is given by:

Dαf(tn) ≈ t−α
n

Γ(−α)
n∑

k=0

wk,nf(tn − kh) :=
(
Dαf(tn)

)
D
. (4.3.5)

We call this scheme the “D-algorithm”.

Theorem 4.3.1 If α ∈ (0, 2), α 
= 1, f(t) ∈ C2[0, T ], tn = nh ∈ [0, T ], then

there exists α-dependent constant cα > 0, such that the truncated error of

D-algorithm satisfies

|Dαf(tn)−
(
Dαf(tn)

)
D
| � cα‖f ′′‖∞h2−α. (4.3.6)

See the proof in [66] (Theorem 2.3) and [65] (lemma 2.2).
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We still consider the evaluation of fractional derivative of sin(x) at x = 1

but using the D-algorithm discussed here. The errors are given in Table

4.3.1. The algorithm is proved to be convergent since for different α, the

error reduces with the decreasing step. To see the convergence rate, we

consider the variation of error with the step h, which is shown in Fig. 4.3.1,

where only logarithmic coordinates are considered, and where the dotted and

solid lines denote the numerical results and line y = (2− α)x, respectively.
From the figure, one can see that the error variation with approxima-

tion step under logarithmic coordinates is linear and parallel to the line y =

(2−α)x, which imply that the algorithm can achieve a (2−α)-order conver-
gent rate, namely, |Dαf(tn)−

(
Dαf(tn)

)
D
| = O(h2−α).

Table 4.3.1 Absolute errors from D-algorithm for different

approximation step h

h α = 0.01 α = 0.5 α = 1.5

0.01 4.8999e-007 1.9018e-004 0.0693

0.002 2.4486e-008 1.7370e-005 0.0310

0.001 6.6534e-009 6.1709e-006 0.0219

0.0002 3.1609e-010 5.5547e-007 0.0098

0.0001 8.4463e-011 1.9668e-007 0.0069

Figure 4.3.1 Variation of error with approximation step.

Analogously, we can also apply the ideas behind D-algorithm to Caputo

fractional derivative by using the relation between the derivative and the
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Riemann-Liouville fractional derivative. Incidentally, the D-algorithm can

also be exploited to the case α < 0, and there, it is actually the R2-algorithm

having second-order accuracy, which shall be presented in the next section.

4.4 R-Algorithms for Riemann-Liouville fractional

integral

The key point in numerically computing fractional integral equations, es-

pecially linear and non-linear Abel integral equations as well as integro-

differential equations having fractional integral operators, is to find an ef-

fective numerical approximation of Riemann-Liouville integral. In what fol-

lows, we detail an approximation scheme proposed by Lubich (see also the

paper [145] of Lubich and his collaborators).

Riemann-Liouville fractional integral is defined by (let q < 0)

0J −q
t f(t)= 0Dq

t f(t) =
1

Γ(−q)
∫ t

0

f(τ)

(t− τ)q+1
dτ

=
1

Γ(−q)
∫ t

0

f(t− τ)
τq+1

dτ.

(4.4.1)

Applying different integration quadrature formulas will lead to different

numerical approximation schemes for Riemann-Liouville fractional integral,

e. g. the applications of different compound integration quadrature formulas.

Note that (4.4.1) can be written by

0J −q
t f(t) = 0Dq

t f(t) =
1

Γ(−q)
[t/h]∑
j=0

∫ tj+1

tj

f(t− τ)
τq+1

dτ. (4.4.2)

Accordingly, numerical approximation of Riemann-Liouvile fractional inte-

gral has been transformed to the approximation of (4.4.2). We call this type

of approximation schemes the “R-algorithms”.

Taking compound rectangle quadrature will produce

0J −q
t f(tn)= 0Dq

t f(tn) =
1

Γ(−q)
n−1∑
j=0

∫ tj+1

tj

f(tn − τ)
τq+1

dτ

≈ 1

Γ(−q)
n−1∑
j=0

f(tn − tj+1)

∫ tj+1

tj

1

τq+1
dτ

=
h−q

Γ(1− q)
n−1∑
j=0

[(j + 1)−q − j−q]f(tn − tj+1).

(4.4.3)
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With considering the above approximation scheme, the so-called “R0-algori-

thm” for approximating Riemann-Liouville fractional integral can be pre-

sented by:

(
0J−q

t f(tn)
)
R0

=
(
0Dq

t f(tn)
)
R0

=:
h−q

Γ(1− q)
n−1∑
j=0

b
(1+q)
j fn−j−1. (4.4.4)

Alternatively, taking compound trapezoidal quadrature will yield∫ tj+1

tj

f(t− τ)
τq+1

dτ ≈ f(t− tj) + f(t− tj+1)

2

∫ tj+1

tj

dτ

τq+1

=
f(t− tj) + f(t− tj+1)

−2q (t−q
j+1 − t−q

j ),

(4.4.5)

from which and (4.4.2), we derive the “R1-algorithm”:

(
0J−q

t f(t)
)
R1

=
(
0Dq

t f(t)
)
R1

=
h−q

2Γ(1− q)
n−1∑
j=0

b
(1+q)
j

(
fn−j + fn−j−1

)
. (4.4.6)

Furthermore, if using linear interpolation for integrand f , namely,∫ tj+1

tj

f(t− τ)
τq+1

dτ

≈
∫ tj+1

tj

(1 + j − hτ)f(t− tj) + (hτ − j)f(t− tj+1)

τq+1
dτ,

(4.4.7)

one will obtain the “R2-algorithm” which is given by:(
0J−q

t f(tn)
)
R2

=
(
0Dq

t f(tn)
)
R2

=
h−q

Γ(1− q)
n−1∑
j=0

{
b
(1+q)
j

(j + 1)fn−j − jfn−j−1

−q + b
(q)
j

fn−j−1 − fn−j

1− q
}
.

(4.4.8)

Remark 4.4.1 1. Integral terms in (4.4.2) can also be approximated by

other high-order quadrature rules; in other words, the integrand f(t− τ) can
be approximated by other interpolating formulas such as piecewise quadratic

interpolation.

2. R-algorithms can still take unequispaced grid points.

3. The accuracy of R-algorithms is of the one- , (1− q)-, and two- orders

for R0-, R1-, and R2- algorithms, respectively. For details please see [72]

and the lemmas 5.2.1 and 5.2.2 in the succeeding chapter.
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Now use R-algorithms to evaluate the Riemann-Liouville fractional inte-

gral 0J α
t f(t) of the Mittag-Leffler function f(t) = E2,1(−t2) at t = 1. The

Mittag-Leffler function is defined in form of series

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ C, β > 0, (4.4.9)

and using the basic properties of fractional integral can obtain the explicit

expression of the fractional integral, i. e.

0J α
t Eμ,1(−tμ) = tαEμ,1+α(−tμ). (4.4.10)

Table 4.4.1 gives the absolute errors from the R-algorithms. It can be

seen that the error reduces as the step h decreases which indicates the con-

Table 4.4.1 Absolute errors from R-algorithms for different

approximation step h

h
R0 R1 R2

α = 0.05 α = 0.8 α = 0.05 α = 0.8 α = 0.05 α = 0.8

0.01 0.0073 0.0027 0.0031 1.3139e-005 1.7314e-006 7.2609e-006

0.005 0.0036 0.0014 0.0015 4.3150e-006 4.5968e-007 1.8159e-006

0.001 6.9375e-004 2.7149e-004 2.7918e-004 2.9340e-007 2.0747e-008 7.2659e-008

0.0005 3.4217e-004 1.3569e-004 1.3487e-004 8.9663e-008 5.4268e-009 1.8166e-008

0.0001 6.6357e-005 2.7125e-005 2.4892e-005 5.5004e-009 2.3813e-010 7.2668e-010

Figure 4.4.1 Variations of errors from R0- and R2- algorithms with

approximation step.
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vergence of the algorithms. The variations of errors from R-algorithms with

approximation steps are shown in Figs. 4.4.1 and 4.4.2 where only logarithmic

coordinates are considered. From Fig. 4.4.1, we see that for different α, the

error variations of R0- and R2- algorithms with approximation step are linear

and parallel to line y = x and line y = 2x, respectively, which implies the

accuracy of the two algorithms are of the first- and second- orders separately.

Additionally, Fig. 4.4.2 shows the variation of error from R1-algorithm with

approximation step is parallel to the line y = (1+α)x, which corresponds to

a (1 + α)-order accuracy of the R1-algorithm.

Figure 4.4.2 Variation of error from R1- algorithms with approximation step.

4.5 L-Algorithms for fractional derivative

R-algorithms are intended for approximating Riemann-Liouvile fractional in-

tegral. Extending the ideas behind R-algorithms to the approximation for

fractional derivative leads to the “L-algorithms” which will be elaborated in

this section. The fundamental principle behind the L-algorithms is to nu-

merically differentiate the derivative of f , e. g. f ′ or f ′′, which appears in

integrand.
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For 0 � α < 1, the Caputo fractional derivative can be approximated by:

CDα
t f(tn)=

1

Γ(1 − α)
∫ tn

0

f ′(τ)dτ

(tn − τ)α

=
1

Γ(1 − α)
n−1∑
j=0

∫ tj+1

tj

f ′(tn − τ)dτ
τα

≈ 1

Γ(1− α)
n−1∑
j=0

f(tn − tj)− f(tn − tj+1)

h

∫ tj+1

tj

τ−αdτ

=
h−α

Γ(2− α)
n−1∑
j=0

(fn−j − fn−j−1)[(j + 1)1−α − j1−α].

(4.5.1)

We call this approximation scheme the ‘L1-algorithm’ which can be writ-

ten in a compact form:

(
CDα

t f(tn)
)
L1

=
h−α

Γ(2− α)
n−1∑
j=0

b
(α)
j (fn−j − fn−j−1). (4.5.2)

For 1 � α < 2, the Caputo fractional derivative is defined by

CDα
t f(tn)=

1

Γ(2− α)
∫ tn

0

f ′′(τ)dτ

(tn − τ)α

=
1

Γ(2− α)
n−1∑
j=0

∫ tj+1

tj

f ′′(tn − τ)dτ
τα−1

,
(4.5.3)

and using the second-order central difference quotient approximation for f ′′,

i. e.,∫ tj+1

tj

f ′′(tn − τ)
τα−1

dτ ≈ f(tn−tj−1)−2f(tn−tj) + f(tn−tj+1)

h2

∫ tj+1

tj

dτ

τα−1

=
h−α

2−α
(
fn−j+1−2fn−j+fn−j−1

)
[(j + 1)2−α−j2−α],

(4.5.4)

leads to the so-called ‘L2-algorithm’ given by:(
CDα

t f(tn)
)
L2

=:
h−α

Γ(3− α)
n−1∑
j=0

b
(α−1)
j

(
fn−j+1 − 2fn−j + fn−j−1

)
. (4.5.5)

In a similar manner, it is straightforward to deduce the algorithms cor-

responding to cases 2 � α < 3, 3 � α < 4, · · · (L3-algorithm, L4-algorithm,

etc.)
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Additionally, owing to the relation (4.1.10) between Riemann-Liouville

and Caputo fractional derivatives, the L-algorithms can also be applied to

the approximation of Riemann-Liouville fractional derivative. In fact, from

(4.1.10), one can learn that the only difference between the L-algorithms

for Riemann-Liouville fractional derivative and those for Caputo derivative

is the first several terms. It is interesting to see that using L1-algorithms

to approximate Riemann-Liouville derivative will yields completely the same

approximation scheme as that derived from D-algorithm despite a totally

different deductions. This coincidence can be clearly seen in (4.6.5) and

(4.6.10). In this connection, we see that the convergence rate of L-algorithms

are the same as that of D-algorithm which has been analysed in the preceding

section.

4.6 General form of fractional difference quotient

approximations

All the approximation schemes mentioned in previous sections for fractional

integral and derivative can be uniformly written by

Dαf(tn) ≈ h−α
N∑
j=0

c
(α)
n,jfj, (4.6.1)

where the weighting coefficients c
(α)
n,j depend on n, j, α, but are independent

of f . Below is a list of weighting coefficients determined by different approx-

imation schemes:

G1-algorithm

c
(α)
n,j =

⎧⎨⎩ ω
(α)
n−j =

Γ(n− j − α)
Γ(−α)Γ(n− j + 1)

, 0 � j � n;

0, others.
(4.6.2)

Gs(p)-algorithm (p is a positive integer)

c
(α)
n,j =

⎧⎨⎩ ω
(α)
n−j+p =

Γ(n− j + p− α)
Γ(−α)Γ(n− j + p+ 1)

, 0 � j � n+ p;

0, others.
(4.6.3)
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G2-algorithm

c
(α)
n,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(n− 1− α)

Γ(−α)Γ(n)

(
α2

8
−

α

4

)
, j = 0;

Γ(n− 2− α)

Γ(−α)Γ(n)

[
(1−

α

2
+

α2

8
)n+

α2

8
−

α

4
− 2

]
, j = 1;

Γ(n− j − 1− α)

Γ(−α)Γ(n− j + 2)

{
(n− j)2 −

(n− j)α

2
(α+ 3)

+(α+ 1)

(
α3

8
+

α2

2
− 1

)}
, 2 � j � n− 1;

−

α3

8
−

α2

2
+ 1, j = n;

α2 + 2α

8
, j = n+ 1;

0, others.

(4.6.4)

D-algorithm

c
(α)
n,j =

1

Γ(2 − α)

⎧⎪⎪⎨⎪⎪⎩
(1 − α)n−α − b(α)n−1, j = 0;

b
(α)
n−j − b(α)n−j−1, 1 � j � n− 1;

1, j = n;
0, others.

(4.6.5)

R0-algorithm

c
(α)
n,j =

1

Γ(1− α)
{
b
(1+α)
n−j−1, 0 � j � n− 1;

0, others.
(4.6.6)

R1-algorithm

c
(α)
n,j =

1

2Γ(1− α)

⎧⎪⎪⎨⎪⎪⎩
b
(1+α)
n−1 , j = 0;

b
(1+α)
n−j + b

(1+α)
n−j−1, 1 � j � n− 1;

1, j = n;
0, others.

(4.6.7)

R2-algorithm

c
(α)
n,j =

1

Γ(2− α)

⎧⎪⎪⎨⎪⎪⎩
(1− α)n−α − b(α)n−1, j = 0;

b
(α)
n−j − b(α)n−j−1, 1 � j � n− 1;

1, j = n;
0, others.

(4.6.8)

L1-algorithm (Caputo fractional derivative)

c
(α)
n,j =

1

Γ(2− α)

⎧⎪⎪⎨⎪⎪⎩
−b(α)n−1, j = 0;

b
(α)
n−j − b(α)n−j−1, 1 � j � n− 1;

1, j = n;
0, others.

(4.6.9)
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L1-algorithm (Riemann-Liouville fractional derivative)

c
(α)
n,j =

1

Γ(2− α)


(1− α)n−α − b

(α)
n−1, j = 0;

b
(α)
n−j − b

(α)
n−j−1, 1 6 j 6 n− 1;

1, j = n;
0, others.

(4.6.10)

L2-algorithm (Caputo fractional derivative)

c
(α)
n,j =

1

Γ(3− α)



b
(α−1)
n−1 , j = 0;

−2b
(α−1)
n−1 + b

(α−1)
n−2 , j = 1;

b
(α−1)
n−j+1 − 2b

(α−1)
n−j + b

(α−1)
n−j−1, 2 6 j 6 n− 1;

22−α − 3 j = n
1, j = n+ 1;
0, others.

(4.6.11)

Remark 4.6.1 1. The positive and negative α in the general form (4.6.1)

correspond to the approximations of fractional derivative and integral, re-

spectively. For G-algorithms, α can be either positive or negative; for R-

algorithms, α is limited to a negative number; and for L-algorithms, α should

take a positive number.

2. D-algorithm, R2-algorithm and L1-algorithm (Riemann-Liouville type)

have the same weighting coefficients, although the deductions of these coef-

ficients and the approximating objectives are both different. Moreover, D-

algorithm is only suitable for uniform grid while R- and L- algorithms can be

extended to unequisapced grid points.

3. The general form (4.6.1) generally takes N = n for G1-, D-, R2-, and

L1- algorithms; N = n − 1 for R0-algorithm; N = n + 1 for G2- and L2-

algorithms; and N = n+ p for Gs(p)−algorithm.

4.7 Extensions of integer-Order numerical

differentiation and integration

4.7.1 Extensions of backward and central difference quotient

schemes

In analogy with deriving the G1- and G2- algorithms from extending integer-

order derivative to fractional derivatives, we can also directly derive the frac-

tional difference schemes from extending the difference quotient schemes of

the integer-order derivative, namely, backward and central difference schemes,

to their fractional-order counterpart.

We first consider the shift operator Eh and difference operators∇h,△h, δh

(for backward, forward and central difference, respectively), where h ∈ R.
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Imposing these operators on u(t), t ∈ R yields⎧⎪⎪⎨⎪⎪⎩
Ehu(t) = u(t+ h),
∇hu(t) = u(t)− u(t− h),
�hu(t) = u(t+ h)− u(t),
δhu(t) = u(t+ h/2)− u(t− h/2).

(4.7.1)

Obviously, shift operator Eh possesses the following properties:

Eσ+τ = EσEτ , σ, τ ∈ R, (4.7.2)

together with the relation:

∇h = I − E−h, �h = Eh − I, δh = Eh/2 − E−h/2. (4.7.3)

By using the above notations, the backward and central difference quo-

tient of first-order derivative can be represented by:

u′(t) = D1u(t) =
u(t)− u(t− h)

h
+O(h) =

[∇hu(t)]

h
+O(h),

u′(t) = D1u(t) =
u(t+ h/2)− u(t− h/2)

h
+O(h2) =

δhu(t)

h
+O(h2).

Here and hereafter, we assume u(t) sufficiently smooth. These approximation

schemes can be generalized to the approximations of high-order derivatives

u(n)(t) = Dnu(t), n ∈ N:

Dnu(t) =
[∇n

hu(t)]

hn
+O(h) = h−n(I − E−h)nu(t) +O(h)

and

Dnu(t) =
δnhu(t)

hn
+O(h2) = h−n(Eh/2 − E−h/2)nu(t) +O(h2).

Here, we assume h > 0. The power operation of the difference operators

∇n
h , δ

n
h can be determined by binomial expansion:

∇
n
h =

n∑
j=0

(−1)j
( n
j

)
E−jh,

δnh =

n∑
j=0

(−1)j
( n
j

)
E(n−j)h/2E−jh/2 =

n∑
j=0

(−1)j
( n
j

)
E(n/2−j)h,

from which we further have:

h−n
n∑

j=0

(−1)j
(
n
j

)
u(t− jh) = Dnu(t) +O(h), (4.7.4)
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h−n
n∑

j=0

(−1)j
(
n
j

)
u(t+ (n/2− j)h) = Dnu(t) +O(h2). (4.7.5)

Now we extend the above schemes to the fractional-order cases:

∇
α
h =

∞∑
j=0

(−1)j
(
α
j

)
E−jh,

δαh =

∞∑
j=0

(−1)j
( α
j

)
E(α/2−j)h.

Note that the schemes above possess the similar series forms to the follow-

ing expansions (replace E−h by z and the series are convergent when|z| < 1):

(1 − z)α =
∞∑
j=0

(−1)j
(
α
j

)
zj =

∞∑
j=0

(−1)jw(α)
j zj,

(z−1/2 − z1/2)α = z−α/2
∞∑
j=0

(−1)j
( α
j

)
zj =

∞∑
j=0

w
(α)
j zj−α/2.

From the power of the difference operators, we derive again the Grünwald-

Letnikov approximation scheme:

h−α∇α
hu(t) = h

−α
∞∑
j=0

w
(α)
j u(t− jh) = GL

0 Dαu(t) +O(h),

as well as the fractional central difference scheme:

h−αδαhu(t) = h
−α

∞∑
j=0

w
(α)
j u(t− (j − α/2)h) = GL

0 Dαu(t) +O(h2).

If u(t) vanishes for t � 0, then we have

h−α∇α
hu(t) = h

−α

[t/h]∑
j=0

w
(α)
j u(t− jh) = GL

0 Dαu(t) +O(h),

h−αδαhu(t) = h
−α

[t/h+α/2]∑
j=0

w
(α)
j u(t− (j − α/2)h) = GL

0 Dαu(t) +O(h2).

The above two schemes are associated with schemes (4.2.1) and (4.2.11),

respectively.
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Remark 4.7.1 1. The forward difference scheme

h−n�nu(t) = Dnu(t) +O(t),

is not very suitable to be extended to the approximation of fractional deriva-

tive.

2. If u(t) at t = 0 fails to smoothly extend to the negative semi-axis,

then the approximation schemes will give inaccurate predictions. It is usually

required u(t) = 0, ∀t � 0.

4.7.2 Extension of interpolation-type integration quadrature

formulas

Classical interpolation-type integration quadrature formulas approximate the

integrand using the interpolation polynomial. We can extend this idea to

approximating the fractional calculus. Without loss of generality, we consider

the approximation of Riemann-Liouville fractional integral using compound

trapezoidal quadrature rule.

Let tj = a + jh, f(tj) = fj(j = 0, 1, · · · ) with step h and write the

Riemann-Liouville fractional integral of f(t) in form of(
aJ α

t f(t)
)
(tn) =

1

Γ(α)

∫ tn

a

(tn − τ)α−1f(τ)dτ

=
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn − τ)α−1f(τ)dτ.
(4.7.6)

The f(t) in integrand can be replaced by interpolation polynomials of differ-

ent orders. For instance, using first-order Newton interpolation leads to(
aJ α

t f(t)
)
(tn)

=
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn − τ)α−1

[
f(tj) +

f(tj+1)− f(tj)
h

(τ − tj)
]
dτ

=
hα

Γ(1 + α)

n−1∑
j=0

b
(1−α)
n−j−1fj

+
hα

Γ(1 + α)

n−1∑
j=0

(fj+1 − fj)
[
b
(−α)
n−j−1

1 + α
− (n− j − 1)α

]

= hα
n∑

j=0

c̄j,nfj

(4.7.7)

where c̄j,n = c
(−α)
j,n . The c

(−α)
j,n is actually given by (4.6.8), which indicate that

the approximation scheme (4.7.7) is the same as the foregoing R2-algorithm.
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Particularly, for α = 1, (4.7.7) reduces to compound trapezoidal quadra-

ture rule; while for α = 0, (4.7.7) reduces to (aJ α
t f(t)) (tn) = fn.

Similarly, using higher-order interpolation polynomials to approximate

f(t) can produce integration quadrature formulas of higher accuracy. For

example, using second-order Newton interpolation polynomial will lead to an

extension of compound Simpson quadrature rule.

4.7.3 Extension of linear multi-step method: Lubich fractional

linear multi-step method

We first review some fundamentals of linear multi-step method for solving

first-order integral equation, and then extend the ideas to fractional linear

multi-step method.

Consider the following integral equation

y(t) = J u(t) =
∫ t

0

u(τ)dτ. (4.7.8)

Denote tk = kh, yk ≈ y(tk)(k = 0, 1, 2, · · · ), let uk =

{
uh(kh), k � 0
0, k < 0

,

and denote by z the backward shifting operator z = E−h:

zun = un−1, z
kun = un−k.

The generic linear multi-step method for solving integral equation (4.7.8) can

be written by

αpyn+αp−1yn−1+· · ·+α0yn−p=h(βpun+βp−1un−1+· · ·+β0un−p), (4.7.9)

where the coefficients αk, βk are prescribed. Considering a polynomial of

degree p

ρ(z) = αp + αp−1z + · · ·+ α0zp, σ(z) = βp + βp−1z + · · ·+ β0zp,

and letting

ω(z) =
ρ(z)

σ(z)
,

we call ω−1(z) is the generating function of linear multi-step method (4.7.9)

for first-order integral equation (4.7.8). As a result, the linear multi-step

method (4.7.9) can be further represented as

ρ(z)yn = hσ(z)un,
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or

yn = hω−1(z)un ≈ J u(nh), (4.7.10)

which is briefly called the (ρ, σ) linear multi-step method. Expanding the

generating function ω−1(z) in Taylor series yields

ω−1(z) = ω0 + ω1z + ω2z
2 + · · · ,

and accordingly the linear multi-step method (4.7.9) or (4.7.10) can be given

by

yn = h

∞∑
j=0

ωjun−j ≈ J u(nh). (4.7.11)

Since uk = 0 for k < 0, (4.7.11) can be reduced to

yn = h

n∑
j=0

ωjun−j ≈ J u(nh). (4.7.12)

Similarly, using

un = h−1ω(z)yn ≈ y′(nh) (4.7.13)

can define the generating function ω(z) of linear multi-step method for first-

order differential equation.

The generating function of p-order backward multi-step method for first-

order differential equation is [146]

ω(z) =

p∑
k=0

ωkz
k =

p∑
k=1

1

k
(1 − z)k :=Wp(z). (4.7.14)

Extending the ideas of approximating first-order integral operator J u(t)
to the approximation of fractional integral operator leads to

J αu(t) ≈ hα(ω(z))−αu(t) = hα
[t/h]∑
j=0

ω
(−α)
j u(t− jh) (4.7.15)

or

RLDα
t y(t) = J −αy(t) = h−α(ω(z))α ≈ h−α

[t/h]∑
j=0

ω
(α)
j y(t− jh), (4.7.16)

where the coefficients ω
(β)
j , j = 0, 1, 2, · · · , are the Taylor expansion coeffi-

cients of a given generating function, namely

ω
(β)
0 + ω

(β)
1 z + ω

(β)
2 z2 + · · · = ω(β)(z). (4.7.17)



February 6, 2015 18:25 book-9x6 9543–Fractional Partl.Differ.Eqn. & Their Numerical Solu. frac-4-wx page 282

282 Chapter 4 Numerical Approximations in Fractional Calculus

The cases β < 0 and β > 0 respectively represent the generating functions

related to Riemman-Liouville fractional integral and differential operators,

and they can be obtained by using the β-th power of the generating function

(4.7.14):

ω(β)(z) =
(
ω(z)

)β
. (4.7.18)

Generating functions vary with the order p. Using generating function (4.7.14),

one can derive the one- to four- order generating functions of fractional linear

multi-step method [146]:

W
(β)
1 (z) =

(
W1(z)

)β
= (1− z)β ,

W
(β)
2 (z) =

(
W2(z)

)β
=

(
3

2
− 2z +

1

2
z2
)β

,

W
(β)
3 (z) =

(
W3(z)

)β
=

(
11

6
− 3z +

3

2
z2 − 1

3
z3
)β

,

W
(β)
4 (z) =

(
W4(z)

)β
=

(
25

12
− 4z + 3z2 − 1

3
z3 +

1

4
z4
)β

,

W
(β)
5 (z) =

(
W5(z)

)β
=

(
137

60
− 5z + 5z2 − 10

3
z3 +

5

4
z4 − 1

5
z5
)β

,

W
(β)
6 (z) =

(
W6(z)

)β
=

(
147

60
− 6z +

15

2
z2 − 20

3
z3 +

15

4
z4 − 6

5
z5 +

1

6
z6
)β

.

In fact,the G1-algorithm in Section 4.2 can be seen as a type of linear

multi-step method whose coefficients ω
(α)
j = (−1)j

( α
j

)
(j = 0, 1, 2, · · ·) is

the Taylor expansion coefficients of generating function W
(α)
1 (z) = (1 − z)α.

If only using (4.7.16) in approximation, Lubich has proved that this ap-

proximation possesses the accuracy of the order O(hν) + O(hp) for f(t) =

tν−1, where ν > 0 and p is the order of the corresponding multi-step method

(2 ∼ 6). It should be noted that for a fixed ν, even for a larger p, the error

is still limited to the order O(hν). To achieve a higher accuracy, Lubich pre-

sented in 1986 a technique which added a correction term in approximation

scheme [45]. The approximation scheme can be given by

Dβ
t f(tn) ≈ h−β

n∑
j=0

ω
(β)
n−jf(tj) + h

−β
s∑

j=0

 n,jf(tj). (4.7.19)
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Addition of the correction term is able to remove the error term O(hν),

thereby leading the final error to O(hp). The correction term coefficients

 n,j in (4.7.19) can be derived as follows. Taking

A = {γ = k + lβ, 0 � k, l = 0, 1, 2, · · · ; γ � p− 1},
letting s be the number of elements in set A minus one, and substituting

f(t) = tq, q ∈ A in (4.7.19), then lead to a linear system with unknowns  nj :

s∑
j=0

 n,jj
q =

Γ(a+ 1)

Γ(1− β + q)
nq−β −

n∑
j=1

ω
(β)
n−jj

q, q ∈ A. (4.7.20)

Theorem 4.7.1 Suppose that f(t) is defined on [0, T ] and is sufficiently

differentiable, that the coefficients ωβ
j are given by (4.7.18) and (4.7.14), and

that  n,j is determined by linear system (4.7.20), then it holds that

h−β
n∑

j=0

ω
(β)
n−jf(tj) + h

−β
s∑

j=0

 n,jf(tj),−Dβ
t f(tn) = O(h

p), (4.7.21)

where tn ∈ [0, T ], ω
(β)
k = O(kβ−1),  n,j = O(n

β−1). See the proof in [145].

Remark 4.7.2 1. For each grid point tn, one needs to solve the linear

system (4.7.20) to derive a group of correction term coefficients  n,j; the

system matrix is invariable (having Vondermonde structure) even if different

sets of grid points are considered; and the constants in the right-hand side of

the linear system vary with the selection of grid points.

2. The property of the system matrix of the linear system (4.7.20) is

intimately linked with α. The condition number of the matrix would turn

very large for some α.

3. The high accuracy is achieved by this approximation scheme at the

expense of increasing computation effort, where the computations of coeffi-

cients ω
(α)
j and  n,j become complicated. As an antidote to the problem,

Lubich and his collaborator suggested using fast Fourier transform in com-

puting these coefficients.

4.8 Applications of other approximation techniques

4.8.1 Approximations of fractional integral and derivative of

periodic function using fourier expansion

For a periodic function with period 2L, using Fourier expansion writes f(t)

which is defined on [−L,L] in form of a trigonometric series:

f(t) =
a0
2

+

∞∑
n=1

(an cos
nπ

L
t+ bn sin

nπ

L
t) (4.8.1)
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where ⎧⎪⎪⎨⎪⎪⎩
an =

1

L

∫ L

−L

f(t) cos
nπt

L
dt, n = 0, 1, 2, · · ·

bn =
1

L

∫ L

−L

f(t) sin
nπt

L
dt, n = 1, 2, 3, · · ·

(4.8.2)

Note that the integer-order derivatives of sine and cosine functions take

the form:

dk

dtk
[sin at] = ak sin

(
at+

kπ

2

)
,

dk

dtk
[cos at] = ak cos

(
at+

kπ

2

)
. (4.8.3)

It can be proved from Cauchy integral formula that for a Riemann-Liouville

fractional derivative (i. e. k is a real number), the (4.8.3) still holds [215]. So

that, letting k equals a real number α and using (4.8.3) give the fractional

derivative of f(t):

aDα
t f(t)

=
a0

Γ(1− α) t
−α+

∞∑
n=1

(nπ
L

)α[
an cos

(nπ
L
t+
απ

2

)
+bn sin

(nπ
L
t+
απ

2

)]
.
(4.8.4)

4.8.2 Short memory principle

For t� a, the approximation scheme (4.6.1) will have a very large number of

adding terms. While for a large t, and with certain assumption, the “history”

contribution of f(t) in the neighbourhood of t = a to the final approximating

value can be ignored. This is what is called “short memory principle”, that

is, to only consider the functional values in the “latest past” [t− L, t] where
L is called the “memory length”:

aDα
t f(t) ≈ t−LDα

t f(t), t > a+ L. (4.8.5)

In other words, based on short memory principle (4.6.1), replace the original

fractional derivative defined on [a, t] by a new fractional derivative defined on

[t−L, t], and then apply difference approximation scheme (4.6.1) to the new

derivative. In this fashion, the number of adding terms will not exceed

[
L

h

]
.

It should be noticed that this kind of simplification reduces the computation

effort at the expense of a bit loss in accuracy.

If |f(t)| � M, ∀a � t � b, which is actually easy to satisfy in many

practical problems, then based on

aDα
t f(t) =

1

Γ(−α)
∫ t

a

f(τ)dτ

(t− τ)α+1
, α 
= 0, 1, 2, · · · ,
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the error estimation induced by the short memory principle is

Δ(t) = |aDα
t f(t)− t−LDα

t f(t)| �
ML−α

|Γ(1− α)| . (4.8.6)

This inequality enables the selection of suitable memory length L accord-

ing to the accuracy required. If L �

(
M

ε|Γ(1− α)|
)1/α

, then |Δ(t)| � ε.
Alternatively, Ford and Simpson investigated the nonlinear fractional dif-

ferential equation, analyzed the fixed memory principle, and presented the

nested mesh scheme. In their studies, the variable step computation is per-

mitted and a better approximation is achieved at a reasonable computational

cost [86, 87].
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Chapter 5

Numerical Methods for the Fractional

Ordinary Differential Equations

This chapter presents the numerical methods for fractional ordinary differen-

tial equations. It is noted that many researchers have studied the numerical

solution of Abel-Volterra integral equations of the first kind and the second

kind. These equations are also termed fractional integral equations in which

Riemann-Liouville fractional integral are considered (see the references [97]

and [91]). On the other hand, research on numerical methods for fractional

derivative equations merely commences in recent decades. Here we investi-

gate the numerical solution of fractional ordinary differential equation and

fractional integral equation based on the approximation schemes for fractional

derivative and fractional integral, respectively.

5.1 Solution of fractional linear differential equation

Firstly, consider the linear fractional ordinary differential equation stated in

the general form as [179]

amDβm
t y(t) + am−1Dβm−1

t y(t) + · · ·+ a1Dβ1
t y(t) + a0Dβ0

t y(t) = u(t)(5.1.1)

where u(t) can be a function and/or its fractional derivatives of different

orders, and it is assumed βm > βm−1 > · · · > β1 > β0.
Supposing a zero initial-value condition of function y(t) and applying

Laplace transform lead to

G(s) =
Y (s)

U(s)
=

1

amsβm + am−1sβm−1 + · · ·+ a1sβ1 + a0sβ0

where G(s) is also called the fractional transfer function. The exact solution

is presented in [179], but it appears hard-to-implement in computer program-

ming. We thus here discuss other numerical solution techniques instead.

Generally, fractional difference quotient formula (see its general formula

(4.6.1)) is employed in numerical solution. The resulting numerical solution

of the differential equation (5.1.1) can be directly deduced as

286
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yN =
1

m∑
i=0

aicn,N
hβi

(
u(tn)−

m∑
i=0

ai
hβi

N−1∑
j=0

c
(βi)
n,j yj

)
.

It should be noted that when using the generalized-form fractional dif-

ference quotient formula (4.6.1), special attention should be paid to the

applicability of different approximation schemes and sometimes modifica-

tions needs to be made. The afore-mentioned numerical method is based

on the direct discretization of the fractional derivative or integral and thus

belongs to the direct methods. Another group of methods are called in-

direct methods which through variable substitution equivalently transform

the fractional differential equation to a series of fractional differential equa-

tions [67, 71, 77]. This group of method can also solve the nonlinear multi-

order fractional differential equations. Other types of methods have also

be developed. Podlubny [179] presented some numerical methods but with

the absence of the corresponding error analyses. After transforming the

multi-order fractional differential equation to a set of fractional differential

equations, Kiethelm [67,71] introduced the linear multi-step method and the

predictor-corrector method to handle the transformed equations and the re-

lated stability and convergence analyses were given. The Poisson transform

method is applied by Ali to solve the linear multi-order fractional integro-

differential equation [8]. The differential transform method is applied by Er-

turk et al to solve the fractional multi-order differential equation. There are

also some other methods including Adomian decomposition method [60, 80]

and separate variable method [61].

5.2 Solution of the general fractional differential

equations

Consider the fractional ordinary differential equation as follows

∂αy(t)

∂tα
= f(t, y(t)), t ∈ [0, T ], (5.2.1)

where α > 0,m = [α] + 1, and fractional derivative operator
∂αy(t)

∂tα
belongs

to Caputo type or to Riemann-Liouville type.

Proper initial-value conditions should be added to guarantee the solu-

tion existence and uniqueness (see the proof of the solution existence and

uniqueness in [70]). The initial-value condition in Caputo sense is

Dky(0) = y
(k)
0 , k = 0, 1, · · · ,m− 1. (5.2.2)
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while

Dα−ky(0) = y
(k)
0 , k = 1, 2, · · · ,m, (5.2.3)

in Riemann-Liouville sense.

Since the initial-value condition for Riemann-Liouville sense is written

in a fractional derivative form, the physical meaning is not clear; whereas

the condition for Caputo sense is given in classical integer-order derivative

having explicit physical meaning. Therefore, the remaining part of this sec-

tion centers on the numerical methods for Caputo-type fractional ordinary

differential equations.

Note that, under certain continuity condition, the Grünwald-Letnikov

fractional derivative is equivalent to Riemann-Liouville fractional derivative.

Particularly, for the homogeneous initial-value conditions y
(k)
0 = 0, these two

derivatives take the equivalent form as the Caputo fractional derivative.

Initial-value problem (5.2.1)+(5.2.2) can be transformed to [70]

y(t) =
m−1∑
k=0

tk

k!
y
(k)
0 +

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ. (5.2.4)

i.e.

y(t) =
m−1∑
k=0

tk

k!
y
(k)
0 + J αf(t, y(t)). (5.2.5)

Many numerical methods developed for the integer-order ordinary differ-

ential equations can be extended to the solution of equations of fractional

order. However, the nonlocality of the fractional derivative induces signifi-

cant differences in solution process of fractional equations compared to solv-

ing integer-order equations. Numerical methods are mainly classified to the

direct methods and indirect methods. The finite difference which is estab-

lished directly on the original equation (5.2.1) is so called the direct method.

The fractional derivative CDα given in different expression (weak or strong

integral kernel) lead to different approximation schemes. Using the relation

between the Caputo fractional derivative and Riemann-Liouville/ Grünwald-

Letnikov fractional derivative, we can use the G-, D- and L- algorithms,

and fractional linear multi-step method mentioned in Chapter 4. Meanwhile

transform (5.2.1) to Volterra integral equation (5.2.4), and then use the nu-

merical methods originally developed for Volterra problems, particularly the

numerical integration formulas, we can get the so called indirect method.

The R-algorithm discussed in Chapter 4 and the predictor-corrector method

to be introduced both belong to this group.
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Mesh the computational domain: take equispaced grid points tj = jh, j =

0, 1, · · · , [T/h], and denote yn ≈ y(tn), fn = f(xn, yn).

5.2.1 Direct method

Firstly, consider the fractional differential equation with homogeneous initial-

value condition ⎧⎨⎩
∂αy(t)

∂tα
= f(t, y(t)), t ∈ [0, T ],

y(k)(0) = 0, k = 0, 1, · · · ,m− 1.

(5.2.6)

By the homogeneous initial conditions, we have

∂αy(t)

∂tα
= CDαy(t) = RLDαy(t) = GLDαy(t).

Applying the general fractional difference quotient approximation formula

(4.6.1), we obtain

h−α
N∑
j=0

c
(α)
n,jyj = f(tn, yn), n = 0, 1, · · · , [t/h]. (5.2.7)

As a result, the numerical solution can be determined by

yN =
hα

c
(α)
n,N

f(tn, yn)− 1

c
(α)
n,N

N−1∑
j=1

c
(α)
n,jyj , n = 1, · · · , [T/h], (5.2.8)

where N = n (for G1- algorithm, D- algorithm, L1- algorithm and linear

multi-step method) or N = n+ 1 (for G2- algorithm and L2- algorithm).

Note 1. When N = n + 1 (for G2- algorithm and L2- algorithm), it can

be point-wise explicitly computed according to (5.2.8). Notice that L2- algo-

rithm can only be used for the case 1 < α � 2. In addition, the L2-algorithm

lacks the systematic theoretical analyses, especially the stability analysis.

2. When N = n (for G1- algorithm, D- algorithm, L1- algorithm and

linear multi-step method), if f is linear, it can be point-wise computed ac-

cording to (5.2.8). Also, if the initial-value condition is nonhomogeneous, it

can be transformed to a homogeneous problem [218]:

(i) Caputo-type problem

y(t) =

m−1∑
k=0

y(k)(0)tk + z(t) (5.2.9)
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(ii) Riemann-Liouville-type problem

y(t) =

m∑
k=1

Dα−ky(0)tα−k + z(t) (5.2.10)

The original nonhomogeneous problem is finally transformed to a homoge-

neous problem in terms of the new variable z(t). Then the transformed

problem can be solved using finite difference scheme (5.2.8). For a nonlin-

ear initial-value condition, it is required to solve nonlinear equation or linear

equations.

3. Problem with nonlinear nonhomogeneous initial-value condition

(i) G1-algorithm

The correction term [218] should be added to the finite difference scheme

(5.2.8) of the Caputo fractional ordinary differential equation. When 0 <

α � 1, the correction term is

yn = hαf(tn, yn)−
n∑

k=1

ω
(α)
k yn−k −

( n−α

Γ(n− α) −
n∑

j=0

ω
(α)
j

)
y0, (5.2.11)

where n = 1, · · · , [T/h].
(ii) D-algorithm

Based on the relation between the Caputo derivative and Riemann-Liouville

derivative (see Proposition 4.1.2)

CDαy(t) = Dαy(t)−DαTm−1[y; 0](t) (5.2.12)

where

Tm−1[y; a] =

m−1∑
k=0

tk

k!
y(k)(0),

and using D-algorithm, we obtain

h−α
n∑

j=0

cn,jyj −
m−1∑
k=0

tkn
k!
y(k)(0) = f(tn, yn). (5.2.13)

It follows

yn = hαf(tn, yn) + h
α

m−1∑
k=0

tkn
k!
y(k)(0)−

n−1∑
j=0

cn,jyj , (5.2.14)

where the coefficient cn,j is defined by (4.6.5). Letting α = 1, we obtain the

classical simplest backward difference scheme for the first-order differential

equation. However, the approximation theory for this method is still not
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perfect, and two important problems have not yet been well resolved: the

solvability of equation (5.2.14) and the error analysis.

Diethelm [65,68] discussed the two problems for the special case 0 < α <

1, f(t, y) = μy + q(x). Equation (5.2.23) becomes

(0Dα
t [y(t)− y(0)])(x) = βy(x) + f(x), 0 < x < 1, β � 0. (5.2.15)

The numerical error is proved to be O(h2−α) when y(t) ∈ C2[0, T ]. Diethelm

and Walz [74] further obtained the asymptotic expansion of yn

yn = y(xn) +

M1∑
l=2

ain
l−α +

M2∑
j=1

bjn
−2j +O(x−λM )(n→∞) (5.2.16)

where the nature numbersM1,M2 are defined by the smoothness of function

f(x) and y(x). Constants ak(k = 2, · · · ,M1) and bj(j = 1, · · · ,M2) depend

on k − α, 2j and M = min[α − M1, 2M2]. An extrapolation method for

the numerical solution of equation (5.2.15) is illustrated by this asymptotic

estimation formula (5.2.16).

(iii) Linear multi-step method

Fractional linear multi-step method is firstly proposed by Lubich [143-148]

and Hairer, Schlichte [110].

Based on the relation (5.2.12) and the approximation scheme (4.7.19), the

p ∈ {1, 2, · · · , 6} order Lubich fractional linear multi-step method for solving

the Caputo fractional differential equation is stated as

h−α

n∑
j=0

ω
(α)
n−jyj + h

−α
s∑

j=0

 njyj −DαTm−1[y; 0](tn)

= f(tn, yn), n = 1, · · · , N.
(5.2.17)

It can be written as

yn= h
αf(tn, yn) + h

αDαTm−1[y; 0](tn)

−
n∑

j=1

ω
(α)
n−jyj −

s∑
j=0

 njyj, n = 1, · · · , N (5.2.18)

where coefficient ω
(α)
k is generated by function

ωα(z) =

(
p∑

k=1

1

k
(1− z)k

)α

, (5.2.19)

and the start weight  mj can be obtained by the following equations

s∑
j=0

 njj
q =

Γ(1 + q)

Γ(1 + q − α)n
q−α −

n∑
j=1

ω
(α)
n−jj

q.
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The details can be seen in Chapter 4. There exists small ε > 0, such that the

error of the approximation scheme (5.2.18) on arbitrary grid point is O(hp−ε),

and ωk = O(kα−1).

(iv) L-algorithm

Shkhanukov [200] firstly applied the difference method to solve the fol-

lowing Dirichlet problem⎧⎨⎩Ly≡
d

dx

[
k(x)

d

dx
y(x)

]
−r(x)0Dα

xy(x)−q(x)y(x)=−f(x), 0<x<1,

y(0) = y(1) = 0; k(x) � c0 > 0, r(x) � 0, q(x) � 0,

(5.2.20)

where 0 < α < 1, 0Dα
x is Riemann-Liouville fractional derivative. His method

is based on the approximation of fractional derivative

0Dα
x y(xi) =

1

Γ(2− α)
i∑

k=1

(x1−α
i−k+1 − x1−α

i−k )yx̄k (5.2.21)

where yx̄k =
y(xk)− y(xk−1)

xk − xk−1
is the first order forward difference quotient

of y(xk). The above formula is L1-algorithm (4.5.2). Here, we still take the

uniform grid points {xj = jh : j = 0, 1 · · · , N − 1}, where h = 1/N is

the step length. Applying the approximation formula, Shkhanukov obtained

the difference scheme of the problem (5.2.20) and further proved its stabil-

ity and convergency. Using difference approximation (5.2.21), Shkhanukov

presented the difference scheme of the fractional partial differential equation

with initial-boundary values as⎧⎪⎪⎨⎪⎪⎩
Dα

t u(x, t) =
∂2u(x, t)

∂x2
+ f(x, t), 0 < x < 10 < t < T,

u(0, t) = u(1, t) = 0, 0 � t � T ;
u(x, 0) = 0, Dα

t u(x, t)|t=0 = 0, 0 � x � 1,

(5.2.22)

and also derived the stability and convergency of the difference scheme on a

uniform grid.

5.2.2 Indirect method

Linear multi-step method

We still consider the following fractional ordinary differential equation{
CDαy(t) = f(t, y(t)), t ∈ [0, T ],

y((k)(0) = bk, k = 0, 1, · · · ,m− 1,
(5.2.23)
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where α > 0,m = [α] + 1. Caputo fractional derivative operator CDα is

taken due to the fact that the initial-value condition related to this type of

operator possesses clear physical meaning.

It is easily noted that the fractional differential equation (5.2.23) can be

transformed to Abel-Volterra integral equation

y(t) = Tm−1[y; 0](t) + J αf(t, y(t)), (5.2.24)

where

Tm−1[y; 0](t) =

m−1∑
k=0

tk

k!
bk

J αf(t, y(t)) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ.

Applying the p ∈ {1, 2, · · · , 6} order Lubich fractional linear multi-step

method to the above equation yields

yn =Tm−1[y; 0](tn) + h
α

n∑
j=0

ω
(−α)
n−j f(tj , yj)

+hα
s∑

j=0

 njf(tj , yj), m = 1, · · · , N,
(5.2.25)

where the convolution coefficient ω
(−α)
k is given by function

ω−α(z) =

(
p∑

k=1

1

k
(1− z)k

)−α

. (5.2.26)

and the starting weight  nj is obtained by the following equations

s∑
j=0

 njj
q =

Γ(1 + q)

Γ(1 + q + α)
nq+α −

n∑
j=1

ω
(−α)
n−j j

q .

R-Algorithm

Diethelm and Freed [73] considered the following nonlinear fractional dif-

ferential equation:

(0Dα
t [y(t)− y(0)])(x) = f [x, y(x)](0 < x < 1; 0 < α < 1) (5.2.27)

whose equivalent form is the second kind of Volterra integral equation

y(x) = y(0) +
1

Γ(α)

∫ x

0

f [t, y(t)]

(x− t)1−α
dt. (5.2.28)
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The integral in the above equation can be seen as weighted integral with the

weighting function (tn+1 − t)α−1. Take the nodes tj(j = 0, 1, · · · , n+ 1) and

apply the trapezoidal quadrature formula to solve problem. This method is

the R-algorithm mentioned in Chapter 4.

R-algorithm is frequently used in the predictor-corrector scheme, there-

fore, we will analyze its specific applications in the following section.

Fractional predictor-corrector method

We still consider the fractional ordinary differential equation (5.2.23).

Mesh the computational domain: take the uniform grid points tj =

jh(h = T/N) and denote yj = yh(tj) ≈ y(tj), fj = f(xj , yj), j = 0, 1, · · · , N .

(5.2.23) amounts to the Abel-Volterra integral equation (5.2.24), i.e.

y(t) =
m−1∑
k=0

tk

k!
bk + J

αf(t, y(t)). (5.2.29)

The first term on the right-hand of (5.2.29) is totally determined by the

initial-value condition and is thus a known quantity. The second term is

the Riemann-Liouville integral of function f which can be approximated by

R-algorithm previously mentioned. Using relatively accurate R2-algorithm

leads to

yh(tn+1)=

m−1∑
k=0

tkn+1

k!
bk + hα

n+1∑
j=0

aj,n+1f(tj , yh(tj)). (5.2.30)

where the coefficients are

aj,n =
1

Γ(2 + α)

⎧⎪⎪⎨⎪⎪⎩
(1 + α)nα − n1+α + (n− 1)1+α, j = 0;
(n− j + 1)1+α − 2(n− j)1+α

+(n− j − 1)1+α, 1 � j � n− 1;
1, j = n.

(5.2.31)

The difference approximation scheme (5.2.30) is called the Adams-Moulton

method.

For this method, since both sides of the equation include the unknown

variables yh(tn+1) and due to the non-linearity of f , it is often difficult to de-

rive yh(tn+1). Therefore iteration procedure is usually employed. To achieve

a better approximate solution, substitute a predicted value yh(tn+1) into the

right-hand of (5.2.30).

Let yph(tn+1) be the predicted value, which can be obtained by some simple

method (explicit form). For instance, use relatively inaccurate R0-algorithm

to derive the predicted value:
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yph(tn+1) =

m−1∑
k=0

tkn+1

k!
bk + hα

n∑
j=0

bj,n+1f(tj , yh(tj)). (5.2.32)

The formula above is called the fractional Euler method or fractional Adams-

Bashforth method, where

bj,n =
(n− j)α − (n− j − 1)α

Γ(1 + α)
.

Replacing yh(tn+1) in the right-hand of (5.2.30) by (5.2.32) gives

yh(tn+1) =

m−1∑
k=0

tkn+1

k!
bk +

hα

Γ(2 + α)
f(tn+1, y

p
h(tn+1))

+hα
n∑

j=0

aj,n+1f(tj, yh(tj)).

(5.2.33)

The method determined by (5.2.32) and (5.2.33) is called fractional Adams-

Bashforth-Moulton method.

The computing process of the fractional Adams-Bashforth-Moultonmethod

mainly includes four steps:

(1) Predict: predict yp(tn+1) from (5.2.32);

(2) Evaluate: compute f(tn+1, y
p
n+1);

(3) Correct: correct y(tn+1) by (5.2.33);

(4) Evaluate: compute f(tn+1, yh(tn+1) to prepare for the next loop iter-

ation.

Hence, it is more common to call this method predictor-corrector scheme,

or PECE (Predict, Evaluate, Correct, Evaluate) method.

Lemma 5.2.1 [72] Suppose g(t) ∈ C1[0, T ], then

|J αg(tn)− hα
n−1∑
j=0

bj,ng(tj)| � 1

Γ(1 + α)
‖g′‖∞tαnh. (5.2.34)

Lemma 5.2.2 [72] Suppose g(t) ∈ C2[0, T ], then there exists a constant

Cα dependent on α such that

|J αg(tn)− hα
n∑

j=0

aj,ng(tj)| � Cα‖g′′‖∞tαnh2. (5.2.35)

Theorem 5.2.1 [72] Suppose α > 0, y(t) is sufficiently smooth, CDαy(t) ∈
C2[0, T ] and function f(t, y) satisfy the Lipschitz condition with respect to

the second variable, namely,

f(t, y1)− f(t, y2) � L|y1 − y2|, (5.2.36)
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then the error of the correct scheme (5.2.32)+(5.2.33) satisfies

max
0�j�N

|y(tj)− yh(tj)| =
{
O(h2), α � 1;

O(h1+α), α < 1,
(5.2.37)

i.e.

max
0�j�N

|y(tj)− yh(tj)| = O(hp), (5.2.38)

where p = min{2, 1 + α}, N = [T/h].

Proof It will be shown that for arbitrary j = 0, 1, · · · , N and sufficiently

small h, there exists a constant C such that

|y(tj)− yh(tj)| � Chp. (5.2.39)

Since the initial-value condition is given, the above inequality holds for j = 0.

Assume (5.2.39) holds for j = 0, 1, · · · , k, now we prove the inequality also

holds for j = k + 1.

Firstly, we observe the error of predicted value yPk+1. From (5.2.29) and

(5.2.32), it follows

|y(tk+1 − yPk+1)|

= |[J αf(t, y(t))]t=tk+1
− hα

k∑
j=0

bj,k+1f(tj, yj)|

� |[J αCDαy(t)]t=tk+1
−hα

k∑
j=0

bj,k+1[
CDαy(t)]t=tk+1

|

+hα
k∑

j=0

bj,k+1|f(tj , y(tj))− f(tj, yj)|

� c1t
α
k+1h+ c2t

α
k+1h

p,

(5.2.40)

where c1, c2 are constants depending on α.

Then, we attempt to obtain the error of the corrected value. By (5.2.29)

and (5.2.33), we have

|y(tk+1 − yk+1)|= |[Jαf(t, y(t))]t=tk+1
− hαak+1,k+1f(tk+1, y

P
k+1)

−hα
k∑

j=0

aj,k+1f(tj , yj)|

� |[J αCDαy(t)]t=tk+1
− hα

k+1∑
j=0

aj,k+1[
CDαy(t)]t=tk+1

|
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+hα
k∑

j=0

aj,k+1|f(tj , y(tj))− f(tj , yj)|

+hαak+1,k+1|f(tk+1, y(tk+1))− f(tk+1, y
P
k+1)|

� c3t
α
k+1h

2 + chαhp
k∑

j=0

aj,k+1 + c
′hαak+1,k+1(h+ h

p)

� c3t
α
k+1h

2 + c4h
1+α + c5t

α
k+1h

p � Chp.

(5.2.41)

The error is obtained under a relatively strict condition (CDαy(t) ∈
C2[0, T ]). But for some smooth function y(t), its fractional derivative CDαy(t)

is likely non-smooth. Diethelm et al also gave the error evaluations under

some other conditions [72].

The convergence evaluation given below is derived for a smooth y(t).

Theorem 5.2.2 Let 0 < α � 1, y(t) ∈ C2[0, T ], and f(t, y) satisfy the

Lipschitz condition with respect to the second variable (5.2.36), then

|y(tj)− yh(tj)| = Ctα−1
j ×

{
h1+α, 0 < α � 1/2;

h2−α 1/2 < α < 1,
(5.2.42)

where C is a constant independent of j and h.

See the proof in [72].

Note: 1. Compared to the integer order derivative, the fractional order

derivative is non-local operator. It means that the computation of fractional

derivative on each point depends on not only the date in the neighbourhood

of the present instant, but also the data in the whole history. This property

can describe the physical phenomenon having memory features, but leads to

some troublesome in numerical computation. The time complexity of the

present method is O(N2) (while the complexity is only O(N) when solving

integer-order problem), where N is the number of the computational points.

Short memory principle [179] can be employed to lower the complexity at

the expense of the accuracy and stability for some problems. Nest memory

concept can also be a suitable choice since its complexity is reduced to merely

O(NlogN) when retaining the original accuracy [87].

2. The stability analysis of method is equivalent to that of classical

Adams—Bashforth—Moutton scheme. One of the methods to improve the

stability is the so-called P (EC)mE algorithm, which corrects m times for

each calculation. The stability of the method is improved at the expense of

increasing the correcting iteration number while keeping the convergence and

complexity unchanged.
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3. Richardson extrapolation method can be used to improve the accuracy

of the method. Compute the value uni,2N on a grid two times denser than the

original one in each time step, and then take the Richardson extrapolation

value 2un2i,2N − uni as the new value ūni . Thus the spatial convergence order

is increased to O(h2).

4. The algorithm idea can be generalized and applied to the unequis-

paced grid case, in which the weighting factors in the predictor and corrector

formulas needs some adjustments but the Richardson extrapolation method

will fail.
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Chapter 6

Numerical Methods for Fractional

Partial Differential Equations

Finite difference methods and series approximation methods (mainly in-

cluding Adomian decomposition method and variational iteration method)

are the dominant numerical methods for solving fractional partial differen-

tial equations. The corresponding theoretically analyzing methods include

Fourier methods, energy estimation, matrix eigenvalue method and math-

ematical induction. There still exist other types of methods but with ei-

ther somewhat weaker applicability or absence of relatively sound theoret-

ical analyses. The developments of the correlative numerical methods can

be briefly reviewed as follows. From the end of 20th century, Gorenflo et

al have published a series of papers [93-95, 149, 150] regarding the finite

difference schemes for solving time, space, and time-space fractional diffu-

sion equations. These schemes are formulated by using the equivalence of

the Riemann-Liouville and Grünwald-Letnikov fractional derivatives, and are

further interpreted as the discrete random walk models in terms of time,

space and time-space levels. To guarantee the stability of the schemes,

shifted Grünwald-Letnikov approximation schemes are constructed in place

of the standard schemes. It should be also noted these finite difference

schemes can be easily extended to solution of the generic fractional par-

tial differential equations. In studying the saltwater intrusion into aquifer

systems, Liu et al presented the “Method of Lines” [137] which transforms

the fractional partial differential equation to a system of fractional ordi-

nary differential equations. Their approach takes the backward difference

scheme with variable-order and variable-step, and has been widely accepted

and extensively used to solution of space fractional partial differential equa-

tions. In 2004, Meerschaert and Tadjeran [157] presented the finite difference

scheme for space advection-dispersion equation with variable coefficients, to-

gether with its error analysis. Afterwards, Tadjeran et al, in 2006, derived

a temporally second-order, spatially first-order accurate and unconditionally

stable finite difference scheme by combining Grünwald-Letnikov formula with

299
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Crank-Nicolson method. Space extrapolation was used to increase the spa-

tial convergence rate to the second-order, and the proposed finite difference

scheme is further applied to solving other types of space fractional partial

differential equations [75, 158, 202, 208]. It is worth noting that the finite

difference schemes mentioned above are all based on the Grünwald-Letnikov

approximation schemes. In addition to that, L-algorithms can also be uti-

lized to construct the finite difference schemes [46, 81, 137, 199, 224], yet in

the absence of rigorous theoretical analyses for most of schemes.

For solving time fractional partial differential equations, there have been

two leading finite difference schemesone is based on G-algorithms [92, 226]

and the other on L-algorithms [129].

For solving time-space fractional equations, G- and L- algorithms are

usually combined to form the finite difference schemes [140, 141, 231].

Besides, special care has still been taken of solving high-dimensional prob-

lems. Meerschaert et al [156] have presented finite difference scheme for solv-

ing two-dimensional fractional diffusion equations with variable coefficients

based on alternating direction implicit method, along with the stability and

convergence analyses. Chen and Liu [43] considered the two-dimensional

fractional advection-diffusion equation and proposed the alternating direc-

tional Euler method. Matrix eigenvalue method is employed to analyze the

stability of the method and the Richardson extrapolation to increase the

accuracy to the second-order. Liu has investigated the two- and three- di-

mensional fractional advection-diffusion equations in the dissertation, where

several modified alternating direction methods are developed and where the

Richardson extrapolation is considered as well.

Apart from the foregoing numerical methods, a finite element scheme

given by Roop in 2006 is used for solving space fractional differential equa-

tions [193]. In 2005, Adomian decomposition method has been applied to

solving time-space fractional telegraph equation [166] as well as fractional

diffusion-wave equations [6]. In 2006, Rawashdeh [187] combined collocation

method with polynomial spline in solving a type of fractional integral equa-

tion, but in the absence of the numerical analysis. In 2007, Zhang used the

finite element method in his dissertation to solve fractional partial differential

equation, which achieves high-order approximation accuracy. Additionally,

Lin and Xu [134] applied spectral method for solving time fractional diffusion

equation.

In principle, for fractional partial differential equations, the researches on

their numerical methods are still on the early stage, and the corresponding
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theoretical analyses and the potential improvements on the methods seems

somewhat inadequate. Emphatically, the nonlocality of fractional differential

and integral operators leads to high computational cost as well as large mem-

ory requirements in the solution of fractional partial differential equations.

Finite difference schemes for fractional partial differential equations gen-

erally originate from the Grünwald-Letnikov approximation schemes, and

the approximation accuracy is of the first-order for most cases. At present,

in the literature regarding numerical methods, Fourier analysis, eigenvalue

methods, mathematical induction and energy methods are commonly used

to prove the stability and convergence of the numerical methods. In what

follows, we elaborate on the basics of some typical finite difference schemes.

On the other hand, fractional diffusion equations are widely utilized to

model problems in physics [161], finance [96] and hydrology [19,20]. In partic-

ular, fractional advection-diffusion equations are claimed to better simulate

the solute transport process which characterizes long-tail phenomenon.

In addition, Liu et al [138] considered the time fractional advection-

diffusion equation, and derived the fundamental solution using Mellin and

Laplace transforms. This fundament solution is a Fox function comprised

of a probability density function and of a complete error function. Huang

and Liu [116] further derived the fundamental solutions for problems in

n−dimensional space and half space. They also obtained the analytical so-

lution of time-space fractional advection-diffusion equations [115].

In the succeeding three sections, we respectively introduce the finite dif-

ference schemes [43, 129, 141, 157, 199, 226] for solving space, time and time-

space fractional advection-diffusion equations. Consider the following equa-

tion with variable coefficients:

∂αu(x, t)

∂tα
= −v(x, t)Dβ

xu(x, t)+d(x, t)Dγ
xu(x, t) + f(x, t),

0 < t � T, L < x < R,
(6.0.1)

where 0 < α, β � 1, 1 < γ � 2, and v, d � 0 (i. e. the fluid moves from the

left to the right).
∂αu(x, t)

∂tα
= CDα

t u(x, t) and Dμ
xu(x, t) are the Caputo time

fractional derivative and the Riemann-Liouville space fractional derivative,

respectively. The existence and uniqueness of the (6.0.1) can be seen in [82].

6.1 Space fractional advection-diffusion equation

Consider the space fractional advection-diffusion equation below (namely,

letting α, β = 1, v = v(x), d = d(x) in (6.0.1)):
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∂u(x, t)

∂t
= −v(x)∂u(x, t)

∂x
+d(x)Dγ

xu(x, t) + f(x, t),

0 < t � T, L < x < R,
(6.1.1)

with initial-boundary value conditions:

u(x, t = 0) = ψ(x), L < x < R;
u(x = L, t) = 0, u(x = R, t) = 0.

(6.1.2)

Space fractional derivative can be discretized by using G- or L- algorithms,

thus resulting in the finite difference schemes based these two type of algo-

rithms. Without loss of generality, we consider the finite difference scheme

based on G-algorithm.

The first-order temporal and spatial derivatives in (6.1.1) can be approx-

imated by first-order difference quotient, while the space fractional deriva-

tive is discretized by using the G-algorithm, i. e., using the equivalence of

Riemann-Liouville and Grünwald-Letnikov fractional derivatives. Meerschaert

et al [157] has proven that explicit, implicit and C-N finite difference schemes

based on standard Grünwald-Letnikov approximation schemes are instable.

They suggested shifted Grünwald-Letnikov approximation schemes in place

of the original schemes. Since 1 < γ � 2, the optimal shift number p should

be 1 (see Theorem 4.2.1 and its remark). We thus have the following approx-

imation:

Dγ
xu(x, t) ≈ h−γ

[x−L/h]∑
k=0

ω
(γ)
k u(x− (k − 1)h, t). (6.1.3)

We denote 0 � tn = nτ � T, xi = L+ ih, h = (R−L)/M, i = 0, 1, · · · ,M.
uni ≈ u(xi, tn), vi = v(xi), di = d(xi), fni = f(xi, tn).

Theorem 6.1.1 [157] The implicit finite difference scheme for solving space

fractional advection-diffusion equation (6.1.1)

un+1
i − uni
τ

= −vi
un+1
i − un+1

i−1

h
+
di
hγ

i+1∑
k=0

ω
(γ)
k un+1

i−k+1 + f
n+1
i , (6.1.4)

which is based on modified Grünwald-Letnikov approximation scheme (6.1.3),

is continuous, unconditionally stable and thus convergent.

Proof Considering the boundary condition (u(L, t) = 0) and using the Collo-

rary 4.2.1, we see that the approximation accuracy of the shifted Grünwald-

Letnikov approximation scheme (6.1.3) can reach O(h). So that the accuracy

of the scheme (6.1.4) is O(h) +O(τ), i. e., the scheme is continuous.
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Denote Ei = viτ/h,Bi = diτ/h
γ , then the scheme (6.1.4) can be repre-

sented as

un+1
i − uni = −Ei(u

n+1
i − un+1

i−1 ) +Bi

i+1∑
k=0

ω
(γ)
k un+1

i−k+1 + τf
n+1
i , (6.1.5)

or

−Biω
(γ)
0 un+1

i+1 + (1 + Ei −Biω
(γ)
1 )un+1

i − (Ei +Biω
(γ)
2 )un+1

i−1

−Bi

i+1∑
k=3

ω
(γ)
k un+1

i−k+1 = uni + τfn+1
i .

(6.1.6)

Consideration of the column vector notation

Un+1 = [un+1
1 , un+1

2 , · · · , un+1
M−1]

T ,

Fn+1 = [fn+1
1 , fn+1

2 , · · · , fn+1
M−1]

T ,

rewrites (6.1.6) in a matrix-vector form , i. e., AUn+1 = Un + τFn+1, where

A = [Ai,j ] is coefficient matrix, the entry of which Ai,j is defined by (note

that un+1
0 = un+1

M = 0)

Ai,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, j � i+ 2,

−Biω
(γ)
0 j = i+ 1,

1 + Ei −Biω
(γ)
1 j = i,

−Ei −Biω
(γ)
2 j = i− 1,

−Biω
(γ)
i−j+1 j � i− 1

(6.1.7)

for i, j = 1, 2, · · · ,M − 1. Let λ be the eignevalue of the matrix A, X be the

corresponding eigenvector and thus we have AX = λX . Find some i, such

that‖xi‖ = max{|xj | : j = 1, · · · ,M − 1}. So that from

M−1∑
j=1

Ai,jxj = λxi,

we have

λ = Ai,i +
M−1∑

j=1,j �=i

Ai,j
xj
xi
, (6.1.8)

substituting (6.1.7) into (6.1.8) leads to

λ=1+Ei−Biω
(γ)
1 −Biω

(γ)
0

xi+1

xi
−(Ei+Biω

(γ)
2 )

xi−1

xi
−Bi

i−2∑
j=1

ω
(γ)
i−j+1

xj
xi

= 1 + Ei(1− xi−1/xi)−Bi

[
ω
(γ)
1 +

i+1∑
j=1,j �=i

ω
(γ)
i−j+1

xj
xi

]
.

(6.1.9)
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It follows from

∞∑
k=0

ω
(γ)
k = 0, 1 < γ � 2, that there only exists one negative

Grunwald weighting coefficient ω
(γ)
1 = −γ, along with −ω(γ)

1 �

j∑
k=1,k �=1

ω
(γ)
k ,

j = 0, 1, 2, · · · . Moreover, since |xj/xi| � 1 and ω
(γ)
j � 0, j = 2, 3, 4, · · · , it

thus holds that

i+1∑
j=1,j �=i

ω
(γ)
i−j+1|xj/xi| �

i+1∑
j=1,j �=i

ω
(γ)
i−j+1 � −ω(γ)

1 .

From the above inequalities, we have

ω
(γ)
1 +

i+1∑
j=1,j �=i

ω
(γ)
i−j+1‖xj/xi‖ � 0.

From the fact that the parameters Bi, Ei are both non-negative real numbers,

one can see that the eigenvalues of coefficient matrix A satisfy ‖λ‖ � 1. It

follows that the coefficient matrix is invertible and that the eigenvalues η of

the inverse matrix A−1 satisfy ‖η‖ � 1 (namely, the spectral radius of A−1

does not exceed one). By letting the error of Uk be εk, the recursive formula of

error reads ε1 = A−1ε0. It is straightforward to see that ‖ε1‖ � ‖ε0‖ and thus

the approximation scheme (6.1.4) is unconditionally stable. The convergence

of the scheme can be proved by using the Lax equivalence theorem.

Remark 6.1.1 1. Local truncated error of the scheme (6.1.4) is O(τ)+O(h).

2. For time-dependent coefficients, namely, v = v(x, t) � 0, d = d(x, t) �

0, the conclusion of the theorem still holds.

3. The theorem is still valid for other types of right boundary value con-

dition, e. g.

u(R, t) = bR(t), or u(R, t) + ν
∂u

∂t
u(R, t) = φ(t), ν � 0.

4. For γ = 2, the finite difference scheme (6.1.4) reduces to the classical

second-order central difference quotient which is used for approximating sec-

ond derivative. In such case, the shifted Grünwald-Letnikov scheme (6.1.3)

reduces to the classical central quotient: (i.e., ω
(2)
0 = 1, ω

(2)
1 = −2, ω(2)

2 =

1, ω
(2)
4 = ω

(2)
4 = 0)

∂2u(xi, tn)

∂x2
≈ u

n
i+1 − 2uni + uni−1

h2
.

5. The scheme (6.1.4) can be extended to solving other types of equations.
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Meerschaert et al applied the scheme to solving two-dimensional [156] and

two-sided [158] space fractional partial differential equations. They proved

that the resulting explicit finite difference scheme is conditionally stable, while

the implicit one is unconditionally stable. Moreover, these stable conditions

can be seen as the extensions of those of the explicit finite difference schemes

that are used for solving classical parabolic and hyperbolic equations.

6. Applications of other types of finite difference schemes based on shifted

Grünwald-Letnikov approximation.

(a) Advection term can be discretized by central difference quotient as is

shown in Lax-Wendroff scheme (conditionally stable) [202]. (b) Weighted

average methods. The corresponding finite difference scheme for (6.1.1) is

given by [208].

∂u(x, t)

∂t
|(xj ,tn+1

2
)=(1 − λ)

[
− v(x)∂u(x, t)

∂x
+ d(x)Dγ

xu(x, t)
]
(xj,tn+1)

+λ
[
−v(x)∂u(x, t)

∂x
+d(x)Dγ

xu(x, t)
]
(xj ,tn)

+f(xj , tn+ 1
2
),

(6.1.10)

where 0 � λ � 1 is the weighting coefficient. Second-order central differ-

ence quotient, first-order backward difference quotient and shifted Grünwald-

Letnikov approximation are employed to discretize the time derivative, first-

order space derivative and space fractional derivative, respectively. In partic-

ular, for λ = 1/2, the scheme (6.1.10) is called fractional Crank-Nicholson

scheme. Similar to the proof of the theorem, it can also be proved that the

scheme (6.1.10) is stable and convergent [209]. Furthermore, using Richard-

son extrapolation can increase both the spatial and temporal accuracy to the

second-order. The weighted average methods can still be used to solve two-

sided space fractional advection-diffusion equation [75].

7. Applications of the finite difference schemes based on L-algorithms.

L-algorithms can also formulate the fractional Euler schemes for approxi-

mating space fractional derivative, but most of which have not been given sta-

bility and convergence analyses. For instance, the L2-algorithm has been used

to discretize Riemann-Liouville fractional derivative [81], the two-sided space

fractional derivative [137] and Riesz space fractional derivative [46,224]. Be-

sides, Shen [199] has given a theoretical analysis to L1-algorithm-based finite

difference scheme for fractional diffusion equation having Caputo fractional

derivative.

6.2 Time fractional partial differential equation

Time fractional diffusion equations are widely considered in physical applica-

tions, which can describe the anomalous transport processes with long-time
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memory.

Consider the following time fractional diffusion equation:

∂u(x, t)

∂t
= KμD1−μ

t

∂2u(x, t)

∂x2
, 0 � x � L, t > 0, (6.2.1)

with the initial-boundary value conditions:

u(x, t = 0) = g(x), 0 � x � L. (6.2.2)

u(x = 0, t) = ϕ(x), u(x = L, t) = ϕ2(x) (6.2.3)

Before proceeding further, we denote xi = ih, i = 0, 1, · · · ,M ;h = L/N ;

tk = kτ, k = 0, 1, · · · ,M ; τ = T/M .

6.2.1 Finite difference schemes

Respectively using first-order forward difference quotient and second-order

central difference quotient for approximating the temporal first-order deriva-

tive and spatial second-order derivative in (6.2.1) leads to the Forward time

and centered space method (FTCS method) :

∂u

∂t
u(xj , tk) =

[u]k+1
j − [u]kj
τ

+O(τ), (6.2.4)

∂2u

∂x2
u(xj , tk) =

[u]kj−1 − 2[u]kj + [u]kj+1

(h)2
+ O(h2). (6.2.5)

Substituting the above schemes into the (6.2.1) leads to

[u]k+1
j − [u]kj
τ

= KμD1−μ
t

[u]kj−1 − 2[u]kj + [u]kj+1

(h)2
+ T (x, t), (6.2.6)

where the truncated error is T (x, t).

To discretize the fractional derivative, high-order linear multi-step method

(4.7.16) is considered, namely

D1−μ
t f(t) = h̄−(1−μ)

[t/h̄]∑
j=0

ω
(1−μ)
j f(t− jh̄) +O(h̄p), (6.2.7)

where h̄ = τ is the approximation step, and the coefficient ω
(α)
j is derived

from the corresponding generating function W
(α)
p (z) (the functions for p =

1, 2, . . . , 6 have been given in Chapter 4). For p = 1, W
(α)
1 = (1− z)α, which
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corresponds to G1-algorithm, also called fractional first-order backward dif-

ference formula (BDF1 for short). For p = 2, W
(α)
2 =

(
3

2
− 2x+

1

2
x2
)α

is

called fractional second-order backward difference formula (BDF2).

Substituting all the approximation formulas afore-mentioned in the equa-

tion (6.2.1) and omitting the truncated error yield

uk+1
j = ukj + Sμ

k∑
m=0

ω(1−μ)
m

(
uk−m
j−1 − 2uk−m

j + uk−m
j+1

)
, (6.2.8)

whereSμ = Kμ
τμ

h2
.

6.2.2 Stability analysis: Fourier-von Neumann method

Let ukj = ζke
iqjh where q is the wave number, and substitute them into (6.2.8)

to obtain

ζk+1 = ζk − 4Sμ sin
2

(
qh

2

) k∑
m=0

ω(1−μ)
m ζk−m, (6.2.9)

which is the discrete form of the following fractional differential equation:

dψ(t)

dt
= −4C sin2

(
qh

2

)
D1−μ

t ψ(t), (6.2.10)

where C = Sμτ
μ and the solution of which can be represented in terms of

Mittag-Leffler function [179]. Let

ζk+1 = ξζk, (6.2.11)

assume ξ = ξ(q) to be time-independent, and then substitute ξ into (6.2.9)

to obtain

ξ = 1− 4Sμ sin
2

(
qh

2

) k∑
m=0

ω(1−μ)
m ξ−m. (6.2.12)

If there exists some q such that |ξ| > 1, then the finite difference scheme is

instable.

Considering the extreme case ξ = −1, we have

Sμ sin
2

(
qh

2

)
�

1/2
k∑

m=0

(−1)mω(1−μ)
m

≡ S̄μ,k. (6.2.13)
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The right-hand side of inequality (6.2.13) weakly depends on the iteration

number k. Let S̄μ = lim
k→∞

S̄μ,k, which can be determined by inequality

(6.2.13) as well as the generating function W
(β)
p (z) = (1− z)β =

k∑
m=0

ω(β)
m zm

(let z = −1, β = 1−μ and see the definition of generating function in Chapter

4).

Hence, the prerequisite for a stable scheme is to satisfy (sufficient condi-

tion)

Sμ sin2
(
qh

2

)
� S̄μ =

1

2W
(1−μ)
p (−1)

. (6.2.14)

The reference [226] conclude through numerical investigation that the

above inequality is still the necessary condition for a stable scheme. We

thus have obtained the sufficient and necessary condition for a stable finite

difference scheme (6.2.6):

Sμ �
S̄μ

sin2
(
qh

2

) . (6.2.15)

Noting this, we can see that the scheme is stable if

Sμ = Kμ
τμ

(h)2
� S̄μ. (6.2.16)

6.2.3 Error analysis

From (6.2.6), we see that the truncated error term is

T (x, t) =
[u]k+1

j − [u]kj
τ

−KμD1−μ
t

[u]kj−1 − 2[u]kj + [u]kj+1

h2
. (6.2.17)

Since

[u]k+1
j − [u]kj
τ

= ut +
1

2
uttτ +O(τ)

2, (6.2.18)

and

D1−μ
t

(
[u]kj−1 − 2[u]kj + [u]kj+1

)
=

1

h̄1−μ

k∑
m=0

ω(1−μ)
m

(
uxx +

1

12
uxxx(h)

2 + · · ·
)
+O(h̄p),

(6.2.19)

we have

T (x, t)= O(h̄p) +
1

2
uttτ − Kμh

2

12
D1−μ

t uxxxx + · · ·
= O(h̄p) +O(τ) +O(h2).

(6.2.20)
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Hence, (i) assuming the initial-boundary conditions of u are consistent

(also assumed for the classical FTCS method) and (ii) assuming that u is

sufficiently smooth in the neighbourhood of t = 0 (namely, the prerequisite

of linear multi-step method (6.2.7)), then FTCS method is unconditionally

continuous, namely,

T (x, t) −→ 0 as h̄, τ, h→ 0.

Remark 6.2.1 1. In particular, for p = 1, W
(α)
1 = (1 − z)α, so that S̄μ =

1

22−μ
; for p = 2, W

(α)
2 (z) =

(
3

2
− 2z +

1

2
z2
)α

, which leads to S̄μ =
1

23/2−μ
.

2. Note that for μ < 1,
1

23/2−μ
�

1

22−μ
, which implies that the stability of

BDF2(p = 2) method is somewhat lower than that of BDF1(p = 1) method.

3. In practical computations, we usually let h̄ = τ . It follows from

(6.2.20) that the higher-order linear multi-step method (p = 2) for fractional

derivative cannot authentically improve the accuracy of FTCS method. In

terms of stability, as mentioned above, the stability of the higher-order method

(p > 1) is worse than that of the lower-order method (p = 1). Noting this,

we usually let p = 1, i. e., use the FTCS method based on G1-algorithm.

4. Global error analysis can be found in [43], where the implicit finite dif-

ference scheme is given, together with its stability and convergence analyses.

5. FTCS method based on L1-algorithm

Caputo time fractional derivative
∂αu(x, t)

∂tα
= CDα

t u(x, t) can be dis-

cretized by L1-algorithm (4.5.2):

∂αu(xi, tk+1)

∂tα
=

τ−α

Γ(2− α)
k∑

j=0

b
(α)
j (u(xi, tk−j+1)−u(xi, tk−j))+O(τ)(6.2.21)

where b
(α)
j = (j + 1)1−α − j1−α.

Using first-order backward difference quotient and second-order central

difference quotient to respectively approximate first-order time derivative and

second-order space derivative yield [129]

(1 + 2ρ)uk+1
j − ρuk+1

j+1 − ρuk+1
j−1 = (1 + 2ρ)ukj − ρukj+1

−ρukj−1 + ρ
μ

(k + 1)1−μ
Δ2

hu
0
j + ρ

k−1∑
l=0

b
(1−μ)
k−l (Δ2

hu
l+1
j −Δ2

hu
l
j),

(6.2.22)

where ρ =
Kμτ

μ

h2Γ1 + μ
,Δ2

hu
k
j = ukj+1 − 2ukj + ukj−1.

Langlands and Henry gave a brief but not very rigorous stability and con-

vergence analyses for this implicit finite difference scheme. They derived the
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local truncated error being O((τ)2−μ) + O((h)2), but without further giving

the global error.

6.3 Time-space fractional partial differential equation

Consider the fractional advection-diffusion equation (6.0.1) with variable co-

efficients, of which the initial-boundary conditions are

u(x, t = 0) = g(x), 0 � x � L. (6.3.1)

u(x = 0, t) = 0, u(x = L, t) = ϕ(t). (6.3.2)

6.3.1 Finite difference schemes

Take time-space grid with time step τ and space step h and let xi = ih, i =

0, 1, · · · , N, h = L/N ; tk = kτ, k = 0, 1, · · · ,M ; τ = T/M .

Using L1-algorithm (4.5.2) to approximate Caputo time fractional deriva-

tive
∂αu(x, t)

∂tα
= CDα

t u(x, t) produces:

∂αu(xi, tk+1)

∂tα
=

τ−α

Γ(2− α)
k∑

j=0

b
(α)
j (u(xi, tk−j+1)− u(xi, tk−j)) +O(τ)(6.3.3)

where b
(α)
j = (j + 1)1−α − j1−α and we write b

(α)
j = bj.

Riemann-Liouville space fractional derivative is discretized by G-algorithm.

According to the remarks below Theorem 4.2.1, since 0 < β � 1, 1 < γ � 2,

when using G-algorithm to evaluate Dβ
xu(x, t) and Dγ

xu(x, t), the optimal

shift number should take p = 0 and p = 1, respectively. That is, to use G1-

and GS(1)− algorithms for discretization:

Dβ
xu(xi, tk+1) = h

−β
i∑

j=0

ω
(β)
j u(xi − jh, tk+1) +O(h)), (6.3.4)

Dγ
xu(x, t) = h

−γ
i∑

j=0

ω
(γ)
j u(xi − (j − 1)h, tk+1) +O(h)), (6.3.5)

where ωμ
j = (−1)j μ(μ− 1) · · · (μ− l + 1)

j!
. So that, we have the following

implicit finite difference scheme:

k∑
j=0

bj(u
k−j+1
i −uk−j

i )=−r(1)i,k+1

i∑
l=0

ω
(β)
l uk+1

i−l +r
(2)
i,k+1

i+1∑
l=0

ω
(γ)
l uk+1

i+1−l+f̄
k+1
i ,

(6.3.6)
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which can be further rearranged to

uk+1
i +r

(1)
i,k+1

i∑
l=0

ω
(β)
l uk+1

i−l − r(2)i,k+1

i+1∑
l=0

ω
(γ)
l uk+1

i+1−l=

k−1∑
j=0

(bj − bj+1)u
k−j
i

+bku
0
i + f̄

k+1
i , i = 1, 2, · · · ,M ; k = 0, 1, · · · , N,

(6.3.7)

where

vki = v(ih, kτ), dki = d(ih, kτ), r
(1)
i,k =

vki τ
αΓ(2− α)
hβ

,

r
(2)
i,k =

dki τ
αΓ(2− α)
hγ

, fki = f(ih, kτ), f̄ki = ταΓ(2− α)fki .

Similarly, we can also derive the following explicit scheme:

uk+1
i = bku

0
i +

k−1∑
j=0

(bj − bj+1)u
k−j
i − r(1)i,k+1

i∑
l=0

ω
(β)
l uki−l

+r
(2)
i,k+1

i+1∑
l=0

ω
(γ)
l uki+1−l + f̄

k+1
i , i = 1, 2, · · · ,M ; k = 0, 1, · · · , N,

(6.3.8)

with the initial-boundary conditions:

u0i = g(ih), uk0 = 0, ukM = ϕ(kτ), i = 0, 1, · · · ,M, k = 0, 1, · · · , N.(6.3.9)

Lemma 6.3.1 The coefficients bj , ω
(β)
j , ω

(γ)
j satisfy

b0 = 1, bj > 0, bj+1 > bj, j = 0, 1, 2, · · ·

ω
(β)
0 = 1, ω

(β)
1 = −β, ω

(β)
j < 0(j > 1),

∞∑
j=0

ω
(β)
j = 0, ∀K,

K∑
j=0

ω
(β)
j > 0;

ω
(γ)
0 = 1, ω

(γ)
1 = −γ, ω

(γ)
j > 0(j 
= 1),

∞∑
j=0

ω
(γ)
j = 0, ∀K,

K∑
j=0

ω
(γ)
j < 0.

For convenience of analysis, we assume that v, d are constants irrespective

of x, t, and denote r
(m)
i,k = rm,m = 1, 2. In fact, this assumption will not affect

the analyses of the stability and convergence of the scheme.
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6.3.2 Stability and convergence analysis

1. Implicit finite difference scheme and its stability

Define two difference operators L1 and L2 as

L1u
k+1
i = uk+1

i + r1

i∑
l=0

ω
(β)
l uk+1

i−l − r2
i+1∑
l=0

ω
(γ)
l uk+1

i+1−l (6.3.10)

L2u
k
i = bku

0
i +

k−1∑
j=0

(bj − bj+1)u
k−j
i , (6.3.11)

then the implicit finite difference scheme (6.3.6) can be written by

L1u
k+1
i = L2u

k
i + f̄k+1

i . (6.3.12)

Let ũji be the approximant derived from the finite difference schemes

(6.3.7) and (6.3.9), and εji = ũ
j
i − uji be the numerical error, such that

L1ε
k+1
i = L2ε

k
i , (6.3.13)

and Ek = (εk1 , ε
k
2 , · · · , εkM−1)

T be the error vector.

Theorem 6.3.1 The numerical errors induced by initial-value conditions

in finite difference schemes (6.3.7) and (6.3.9) satisfy

‖Ek+1‖∞ � ‖E0‖∞, k = 0, 1, 2, · · · (6.3.14)

namely, the schemes are unconditionally stable.

Proof Consider the mathematical deduction.

When k = 0, letting |ε1l | = max
1�i�M

|ε1i | and from the lemma 6.3.1, we have

|ε1l |�
⎛⎝1 + r1

l∑
j=0

ω
(β)
j − r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ |ε1l |
� |ε1l |+ r1

l∑
j=0

ω
(β)
j |ε1l−j | − r2

l+1∑
j=0

ω
(γ)
j |ε1l+1−j |

= (1 + r1 + r2γ)|ε1l |+ r1
l∑

j=0

ω
(β)
j |ε1l−j | − r2

l+1∑
j=0,j �=1

ω
(γ)
j |ε1l+1−j |

� |ε1l + r1
l∑

j=0

ω
(β)
j ε1l−j − r2

l+1∑
j=0

ω
(γ)
j ε1l+1−j |

= |L1ε
1
l | = |L2ε

0
l | = |ε0l | � ‖E0‖∞.

(6.3.15)
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Thus, ‖E1‖∞ � ‖E0‖∞.

Now assuming ‖Ej‖∞ � ‖E0‖∞, j = 1, 2, · · · , k, and letting |εk+1
l | =

max
1�i�M−1

|εk+1
i |, it follows from the lemma 6.3.1 that

|εk+1
l |�

⎛⎝1 + r1

l∑
j=0

ω
(β)
j − r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ |εk+1
l |

� |εk+1
l |+ r1

l∑
j=0

ω
(β)
j |εk+1

l−j | − r2
l+1∑
j=0

ω
(γ)
j |εk+1

l+1−j |

= (1 + r1 + r2γ)|εk+1
l |+r1

l∑
j=0

ω
(β)
j |εk+1

l−j |−r2
l+1∑

j=0,j �=1

ω
(γ)
j |εk+1

l+1−j |

� |εk+1
l + r1

l∑
j=0

ω
(β)
j εk+1

l−j − r2
l+1∑
j=0

ω
(γ)
j εk+1

l+1−j |

= |L1ε
k+1
l | = |L2ε

k
l |,

(6.3.16)

Thus,

‖Ek+1‖∞� |L2ε
k
l | = |bkε0l +

k−1∑
j=0

(bj − bj+1)ε
k−j
l |

� (bk +

k−1∑
j=0

(bj − bj+1)‖E0‖∞ = ‖E0‖∞.
(6.3.17)

That is, the implicit finite difference scheme is unconditionally stable for

arbitrary initial value conditions.

2. Convergence of the implicit finite difference scheme

Let u(xi, tk)(i = 1, 2, · · · ,M − 1; k = 1, 2, · · · , N) be the exact solution

of equations (6.0.1),(6.3.1) and (6.3.2)) at grid points, define the error be-

tween exact and numerical solutions by ηki = u(xi, tk) − uki , i, k = 1, 2, · · · ,
and denote Y k = (ηk1 , η

k
2 , · · · , ηkM−1)

T . Obviously, Y 0 = 0. It follows from

equations (6.3.3)∼(6.3.5) that the error satisfy{
L1η

k+1
i = L2η

k
i +Rk+1

i ,
η0i = 0,

i = 1, 2, · · · ,M−1; k=0, 1, 2, · · · , N−1, (6.3.18)

where |Rk
i | � Cτα(τ + h) derived from (6.3.3)∼(6.3.5).

Lemma 6.3.2 The errors between exact solutions and numerical solutions

derived from implicit finite difference scheme (6.3.7) and( 6.3.9) satisfy

‖Y k+1‖∞ � Cb−1
k (τ1+α + ταh), k = 1, 2, · · · , n. (6.3.19)
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Proof Consider the mathematical deduction.

When k = 0, letting ‖Y 1‖∞ = |η1l | = max
1�i�M−1

|η1i |, and from the lemma

6.3.1, we have

|η1l |�
⎛⎝1 + r1

l∑
j=0

ω
(β)
j − r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ |η1l |
� |η1l |+ r1

l∑
j=0

ω
(β)
j |η1l−j | − r2

l+1∑
j=0

ω
(γ)
j |η1l+1−j |

= (1 + r1 + r2γ)|η1l |+ r1
l∑

j=0

ω
(β)
j |η1l−j | − r2

l+1∑
j=0,j �=1

ω
(γ)
j |η1l+1−j |

� |η1l + r1
l∑

j=0

ω
(β)
j η1l−j − r2

l+1∑
j=0

ω
(γ)
j η1l+1−j |

= |L1η
1
l |= |L2η

0
l +Cτ

α(τ + h)|= |η0l +Cτα(τ + h)|�Cτα(τ + h).

(6.3.20)

Thus, ‖Y 1‖∞ � Cb−1
0 τ

α(τ + h).

Now assuming ‖Y j‖∞ � Cb−1
j−1τ

α(τ + h), j = 1, 2, · · · , k. and letting

|ηk+1
l | = max

1�i�M−1
|ηk+1

i |, it follows from lemma 6.3.1 that b−1
k � b−1

j (j =

0, 1, · · · , k), which leads to

‖Y j‖∞ � Cb−1
k τ

α(τ + h), j = 1, 2, · · · , k.
Similarly, use η0l = 0 to obtain

|ηk+1
l |�

⎛⎝1 + r1

l∑
j=0

ω
(β)
j − r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ |ηk+1
l |

� |ηk+1
l |+ r1

l∑
j=0

ω
(β)
j |ηk+1

l−j | − r2
l+1∑
j=0

ω
(γ)
j |ηk+1

l+1−j |

= (1+r1+r2γ)|ηk+1
l |+r1

l∑
j=0

ω
(β)
j |ηk+1

l−j |−r2
l+1∑

j=0,j �=1

ω
(γ)
j |ηk+1

l+1−j |

� |ηk+1
l + r1

l∑
j=0

ω
(β)
j ηk+1

l−j − r2
l+1∑
j=0

ω
(γ)
j ηk+1

l+1−j |

= |L1η
k+1
l | = |L2η

k
l + Cτα(τ + h)|

= |bkη0l +
k−1∑
j=0

(bj − bj+1)η
k−j
l + Cτα(τ + h)|

�

k−1∑
j=0

(bj − bj+1)η
k−j
l + Cτα(τ + h)

� (bk +

k−1∑
j=0

(bj − bj+1)b
−1
k Cτ

α(τ + h) = Cb−1
k τ

α(τ + h).

(6.3.21)
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That is, ‖Y k+1‖∞ � Cb−1
k τ

α(τ + h).

Theorem 6.3.2 The errors between the exact solutions and numerical so-

lutions derived from implicit finite difference schemes (6.3.7) and (6.3.9)

satisfy

|uki − u(xi, tk)| � C̄(τ + h), i = 1, 2, · · · ,M − 1; k = 1, 2, · · · , N.
That is, the schemes are convergent.

Proof Since

lim
k→∞

b−1
k

kα
= lim

k→∞

k−α

(k + 1)1−α − k1−α
= lim

k→∞

k−1

(1 + k
1
)1−α − 1

= lim
k→∞

k−1

(1− α)k−1
=

1

1− α,
(6.3.22)

there exists a constant C̃ such that

b−1
k � C̃kα. (6.3.23)

As kτ � T is finite, it follows from the proof of the preceding lemma that

|uki − u(xi, tk)| � |ηkl | � Cb−1
k τ

α(τ + h) � CC̃kατα(τ + h) � C̄(τ + h).

That is, the schemes are convergent.

3. Convergence of the explicit finite difference scheme

Similarly, let ũji be the approximant derived from the finite difference

schemes (6.3.8) and (6.3.9), and εji = ũji − uji be the numerical error such

that

εk+1
i =bkε

0
i+

k−1∑
j=0

(bj−bj+1)ε
k−j
i −r1

i∑
l=0

ω
(β)
l εki−l+r2

i+1∑
l=0

ω
(γ)
l εki+1−l. (6.3.24)

Here, k = 0, 1, · · · , N − 1; i = 1, 2, · · · ,M − 1 and Ek = (εk1 , ε
k
2 , · · · , εkM−1)

T

be the error vector.

Theorem 6.3.3 If

r1 + r2β < 2− 21−α = 1− b1, (6.3.25)

then the errors induced by initial-value conditions in explicit finite difference

schemes (6.3.8) and (6.3.9) satisfy

‖Ek+1‖∞ � ‖E0‖∞, k = 0, 1, 2, · · · (6.3.26)

That is, the schemes are conditionally stable for arbitrary initial-value con-

ditions.
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Proof Consider the mathematical deduction.

When k = 0, letting |ε1l | = max
1�i�M

|ε1i | and from the lemma 6.3.1 and the

condition (6.3.25), we have

b0 − r1 − r2β > b0 − 1 + b1 = b1 > 0. (6.3.27)

Thus,

|ε1l |� b0|ε0l | − r1
l∑

j=0

ω
(β)
j |ε0l−j | − r2

l+1∑
j=0

ω
(γ)
j |ε0l+1−j |

=

⎛⎝1− r1
l∑

j=0

ω
(β)
j + r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ ‖E0‖∞ � ‖E0‖∞.
(6.3.28)

Further we have ‖E1‖∞ � ‖E0‖∞.

Now assuming ‖Ej‖∞ � ‖E0‖∞, j = 1, 2, · · · , k and letting |εk+1
l | =

max
1�i�M−1

|εk+1
i |, it follows from(6.3.25) that

b0 − b1 − r1 − r2β > b0 − b1 − 1 + b1 = 0.

Using lemma 6.3.1 yields

|εk+1
l |�bk|ε0l |+

k−1∑
j=0

(bj−bj+1)ε
k−j
i −r1

l∑
j=0

ω
(β)
j ε0l−j+r2

l+1∑
j=0

ω
(γ)
j ε0i+1−l

�

⎛⎝bk + k−1∑
j=0

(bj − bj+1)− r1
l∑

j=0

ω
(β)
j + r2

l+1∑
j=0

ω
(γ)
j

⎞⎠ ‖E0‖∞

� ‖E0‖∞.

(6.3.29)

Hence, ‖Ek+1‖∞ � ‖E0‖∞. That is, the explicit finite difference schemes

are conditionally stable for arbitrary initial-value conditions.

Remark 6.3.1 When the equation coefficients v, b are expressed in form of

the function of x, t, the stable condition is replaced by

λ = max
1 � i � M − 1

1 � k � N

[
(r

(1)
i,k + r

(2)
i,kβ)

]
− 2− 21−α < 0.

4. Convergence of the explicit finite difference scheme

Let u(xi, tk)(i = 1, 2, · · · ,M − 1; k = 1, 2, · · · , N) be the exact solutions

of the equations (6.0.1), (6.3.1) and (6.3.2)) at grid points, define the errors

between exact and numerical solutions as ηki = u(xi, tk)− uki , i, k = 1, 2, · · · ,
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and denote Y k = (ηk1 , η
k
2 , · · · , ηkM−1)

T . Obviously, Y 0 = 0. The errors satisfy

the following equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ηk+1
i =bkη

0
i +

k−1∑
j=0

(bj−bj+1)η
k−j
i −r1

i∑
l=0

ω
(β)
l ηki−l

+r2

i+1∑
l=0

ω
(γ)
l ηki+1−l+R

k+1
i

η0i = 0, i = 1, 2, · · · ,M − 1; k = 0, 1, 2, · · · , N − 1,

(6.3.30)

where |Rk
i | � Cτα(τ + h).

Lemma 6.3.3 If the condition (6.3.25) holds, then the errors of the exact

solutions and the numerical solutions derived from the explicit finite difference

schemes (6.3.8) and (6.3.9) satisfy

‖Y k+1‖∞ � Cb−1
k (τ1+α + ταh), k = 1, 2, · · · , n. (6.3.31)

Proof Consider the mathematical deduction.

First give the proof of the case k = 0. Letting ‖Y 1‖∞ = |η1l | = max
1�i�M−1

|η1i |,
we have

|ε1l | = |R1
l | � Cτα(τ + h). (6.3.32)

Thus, ‖Y 1‖∞ � Cb−1
0 τ

α(τ + h).

Now suppose ‖Y j‖∞ � Cb−1
j−1τ

α(τ +h), j = 1, 2, · · · , k. Letting |ηk+1
l | =

max
1�i�M−1

|ηk+1
i | and considering b−1

k � b−1
j (j = 0, 1, · · · , k) and (6.3.25), lead

to

|ηk+1
l | � bk|η0l |+

k−1∑
j=0

(bj − bj+1)η
k−j
i − r1

l∑
j=0

ω
(β)
j ηkl−j

+r2

l+1∑
j=0

ω
(γ)
j ηki+1−l + |Rk+1

l |

�

⎛⎝1+k−1∑
j=0

(bj−bj+1)−r1
l∑

j=0

ω
(β)
j +r2

l+1∑
j=0

ω
(γ)
j +bk

⎞⎠b−1
k Cτ

α(τ + h)

� b−1
k Cτ

α(τ + h).

(6.3.33)

It further follows from (6.3.23) that ‖Y k+1‖∞ � Cb−1
k τ

α(τ+h) � C̄(kτ)α(τ+

h).

Since kτ � T is finite, we have the following theorem.
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Theorem 6.3.4 If the condition (6.3.25) holds, then the explicit schemes

(6.3.8) and (6.3.9) are convergentand the errors satisfy

|uki − u(xi, tk)| � C(τ + h), i = 1, 2, · · · ,M − 1; k = 1, 2, · · · , N.
That is, the schemes are convergent.

Remark 6.3.2 It has been proven that the convergence of implicit and

explicit schemes are both of the order O(τ +h), where O(τ) is the error order

of the L1-algorithm and O(h) is that of D-algorithm. But Langlands and

Henry [129] proved, u(t) can be expressed in terms of the following Taylor

expansion:

u(t) = u(0) + tu′(0) +

∫ t

0

u′′(t− s)ds, (6.3.34)

from which we see that the accuracy of L1-algorithm (6.3.3) can reach O(τ2−α),

which is higher than O(τ) (it should be noted that, the numerical results show,

even though u(t) has no Taylor expansion (6.3.34), L1-algorithm can still

achieve the accuracy of the order O(τ2−α)). In such case, it can be shown

that the convergence of both implicit and explicit finite difference schemes

should be of the order O(τ2−α + h).

6.4 Numerical methods for non-linear fractional partial

differential equations

6.4.1 Adomina decomposition method

In the 1980s, G. Adomian presented a decomposition method for deriving the

semi-analytical solutions of the non-linear differential equations. This method

gives the semi-analytical solutions in form of series and can be applied to

solving mathematical, physical, linear, and non-linear ordinary/partial dif-

ferential equations [4, 5]. During recent years, the method has been used

to solve fractional differential equations. Momani et al applied Adomian

decomposition method for solving non-linear fractional ordinary differen-

tial system as well as multi-term fractional linear ordinary differential equa-

tion [4,5,168]. Ray and Beral used the method to solve fractional Bayley-Trvk

equation [188]. Jafari and Daftardar-Gjji solved the fractional non-linear

two-point boundary-value problem [117]. Momani [167] derived the solution

of space-time fractional telegraph equation having specific initial-boundary

value conditions. Al-khaled andMomani have solved fractional diffusion-wave

equation [6]. Odibat and Momani employed the modified Adomian decom-

position method, namely, the matrix method, to solve space-time fractional

diffusion-wave equation [174].
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Consider the following generic time fractional partial differential equaiton:

CDα
t u(x, t) + Lu(x, t) +Nu(x, t) = g(x, t), m− 1 < α 6 m, (6.4.1)

which is equivalent to

u(x, t) =
m−1∑
k=0

∂ku(x, 0)

∂tk
tk

k!
+ J αg(x, t)− J α[Lu(x, t) +Nu(x, t)]. (6.4.2)

Let

u(x, t) =

∞∑
n=0

un(x, t), (6.4.3)

Nu(x, t) =

∞∑
n=0

An, (6.4.4)

where An is the so-called Adomian polynomials. Substituting (6.4.3) and

(6.4.4) into (6.4.2) gives

∞∑
n=0

un(x, t) =

m−1∑
k=0

∂ku(x, 0)

∂tk
tk

k!
+ J αg(x, t)

−J α
[
L
( ∞∑

n=0

un(x, t)
)
+

∞∑
n=0

An

]
.

(6.4.5)

Then iteratively solving the equation via the following basic relations yields:

u0(x, t) =

m−1∑
k=0

∂ku(x, 0)

∂tk
tk

k!
+ J αg(x, t)

u1(x, t) = −J α(Lu0 +A0),
u2(x, t) = −J α(Lu1 +A1),
...
un+1(x, t) = −J α(Lun +An),
...

(6.4.6)

Adomian polynomial An can be derived from
v =

∞∑
i=0

λiui,

N (v) = N
(

∞∑
i=0

λiui

)
=

∞∑
n=0

λnAn.

(6.4.7)

Differentiating the above equation with respect to λ for n times leads to the

general form of the Adomian polynomial:
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An =
1

n!

dn

dλn

[
N
(
∞∑
i=0

λiui

)]
λ=0

. (6.4.8)

Hence, the solution of equation (6.4.1) can be given by

u(x, t) = lim
N→∞

(
N−1∑
n=0

un(x, t)

)
. (6.4.9)

Adomian decomposition method possesses the similar convergence to that

of Taylor series, and its convergence and truncated error analyses can be

found in [1,45]. In addition, Adomian decomposition method can also be used

for space-time fractional reaction-diffusion equation with variable coefficients

[225] and for other non-linear equations [117].

The merits of Adomian decomposition method is that, in addition to

avoiding the discretization of equation, the method gives semi-analytical solu-

tions that are fast convergent to exact solution, and enjoys low computational

cost. The method also embraces a broad field of applications. Nevertheless,

the method usually requires the fractional integral of a given function, which

may not be easily obtained sometimes.

6.4.2 Variational iteration method

Variational iteration method [112] is somewhat similar to the Adomian de-

composition method. It is originally developed for quantum mechanics and

is subsequently applied to solving non-linear equations.

Consider the following generic time fractional partial differential equation

CDα
t u(x, t) = f(u, ux, uxx) + g(x, t), (6.4.10)

where f is a non-linear function, g is the source term, m− 1 < α � m, and

the initial-boundary value conditions read:

for 0 < α � 1, {
u(x, 0) = ϕ1(x),
u(x, t)→ 0, as |x| → ∞;

(6.4.11)

while for 1 < α � 2,{
u(x, 0) = ϕ1(x), ∂tu(x, 0) = ϕ2(x),
u(x, t)→ 0, as |x| → ∞. (6.4.12)

The modified functional of equation (6.4.10) is

uk+1(x, t)=uk(x, t) +

∫ t

0

λ(ξ)(CDα

ξ u(x, ξ)

−f(ũk, (ũk)x, (ũk)xx)− g(x, ξ))dξ (6.4.13)
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where uk is the k-th approximation solution and ũk is the constrain variation

satisfying δũk = 0. λ is the generalized Lagrange multiplier which can be

derived by imposing variation operation on both sides of (6.4.13):

δuk+1(x, t)= δuk(x, t) + δ

∫ t

0

λ(ξ)

· (CDα
ξ u(x, ξ)− f(ũk, (ũk)x, (ũk)xx)− g(x, ξ)

)
dξ

= δuk(x, t) + δ
∫ t

0
λ(ξ)

(
CDα

ξ u(x, ξ)− g(x, ξ)
)
dξ

= 0.

(6.4.14)

It follows that

λ = −1, for m = 1; λ = ξ − t, for m = 2.

In practical computations, we usually use integration by part to first extract

the λ from the integrand, and then by comparing the coefficients in the

resulting equation and realizing the arbitrariness of un(t), we obtain the

value of λ.

Ultimately, we derive the following variation iteration scheme:

when m = 1,
uk+1(x, t) = uk(x, t) −

∫ t

0

(
CDα

ξ uk(x, ξ)

− f(uk, (uk)x, (uk)xx) + g(x, ξ)
)
dξ,

u0(x, t) = ϕ1(x);

(6.4.15)

when m = 2
uk+1(x, t) = uk(x, t)−

∫ t

0

(ξ − t)
(
CDα

ξ uk(x, ξ)

− f(uk, (uk)x, (uk)xx) + g(x, ξ)
)
dξ,

u0(x, t) = ϕ1(x) + tϕ2(x).

(6.4.16)

The solution of (6.4.10) is given by

u(x, t) = lim
k→∞

uk(x, t). (6.4.17)

It can be seen that, the basic principle behind the variational iteration

method is to first derive the Lagrange multiplier via variation principle, and

then to rapidly obtain the approximation solution by arbitrarily selecting ini-

tial iteration value u0. The advantage of the method over Adomian decom-

position method is to avoid obtaining Adomian polynomial, whereas, similar

to Adomian decomposition method, the variational iteration method needs

the fractional derivative of a given function, which may not be obtainable

sometimes. The comparison of these two methods for fractional differential

equations can be found in [170, 174].
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