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Preface

In recent years, fractional-order partial differential equation models have been
proposed and investigated in many research fields, such as fluid mechanics,
mechanics of materials, biology, plasma physics, finance, chemistry and so
on. Fractional-order differential equations, such as fractional Fokker-Plank
equation, fractional nonlinear Schrédinger equation, fractional Navier-Stokes
equation, fractional quasi-geostrophic equation, fractional Ginzburg-Landau
equation and fractional Landau-Lifshitz equation have clear physical back-
ground and opened up related new research fields. In fact, some mathemati-
cians (such as L’Hopital, Leibniz, Euler) began to consider how to define
the fractional derivative as early as the end of the 17th century. In 1870s,
Riemann and Liouville obtained the definition of fractional derivative for a
given function by extending the Cauchy integral formula,

oD f(t) = ﬁ / (t— )" f(r)dr

where Rev > 0. Nowadays, the commonly used fractional derivative defi-
nitions include Riemann-Liouville definition, Caputo definition, Griinwald-
Letnikov derivative and Weyl definition. Kohn and Nirenberg began the
research on pseudo-differential operator in 1960s.

In recent years, we collected and summarized the researches on nonlin-
ear fractional differential equations and their numerical methods for specific
physical problems appearing in the fields of atmosphere-ocean dynamics and
plasma physics, and studied the mathematical theory of these problems. This
book introduces the latest research achievements in these areas, as well as
some researches of the authors and our collaborators. To give a systematic
understanding of fractional problems to our readers, here we also briefly in-
troduce some basic concepts of the fractional calculus, algorithms and their
basic properties. In particular, we give brief introductions of numerical meth-
ods for the fractional differential equations. The aim of this book is to give a
basic understanding of recent developments in this research field for readers
who are interested in this topic. Our expectation is that the readers, who
want to engage in this field, can access to the frontier of this study based on
reading this book, and thus promote a more vigorous development.

v



vi Preface

Due to the time and knowledge limited, errors and inadequacies of the
book are inevitable. Any suggestions and comments are welcome. At last, we
express our heartful thanks to the seminar members of Institute of Applied
Physics and Computational Mathematics. We also thank Professor W. Chen
and his team at Hohai University who translated the Chinese version into
English of the first version, which greatly reduced our burden of translation.
We also express our gratitude to all those unnamed here.

December 1, 2010
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Chapter 1

Physics Background

Fractional differential equations have profound physical background and rich
theory, and are particularly noticeable in recent years. They are equations
containing fractional derivative or fractional integrals, which have received
great interest across disciplines such as physics, biology and chemistry. More
specifically, they are widely used in dynamical systems with chaotic dynami-
cal behavior, quasi-chaotic dynamical systems, the dynamics of complex ma-
terial or porous media and random walks with memory. The purpose of
this chapter is to introduce the origin of the fractional derivative, then in-
troduce some physical background of fractional differential equations. Due
to space limitations, this chapter only gives some brief introductions, but
these are sufficient to show that the fractional differential equations, includ-
ing fractional partial differential equations and fractional integral equations,
are widely employed in various applied fields. However, the mathematical
theory and the numerical algorithms of fractional differential equations need
to be further studied. Interested readers can refer to the monographs and
literature.

1.1 Origin of the fractional derivative

The concepts of integer order derivative and integral are well known. The
derivative d™y/da"™ describes the changes of variable y with respect to variable
x, and has a profound physical background. The present problem is how to
generalize n into a fraction, even a complex number.

This long-standing problem can be dated back to the letter from L’Hopital
to Leibniz in 1695, in which it is asked what the derivative d"y/dz™ is when
n = 1/2. In the same year, the derivative of general order was mentioned in
the letter from Leibniz to J. Bernoulli. The problem was also considered by
Euler(1730), Lagrange(1849) et al, and gave some relevant insights. In 1812,
by using the concept of integral, Laplace provided a definition of fractional

1



2 Chapter 1 Physics Background

derivative. When y = 2™, employing the gamma function

d™y I'(m+1) _
_ m—n >n, 1.1.1
dzm I‘(m—n—i—l)m o man ( )

was derived by Lacroix, which gives

d1/2y 2\/5
o = (1.1.2)

1
When y = x and n = 3 This is consistent with the so-called Riemann-

Liouville fractional derivative.

Soon later, Fourier (1822) gave the definition of fractional derivative
through the so-called Fourier transform. Noting that the function f(z) can
be expressed as a double integral

fa) =5z [ fweoseta - paga,

and
n

dz™ 2

1
cos €z — y) = €7 cos (su )+ —nn) |
replacing n with a general v, and calculating the derivative under the sign
of integration, one then generalizes the integer order derivative into the frac-

tional derivative

=g [ s eos (sta ) + jom) dean

Consider the Abel integral equation

I
kf/o( Y2 (1)t (1.1.3)

where f is to be determined. The right hand side defines a definite integral

of fractional integral with order 1/2. In Abel’s research on the above inte-
—1/2 d1/2

gral equation, its right end was written as /T1————= f(z), then ——=k =
dz—1/2 dxl/2

V7 f(x), which indicates that the fractional derivative of a constant is no

longer zero.
In 1930s, Liouville, possibly inspired by Fourier and Abel, made a series
of work in the field of fractional derivative, and successfully applied them

into the potential theory. Since

m_ar __ _m,.ax
D"e"™ = a™e",



1.1 Origin of the fractional derivative 3

the order of the derivative was generalized into an arbitrary order by Liouville
(v can be a rational number, irrational number, even a complex number)

D¥e™ = g"e™”. (1.1.4)

If the function f can be expanded into an infinite series
oo
x) = Z cp,e®*,  Rea, >0, (1.1.5)

then its fractional derivative can be obtained as

ch v eant, (1.1.6)

Which method can be employed to obtain the fractional derivative if f can
not be written in the form of equation (1.1.5)? Maybe Liouville had noticed
this problem, and he gave another expression by using the Gamma function.
In order to take advantage of the basic assumptions (1.1.4), noting that

I :/ ule™™ = 27T (a),
0

one then obtains

a+u—1e—wudu

u

DT v s, (1.1.7)

I'(a)

So far, we have introduced two different definitions of fractional deriva-

—
—
S
~—
o

tives. One is the definition (1.1.1) with respect to z%(a > 0) given by
Lacroix, the other one is the definition (1.1.7) with regard to 2= %(a > 0)
given by Liouville. It can be seen that, Lacroix’s definition shows that the

fractional derivative of a constant x° is no longer zero. For instance, when

1
=0.n=~=
m ,n 2,

avz o ra 1
= -2 o
dzt2” F(l/Q)m NaTE (1.18)

However, in Liouville’s definition, since I'(0) = oo, the fractional derivative of

a constant is zero (despite Liouville’s assumption a > 0). As far as which is
the correct form of fractional derivative between the two definitions, Willian
Center pointed out that the whole problem can be attributed to how to



4 Chapter 1 Physics Background

determine d”z"/dx", and as De Morgan pointed out (1840), both of them
may very possibly be parts of a more general system.

The present Riemann-Liouville’s definition (R-L) of fractional derivative
may be derived from N. Ya Sonin (1869). His starting point is the Cauchy
integration formula, from which the n** derivative of f can be defined as

D) = L%dg. (1.1.9)

"~ 2m

Using contour integration, the following generalization can be obtained (in
which, Laurent’s work contributed!)

1

DV f(z) = o) /x(x — )" f(t)dt, Rev >0, (1.1.10)

where the constant ¢ = 0 is commonly used, which is known to be the
Riemann-Liouville fractional derivative, i.e.,

1 x

oDV f(x) = —/ (x —t)" 1 f(t)dt, Rev >0. (1.1.11)
I'(v) Jo

In order to make the integral convergent, a sufficient condition is f(1/z) =

O(z17¢),e > 0. An integrable function with this property is often referred

to as belonging to the function of the Riemann class. When ¢ = —o0,
1 T
oDV f(z) = —/ (x — )"~ f(t)dt, Rev > 0. (1.1.12)
') Joo

In order to make the integral convergent, a sufficient condition is when x —
00, f(—z) = O(x™"7¢)(e > 0). An integrable function with this property
is often referred to as belonging to the function of the Liouville class. This
integral also satisfies the following exponential rule

DDV f(x) = DY f().

When f(z) = z%(a > —1), v > 0, from the equation (1.1.11), it is easy

to get
I(a+1)
D—u a _ a+u'
05 & I‘(a+u+1)x

By using the chain law, has D[D~" f(x)] = D'~ f(x), then one can obtain

I'(a+1) _
Dia2® = ———=z7", 0 1 -1
oD, x F(a—zx—i—l)x ) <v<<l,a>

1
Specially, when f(z) =z, v = 2 Lacroix’s equation (1.1.2) can be recovered;
1
when f(z)=2=1, v= ok then the equation (1.1.8) can be also recovered.
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In addition, the Weyl’s definition of fractional integral is frequently used
now
1
I'(v)
Using the R-L’s definition of fractional derivative (1.1.12), and taking the
transform ¢ = —7, one obtains

W f(2) = /Oo(t —2)"" 1 f(t)dt, Rewv >0. (1.1.13)

B o4 (Cr)n

I'(v) Je
Then taking the transform z = —¢, one derives the following equation
1 oo
D8 = s [ (-9 e
I'(v) 13

Let f(—=¢) = g(&), then the right end of Weyl’s definition (1.1.13) can be
recovered.

1.2 Anomalous diffusion and fractional advection-
diffusion

Anomalous diffusion phenomena are ubiquitous in the natural sciences and
social sciences. In fact, many complex dynamical systems often contain
anomalous diffusion. Fractional kinetic equations are usually an effective
method to describe these complex systems, including diffusion type, diffusive
convection type and Fokker-Planck type of fractional differential equations.
Complex systems typically have the following characteristics. First, the sys-
tem typically contains a large diversity of elementary units. Secondly, strong
interactions exist among these basic units. Thirdly, the anomalous evolution
is non-predictable as time evolves. In general, the time evolution of, and
within, such systems deviates from the corresponding standard laws. These
systems now exist in a large number of practical problems across disciplines
such as physics, chemistry, engineering, geology, biology, economics, meteo-
rology, and atmospheric. We do not plan to give a systematic introduction
of anomalous diffusion or fractional advection diffusion, but just introduce
some fractional differential equations to describe complex systems. We refer
the reader to some monographs mentioned below.

In the classical exponential Debye mode, the relaxation of the system
usually satisfies the relation ®(¢) = ®¢exp(—t/7). However, in complex sys-
tems it often satisfies the exponential Kohlrausch-Williams-Watts relation
D(t) = Pgexp(—(t/7)*) for 0 < a < 1, or the following asymptotic power
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law ®(t) = ®o(1 +t/7)~™ for n > 0. In addition, the conversion from the
exponential to power-law relationship can be observed in practical systems.
Similarly, in many complex systems, the diffusion process no longer follows
the Gauss statistics. Then, the Fick second law is not sufficient to describe
the transport behavior. In the classical Brownian motion, linear dependence
of the time-mean-square displacement can be observed

< 2%(t) >~ Kit. (1.2.1)

But in anomalous diffusion, the mean-square displacement is no longer a lin-
ear function of time. The power-law dependence is common, i.e., < 2%(t) >~
K,t*. Based on the index « of the anomalous diffusion, different anomalous
diffusion types can be defined. When o = 1, it is the normal diffusion pro-
cess. When 0 < a < 1, it is sub-diffusion process or dispersive, slow diffusion
process with the anomalous diffusion index. When « > 1, it is ultra-diffusion
process or increased, fast diffusion process.

There have been extensive research results on anomalous diffusion process
with or without an external force field situation, including:

(1) fractional Brownian motion, which can be dated to Benoit Mandelbrot
[153,154];

(2) continuous-time random walk model;

(3) generalized diffusion equation [28];

(4) Langevin equation;

(5) generalized Langevin equation;

;&mong them, (2) and (5) appropriately depict the memory behavior of the
system, and the specific form of the probability distribution function [162],
however, it is insufficient to directly consider the role of the external force
field, boundary value problem or the dynamics in the phase space.

1.2.1 The random walk and fractional equations

The following is a brief description of the random walk and the fractional
diffusion equation. Considering the one-dimensional random walk, the test
particle is assumed to jump randomly to one of its nearest neighbour sites in
discrete time steps of span At, with lattice constant Az. Such a system can
be described by the following equation

1 1
Wit + At) = W, (t) + §Wj+1(t),

2
where W;(t) represents the probability of the particle located at site j, at

time t, the coefficient 5 means the walks of the particle are isotropic, i.e. the



1.2  Anomalous diffusion and fractional advection-diffusion 7

1
probability of jumping to left or right is —. Consider the continuum limit
At — 0, Az — 0, and by the Talyor series expansion, we can get

Wit a0 = w0+ &0 4 o((an?),

_ 8W (Ax)? 0°W

which leads to the diffusion equation
ow 0? (Ar)?
— =Ki— K, = li
ot 1522V (@1, U7 Aes0.At—0 2AL

Based on simple knowledge of partial differential equations, the solution of

+0((Ax)?),

< 0. (1.2.2)

the equation (1.2.2) can be expressed as

1 22
Wiz, t) = ———— - . 1.2.3
(@0 = s & ( 4K1t> (123)

The function (1.2.3) is often called the propagator, i.e. the solution of the
equation (1.2.2) with initial data Wy(z) = d(x). The solution of equation
(1.2.2) satisfies the exponential decay law

W(k,t) = exp(—K1k?t), (1.2.4)

for individual mode in Fourier phase space.

For anomalous diffusion, we first consider the continuous-time random
walk model. It is mainly based on the idea: for a given jump, the jump length
and waiting time between two adjacent jumps are determined by a probability
density function v (z,t). The respective probability density functions of the
jump length and waiting time are

= /°° P(x,t)dt, w(t) = /OO U(x, t)dx. (1.2.5)
0 —oo

Here A(x)dz can be understood as the probability of the jump length in the
interval (2,2 + dz), and w(¢)d¢ is the probability of a jump waiting time
in time slice (¢,t + dt). It is easy to see that if the jump time and jump
length are independent, then ¢ (z,t) = w(t)A(z). Different continuous-time
random walk processes can be determine{;dO by the converging or diverging

characteristics of the waiting time T = / w(t)tdt, and the variance of the
0

jump length %2 = / A(z)z?dz. Now, the following equation can depict a

continuous-time random walk model

n(x,t) = /_ dz’ /0 dt'n(2', ") p(x — 't —t') + 5(x)d(2), (1.2.6)
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which links the probability density function n(z,t) of the particle arrived at
the site x at time ¢ and the event of the particle arrived at the site z’ at time
t’. The second item on the right hand side represents the initial condition.
Thus, the probability density function W (z,t) of the particle at the site = at
time ¢ can be expressed as

W(x,t):/Otdt’n(x,t/)\lf(t—t’), \I'(t)zl—/otdt'w(t’). (1.2.7)

The items of the equation (1.2.7) have the meanings: n(z,t’) means the
probability density function of the particle at the site x at time ¢, and
U(t —t') is the probability density function of the particle which does not
leave before time t, thereby W (x,t) is the probability density function of the
particle at the site x at time ¢. By using the Fourier transforms and Laplace
transform, W (z, t) satisfies the following algebraic relation [126]
1—w(u) Wy(k)

Wk, u) = U 1—(k,u)’

(1.2.8)

where Wy (k) represents the Fourier transform of the initial value Wy(z).

When w(t) and A(¢) are independent, i.e. ¥(z,t) = w(t)\(z), and T
and X2 are finite, the continuous-time random walk model is asymptoti-
cally equivalent to the Brownian motion. Consider the probability den-
sity function of the Poisson waiting time w(t) = 7~ texp(—t/7), and T =
7, and the Gauss probability density function of the jump length A\(z) =
(4mo?) =V 2 exp(—x?/(40?)), ¥? = 202. The Laplace transforms and the
Fourier transform have the following forms, respectively w(u) ~ 1—ur+0(7?)
and (k) ~ 1 — o2k? + O(k*).

Consider a special case: fractional time random walk. This will lead to
the fractional diffusion equation to describe the sub-diffusion process. In this
model, the characteristic waiting time T is divergent and the variance %2 of
the jump length is finite [196]. Introduce the probability density function
of the long-tail waiting time, whose asymptotic behavior and the Laplace
transform satisfy, respectively, w(t) ~ Ay (7/t)'T* and w(u) ~ 1 — (ur)®,
where the specific form of w(t) is insignificant. Taking into account the
above mentioned probability density function A(z) of Gauss jump length, we
can obtain the probability density function

(Wo(k)/u]
Wk = 1 uek
Using the Laplace transform of the fractional integral [16,69,165,175,195]

(1.2.9)

LoD "W (@, 1)} = u "W (z,u), p>0,
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and noticing £ {1} = 1/u, one obtains the following fractional integral equa-
tion from the equation (1.2.9),

82
W(z,t) — Wy(x) = OD;QKQﬁW(mJ). (1.2.10)
. 0 . o
Introducing the operator g of the time derivative, then we can get the
fractional derivative equation
ow a 0?
7§-=OL& KagsW(w,1), (1.2.11)
where the Riemann-Liouville operator ¢Dj % = EOD;O‘(O < a<1)is
defined as (please refer to the next chapter)
1 o [" W(xt)
Dy W(z,t) = =~ [ ————dt’. 1.2.12
0 (2,) FWM%A;@—MPQ ( )

Since the integral kernek M () oc t*~! in the definition, the sub-diffusion
process defined in the equation (1.2.11) does not have the Markov properties.
In fact, it can be shown that [162]

2K
2 a «
t) >= ————t“.
<a(t)> 1+ «)

The equation (1.2.11) can also be transformed into its equivalent form

e 9?
R

thaW* a@

W (z,t),
where, unlike the normal diffusion process, the initial value Wy (z) no longer
has the exponential decay property, but the power law decay instead [17]
(compare with equation (1.2.4)).

Consider another special form: Levy flights. The characteristic waiting
time T is finite and £2 is divergent. This model possesses a Poisson waiting
time and a Lévy distribution for the jump length, i.e.,

A(k) = exp(—a"[E|") ~ 1 — oH[k|F, 1< p<2, (1.2.13)

which asymptotically satisfies A\(z) ~ A, o #|z|~'17# for |z| > o. Since
T is finite, this process has the Markov property. Substituting the asymp-
totic expansion of A(k) in equation (1.2.13) into the equation (1.2.8) leads to
W(k,u) = 1/(u+ K*|k|*). By Fourier and Laplace inverse transform, the
following fractional derivative equation can be obtained

%_ZV — KP_ DFW(2,t), K" =oh/T, (1.2.14)
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Here _oD! is the Weyl operator (please refer to the next chapter),
which is equivalent to the Riesz operator V* in the one-dimensional case.
Use the Fourier transform, the propagator can be expressed as W (k,t) =
exp(—K*#t|k|*). If both of ¥? and T are divergent, then we can get the
following fractional derivative equation [162]

ow
ot

1.2.2 Fractional advection-diffusion equation

= oD} *KIVHW (x,t), KM =ot/T° (1.2.15)

Here, we consider the fractional advection-diffusion equation. In a Brownian
motion, when a system has an additional velocity field v or under the influ-
ence of a constant external force field, it can be described by the following
advection-diffusion equation

ow ow 0?

o TVar " Mgz

The equation will no longer well describe the anomalous diffusion. Some

W (x,t). (1.2.16)

common generalizations are considered below.

First, note that the equation (1.2.16) is Galilean invariance, i.e. the prob-
lem is invariant under the transform z — x — vt. Assume, when consid-
ered under the moving frame (reference frame) with homogeneous velocity
field v, the jump function of the tested particle in random walk is ¢(z,t),
then the corresponding jump function of the particle to be tested under the
laboratory frame is ¢(z,t) = ¢ (x — vt,t). Using the corresponding Fourier-
Laplace transform, we get ¢(k,u) = ¥(k,u + ivk). When T is divergent and
%2 is finite, the propagator can be obtained from the equation (1.2.8) that
W (k,u) = 1/(u+ivk + Kok?>u'~%). Then the fractional advection-diffusion
equation can be deduced (compare with the equation (1.2.11))

ow ow 02

2 4 v—— =¢DI K, — 1.2.1
or TV ~ oD HappWim), (1.217)

whose solution can be obtained through the Galilean transform of the equa-
tion (1.2.11), i.e.
W(x,t) = Wy—o(x — vt, t).

Some moment statistics of the equation (1.2.17) are

(e

toc 2t2
Ti+a) U0

<x(t) >=vt, <z(t)>=

2K, (1.2.18)

t*.
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It can be seen that, the mean square displacement < (Axz(t))? > only contains
the distribution information of the molecule. The first moment < z(t) >
explains the parallel translation along the velocity field v. This Galilean-
invariant sub-diffusion can depict the motion of the particles in the flow
field, where the liquid itself has sub-diffusion phenomenon.

If the velocity field v = v(x) depends on the space variable [49-51], one
assumes @(z,t;x9) = Y(xr — T,v(x0),t), then we can deduce the following
fractional differential equation

0 0?

oW .

ot ° va

} W(,t). (1.2.19)

For a homogeneous velocity field, the following fractional differential equation
can be obtained:

2
oW _ oDl [—Aaﬂv +K 0

It can be proved that the solution of the fractional equation does not satisfy
the Galilean transform of the form W(x — v*t%,t). Some statistics of the
equation are

Aqut® C2AZ0%% | 2Kt

< x(t) >= Tita) < 22(t) >= T 1 20) + Tira) (1.2.21)

in which case, the first moment increases sub-linearly.
For the Lévy flight under an external velocity field v, i.e. T is finite and
%2 is divergent, the following fractional differential equation can be deduced

W W kng i (a ), (1.2.22)
ot ox

which can be used to describe the Markov process with divergent mean square
displacement.

1.2.3 Fractional Fokker-Planck equation

The Fokker-Planck equation (FPE) can be used to describe the classical
diffusion process under an external force field [84,162,178,191,217]:

oW _[oV() o

where m is the mass of the tested particle, 7 is the friction coefficient between
the tested particle and the environment, the external force can be expressed

dVv
as F(z) = i using the external field. Its properties can be found in
x
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related literature. To compare it with the following fractional Fokker-Planck
equation (FFPE), several important basic properties are given below.

(1) When the external force does not exist, the equation (1.2.23) degener-
ates into Fick’s second law, and hence the mean square displacement satisfies
the linear relation described in equation (1.2.1);

(2) Single-mode relaxation decay with time exponent:

Ta(t) = exp(—An1t), (1.2.24)
: . 0 V'(x)
where, A, ;1 is the eigenvalue of the Fokker-Planck operator Lpp = — ——=+
oxr mm
82
K .
Log2’

(3) The steady state solution Wy (z) = limy_,o W (x,t) is given by the
Gibbs-Boltzmann distribution

Wyt = Nexp(—8V(x)), (1.2.25)

where N is the regularization constant, 3 = (kgT)~! is the Boltzmann factor;
(4) FPE satisfies the Einstein-Stokes-Smoluchowski relationship.

K1 = kBT/mm;

(5) The second Einstein relationship is established.

FK;

t =——t
<z(t) >p T

(1.2.26)
which links the first moment under the constant external force F' and the
second moment < x2(t) >o= 2Kt without external force.

The FPE equation and its applications have been extensively studied.
To describe the anomalous diffusion under an external field, the generalized
FFPE is introduced [17,159, 160, 162]

ow [0 V(x) 0?
ot 0P ar T, T Regz

W (x,1). (1.2.27)
This equation has the following properties.
(1) Without the external force field,

2K,

2
£) >o= ——2 ¢
<a7(t) >0 rl+a) ’

which degenerates into the equation (1.2.11) when V = is a constant.
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(2) The single-mode relaxation is given by the Mittag-Leffler function
(compare with the equation (1.2.24)).
Using the method of separating variables, we let

Wn(x’ t) = Tn(t)QOn(x)a

then the equation (1.2.27) can be decomposed into the following equations

T,
d(T; = —Ana0Di O T(t), (1.2.28)
Lrpen(z) = =An,apn (). (1.2.29)

When T,,(0) = 1, T,(¢) is given by the Mittag-Leffler function.

Tnlt) = Ea JZFHa

(3) The steady state solution is given by the Gibbs-Boltzmann distribu-
tion.
The right end of the equation (1.2.27) as follows

8 (x, 1) o V() 92

_ 11—« — _ —
oD or S 1) [ Ox My “ 0z2

] Wi(z,t), (1.2.30)

where S(x,t) represents the probability current. In the case of the steady-
state solution, S(z,t) is a constant, thus
V'(z) d

e Wst(fﬂ) + Kaawst(fﬂ) = 0, (1231)

whose solution is given by

V(x)

Warle) = N exp(——— 2

).
Similar to the classical case, Wy; is given by the Boltzmann distribution.
(4) The generalized Einstein-Stokes-Smoluchowski relationship: K, =
kT /mn,.
(5) The second Einstein relationship still holds for FFPE.
F FK,

t = t* = t
<2l > Tt a) ~ keTT(1+a)

«

This relationship reduces to equation (1.2.26), since I'(2) = 1.

1
Consider a special case V(x) = 5w 222, the system depicts the motion
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of sub-diffusive harmonic restrained particles. Now, the equation (1.2.27) is
simplified as

W _ [0t
ot O 0T N * D2

By using the method of separating variables and the definition of the Hermite

} W(z,t).

polynomial [2], the solution of this equation can be obtained [159]
2 _ 21 /

W | e Z 1 Ea( nwt)Hn(\/ﬁwx>
2rkpT 2= 27n] T V2kpT

H v/ Mwx mw2x2
n ex - )
V2T ) P\ 2kpT

where, H,,’s are the Hermite polynomials. The steady state solution can be

expressed as

mw? vmwz! Vmwz mw?z?
s = H H _
Wet(@) = | 37 10 (\/QkBT) 0 (w/szT) P ( T

mw? mw?ax?
= X —_
kT P\ 2kpT )7

which is the Gibbs-Boltzmann distribution, as expected.

Using the Laplace transform with the same initial value Wy(x) = é(z—1'),
the solution of the equation (1.2.27) satisfies

Wz, u) = 77—O‘u”“*lVVl <x, n—aua> , O<ax<l, (1.2.32)
m m

where W1 and W, respectively represent the solutions of the equations (1.2.23)

and (1.2.27). This shows that under the Laplace transform, the sub-diffusion

system and the classical diffusion differ by a scale. Furthermore, W, can be

expressed in terms of Wi through

Weo(z,t) :/ dsA(s, t)Wi(z, s), (1.2.33)
0
where A(s,t) is given by the inverse Laplace transform
A(s,t) =271 { flo ox <n—auas)] 1.2.34
(5.1 e exp (22 (1234

If we consider the non-local jump process, i.e. assume that X2 is divergent,
then we can obtain the following FFPE [162]
ow 9 V'(x)

W =0 tlia |:ame7 + KHVH:| W(l‘,t) (1235)
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When p = 2, i.e. X2 is finite, the equation reduces to the sub-diffusive
FFPE(1.2.27). Considering the opposite case, i.e. T is finite and 2 is
divergent, one obtains similar to (1.2.35)

ow [0 Vi
ot | 0x mn

+ K oo DE| W (z,t). (1.2.36)
This is the Lévy flight with the external field F'(x).

1.2.4 Fractional Klein-Framers equation

Based on the continuous-time Chapamn-Fokker equation [107, 217, 218], and
the Markov-Langevin equation describing the damped particles with an ex-
ternal fore field, the fractional Klein-Kramers(FKK) equation can be derived
whose velocity averaged high-friction limit reproduces the fractional Fokker-
Planck equation, and explains the occurrence of the generalised transport
coeffcients K, and 7,. The FKK equation is of the form [162]

ow . [ L8 a (., Fa) kpT 92
o~ oD [‘“aﬁm(”“— m )T T e W)
(1.2.37)

where, v* = vd, n* = nd, F*(x) = F(z)¥ and ¥ = 7" /7. Integrating this
equation w.r.t. v, one obtains the following

ow w

_ 0 F(x) 0?
A D1+a_ _ Dl a|_ Y K =
ot + ol n oMt |:

O m1q, 02

- = } W(z,t). (1.2.38)
The equation (1.2.38) is of the type of the generalized Cattaneo equation,
which reduces to the telegraph equation when a = 1, in the limiting case
of the Brownian motion. When considering the high-friction limit or the
long time limit, one recovers the fractional Fokker-Planck equation (1.2.27).
Integrating with respect to the position coordinates of the above equation
and considering the undamped limit, one then obtains the fractional Rayleigh
equation

ow

ow 0, kT
ot

= oD} n* [—v +

s (%2] W (v, 1), (1.2.39)

whose solution W (v, t) of probability density distribution depicts the process
tending to the stable Maxwell distribution

Wit (v) = 52—7: exp (—BvaQ) :



16 Chapter 1 Physics Background

1.3 Fractional quasi-geostrophic equation

Fractional quasigeostrophic equation (quasigeostrophic equation) has the fol-
lowing form [53]

Do 00

= = .Vl = 1.3.1

DL ot +v-V0=0, (1.3.1)
where, v = (v1, v2) is a two-dimensional velocity field which is decided by the
stream function 9 ) o s

vV = —— = — 0.

! 6332 ’ 2 6901

Here the current function ¢ and 6 has the relationship
(—A)z¢) = —0. (1.3.3)

By using the Fourier transform, the fractional Laplace operator can be defined
as

(A2 = /e%“2n|k|¢(k)dk.

Here, 0 is the potential temperature, v is the current velocity, ¢ can be
regarded as the pressure. When the viscous term is considered, the following
equation can be derived

Oy + k(—A)*0+v -V =0,

where 6 and v are still determined by the equation (1.3.2)-(1.3.3),0 < a < 1
and k > 0 is a real number. More generally, we can consider the fractional
QG equation with an external force term

O +u-VO+kr(—A)*0 = f.

For simplicity, f is usually assumed to be independent of time.

The fractional QG equation (1.3.1)-(1.3.2) and the three-dimensional in-
compressible Euler equation share many similarities in physics and mathe-
matics. The three-dimensional vorticity equation has the following form

Dw
— = 1.34
e\ (13.4
D 0 . . . ..
where — = — + v -V, v = (v1,v2,v3) is the three-dimensional vorticity

vector, and divv = 0 and w = curlv is the vorticity vector. Introduce the

vector V=0 =t (=0,,,0,,). One can find that the roles of the vector field

V10 in the two-dimensional QG equation are similar to w in the three-

dimensional Euler equation. Differentiating the equation (1.3.1), one obtains
DV*

Dt

(Vo)V1e, (1.3.5)
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where v = Vlw and hence dive = 0. It can be seen that VLw in the
equation (1.3.5) and the vorticity w in the equation (1.3.4) satisfy the same
equation.

Then we examine its analytic structure. For the three-dimensional Euler
equation, the velocity v can be expressed by its vorticity, i.e. by the well
known Biot-Savart law

v(x) = —ﬁ /R3 (Vﬂ;l') X w(z +y)dy.

The matrix Vv = (vfﬂj) can be decomposed into the symmetric part and the

antisymmetric part
1 1
DF = S[(Vo) +(V)T], and QF = Z[(Vv) = (Vv)'],

where the symmetric part DF can be expressed as a singular integral

3 MP"(j,w(z +y))
E _ 2 9
e e

dy.

As the fluid is incompressible, trDF = Z di; = 0. Here the matrix MF is
given by

S (9 %)+ (5 xw) @],

where a ® b = (a;b;) is the tensor product of two vectors. Obviously, the

ME(Q’W) =

Euler equation can be rewritten as

D
Fotjzw-Vv:DEw.

For the two-dimensional fractional QG equation

1
w(x)=—/Rz| | 0(x + y)dy,

and hence

v=— [ —V<'o dy.
/R2 |yl (@ +v)

Now, the symmetric part D9 (z) = ((Vv) + (Vv)!) of the matrix of the

velocity gradient can be written as the singular integral

M (5, (V20)(x +y))

DUC = pV. >
R? |y|

dy, (1.3.6)
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where, § = % and
Y

1
MCC = 5(;}L Qwt +wt ®jh).
For fixed w, the mean of the function M®Y in the singular integral is zero
over the unit circle. The velocity in the two-dimensional QG equation and
three-dimensional Euler equation has similar expression

v= ) Ka(y)w(z +y)dy,
where K,4(y) is a homogeneous kernel function of order 1 — d. The symmet-
ric parts DF and D can be represented by the singular integral of w(z),
whose kernel function is —d order homogeneous function and has the stan-
dard cancellation property. From the above discussions, we know that the
roles of V16 in the two-dimensional QG equation and the vorticity w in the
three-dimensional incompressible Euler equation are equivalent .

Consider the vortex lines of the three-dimensional Euler equation. The
smooth curve C' = {y(s) € R®: 0 < s < 1} is called the vortex line at fixed
time ¢, if the curve and the vorticity w are tangential at each point, i.e.

dy

1, (8) = AE)w((s) 1), Als) £0.

Let C' = {y(s) € R?®: 0 < s < 1} be the initial vortex line, as time evolves,
it develops into C'(¢t) = {X(y(s),t) € R®: 0 < s < 1}, where X (a,t) denotes
the trajectory of the particle of a. Using the vorticity equation, one can show
that X («,t) satisfies the equation

w(X (a,t),t) = Vo X (a, )wo ().
From the definition of C(t), we know that

= VX (0(5). ) 2 = 9 X(y(), DM sJen(v(s))

dX (y(s),t)
ds

and hence

S (0l 1) = M (X (9(5), ). ).

It shows that in the ideal fluid, the vortex line moves with the fluid. Let
LSQC represent the level set of the two-dimensional QG equation, i.e. 6 is a
constant. From the equation (1.3.1), LS?Y moves with the fluid, and V6
is tangent to the level set LS?E. This shows that the level set for the two-
dimensional QG equation plays similar roles as the vortex line does for the
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three-dimensional Euler equation. Furthermore, for the three-dimensional
Euler equation,

D|w| _ El |
Dt

)

w(zx,t)

where af(z,t) = DF(z,t)¢ - €, & = Analogously, for the two-

w(a, )|
dimensional QG equation, the development of |VJ‘9| satisfies the same equa-
tion
D[V n
_— = 0 1.3.
where a®¢ = DRC(z,t)¢ - £, DY is defined in the equation (1.3.6), and
1L
0
&= VT is the direction vector of V6.
Aad
Now we investigate the conserved quantity of the equation. Using the
—_— 3 _k k N
Fourier transform, we know that o(k) = P(k) = %Q(k), and by

utilizing the Plancherel formula, we have

1 1
f/ o]? = f/ 10]2dz.
2 Rz 2 R2

For the two-dimensional QG equation, it is evident that G(0)dz is con-
R?2

served. In particular, letting G(0) = %92 shows its kinetic energy is con-

served. This is consistent with the three-dimensional Euler equation.
Recently, the following fractional Navier-Stokes equation is widely con-

sidered

{%?:Z.O’VU—FVPZ —v(—=A)%u, (13.8)

where v > 0, @ > 0 are real numbers. The existence and uniqueness of the
fractional NS equation in the Besov space are established [223].

Recently, we also established the existence of solutions and their time
decay of a class of high-order two-dimensional quasi-geostrophic equation

[181]
0,000 oo\ 1 ..
<8t + or 0y Oy ax> 7= Re( A) Y, (1.3.9)

where ¢ = Ay — F + By, (z,y) € R?, t > 0.
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1.4 Fractional nonlinear Schrodinger equation

In quantum mechanics, the Schrédinger equation of free particles plays an
important role

SRR
ih () = =5 V2(r, 1),

where 1 (r,t) is the quantum ground state wave function describing the mi-
croscopic particles. After the wave function ¢(r,t) is determined, the mean
of any mechanical quantity of the particle and its probability distribution
are completely determined. Hence determining the evolution of the wave
function with time and identifying the possible wave functions under specific
situations become the core issues in quantum mechanics. Taking into account
the potential field V(r,t), one gets

'ha t) = e V24 V(rt t
1 Ew(ra )_ _% + (Ta ) ¢(7”7 )

This is the Schrodinger equation, which reveals the the basic law of the motion
of matter in the microscopic world.

Consider the stable stochastic process. In the mid-1930s, P. Lévy and
A.Y. Khintchine proposed that under which situation the probability distri-
bution py(X) of the summation X = X; 4+ -+ + X of N independent and
identically distributed random variables equals p;(X;)? The concept of stable
roots here. Taking into consideration the central limit theorem, the tradi-
tional answer had been that each p;(X;) satisfies the Gaussian distribution,
i.e. the summation of Gaussian random variables is still a Gaussian ran-
dom variable. Lévy and Khintchine showed the possibility of non-Gaussian
distributions, i.e. the nowadays called Lévy a-stable probability distribu-
tion (0 < a < 2). When a = 2, the distribution is the standard Gaussian
distribution.

In quantum mechanics, Feynman path integrals are actually the Brownian-
type quantum mechanics path based integrals. The Brownian motion is a
Lévy a-stable stochastic process, and the Brownian-type path integral leads
to the classical Schrodinger equation. Replacing the Brownian-type path
with Levy-type quantum mechanics path, one gets the fractional Schrodinger
equation [130]

ih%i/)(r, t) = Do(=R2A) 24 (r, t) 4+ V (r, ) (r, t), (1.4.1)

where « is the order of spatial derivative and D, is a constant with dimen-
sionless [D,] = erg! = -cm®-sec™®. This equation can also be written as the
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following operational form

Loy
ihe = Hat,

where H, = Dq(—h?A)*/?2 + V(r,t) is called the fractional Hamiltonian
operator.

Consider the Fourier transform and its inverse transform of the three-
dimensional case,

:px 1 :px
e(p,t) = /e*‘Tw(r,t)dr, Y(r,t) = W/elfcp(p,t)dp.

The operation of the three-dimensional quantum Riesz fractional derivative
(=12A)*/? on a function v (r,t) can be expressed as

(~I28)20(r.0) = s [ e F bl )

By using the integration by parts formula,

(&, (=A)*2x) = ((=2)%,%)

we know that the fractional Hamilton operator H, is hermitian operator
o0
under the dot product (¢, x) := / @* (r,t)x(r,t)dr, where * represents the

—0o0
complex conjugate. The average energy of the fractional quantum system
with the Hamilton quantity H,, is

Ea = /Oo 1/J*(7'a t)Ha¢(rv t)d?"

By using the integration by parts formula

Eo = /°° Y (r,t) Hotp(r, t)dr = / W(H;zp(r, ) (r,t)dr = EZ,

oo oo

which shows that the energy of the system is always real valued. Therefore
the fractional Hamilton quantity in the above definition is Hermitian or self-
adjoint under the dot product (HX ¢, x) = (¢, HaX)-

Fractional nonlinear Schrodinger equation also has a certain parity struc-
ture. From the definition of the fractional Laplace operator,

(_hQA)a/2eipm/h — |p‘ozeipw/h,
hence e'?*/" is the eigenfunction of the operator (fth)a/ 2 whose eigenvalue

is |p|®. On the other hand, the operator (—hA2A)*/? is symmetric, i.e.

(—hQAT)“/Q - = (—712A—7-)a/2 ———



22 Chapter 1 Physics Background

From this, the Hamilton H, is invariant under the space reflection trans-
formation. Let P be the reflection operator, then the invariance can be
expressed as the commutativity of P and H,, ie., PH, = H,P. Under
these notations, the wave functions of quantum mechanical states with a
well-defined eigenvalue of the operator P can be divided into two classes.
Functions that invariant under the reflection transform P, (1) = 1, (r) are
called the even states, and functions that change signs under the reflection
transform Pip_(r) = —t_(r) are called the odd states. If the state of a closed
fractional quantum mechanics system has a given parity, then this parity is
conserved.

In the study of the fractional Schrédinger equation, the case that H, does
not depend on time is important in physics research. In this situation, the
equation (1.4.1) has a particular solution ¢ (r,t) = e 1F4/P¢(t), where ¢(r)
satisfies Hod(r) = E¢(r), or

Da(~12A)2(r) + V(r)o(r) = Eo(r).

Usually, this equation is called the stationary fractional Schrédinger equation.
Consider the current density. From the equation (1.4.1),

/7,[1 r, t)(r, t)d

=2e [ vt h?A)a%(r,t)—wmt)(—h?ma/%*(r,t)} dr.

This equation can be simplified into

ap(r,t) . B
T + divj(r,t) =0,
where p(r,t) = *(r, t)y(r, t) is called the probability density and
)= 20 () ()2 T 1) — () (K)o )

0
is called fractional probability current density with V = —
r
h
Introducing the momentum operator p = -V, the vector j can be written
i
as

j _ Da (7/1(232)a/2_113¢* + w*(ﬁ*Q)a/Q 1 A*w) 1<a < 2.

When a = 2 and D, = 1/2m, the above derivation corresponds to the clas-
sical quantum mechanics and the classical Schrodinger equation. Thus, the
above discussion is the generalization of the classic system into the fractional
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d
order system. Let © = af be the coordinate operator, then

and hence

which yields
1
j= a(wﬁw* +Y*oy), l<a<2.
To normalize the probability current density, one may let

Y(r,t) = %ei%*i?, E =D,lp|*, 1<a<2.

The time fractional Schrédinger equation can also be considered. We only
investigate the one-dimensional case and now the one dimensional classical
Schrédinger equation is

2
ihopp = —h—aiw + V.
2m

Two types of generalizations can be made [172]

L2
(T5)" Dy = =557~ 0z¢ + Nvd, (1.4.2)
and
L2
i(Ty)" Dy = = oot 05 + Ny, (1.4.3)

where, D} represents the v-order Caputo fractional derivative, and its pa-
rameters are T, = \/Gh/c®, L, = \/Gh/c*, N, = V/E,, E, = M,c?,
Ny =m/M,, M, = \/hc/G.

1.5 Fractional Ginzburg-Landau equation

Here we derive the fractional Ginzburg-Landau equation (FGLE) from the
Euler-Lagrange equation for fractal substance [211]. This equation can be
used to describe the dynamics for substance having fractional dispersion.
The classical Ginzburg-Landau equation (GLE) [132]

gAZ = aZ — bZ3,

can be derived as the variational Euler-Lagrange equation

SF(Z)
57

:O’
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for the free energy functional
_ 1 2 2, b4
F(Z)=Fy+ 5 9(VZ) +aZ° + 2Z 1dVs. (1.5.1)
Q

Two fractional generalizations of the equation (1.5.1) are considered. One is
the fractional generalization of the integral in F'(Z), and the other one is the
fractional generalization of the derivatives in F'(Z).

The simplest generalization is to consider the following energy functional

1 b
F(2)=Fo+3 / 9(V2)* +aZ® + 5 24aVp, (1.5.2)
Q

where dVp is D-dimensional volume element dVp = C5(D, z)dV;. Here, in
the Riesz definition of fractional integral, we have C3(D,z) = (23~PT'3/2)
|z|P=3)/(I'(D/2)) and in the Riemann-Liouville definition of fractional inte-
gral, we have C3(D, x) = (|z12z023|P/371) /(T3(D/3)).

Let

F(Z(x),VZ(x)) = % [g(VZ)z +aZ? + gz‘* , (1.5.3)

then the Euler-Lagrange equation can be obtained

3
oOF
27 ;V k(Cs(D, x)é)VkZ)

From (1.5.2), the following generalized FGLE can be obtained

Cg(D,.T)

903 M (D, 2)V 1 (C3(D,x)V . Z) — aZ — bZ* =0, (1.5.4)
or equivalently
gAZ + Ex(D,2)V.Z —aZ — bZ3 =0, (1.5.5)

where Ey(D,z) = C3 (D, x)0xCs(D, ).
Generalize the energy functional into the fractional form

_ 5 +/ F(Z(x), D*Z(x))dVp, (1.5.6)
Q
where D® is the Riesz fractional derivative and F is given by
a 1 o 2 2 b 4
F(Z(x),D*Z(z)) = 5 g(D*Z)* +aZ” + §Z . (1.5.7)

Its Euler-Lagrange equation is

- OF
+ZD <03 (D x)angZ) =0
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In general D # 3« and this equation is equivalent to
3
9Ci M (D,x) Y DS, (Cs(D,x) DS, Z) + aZ + bZ* = 0. (1.5.8)
k=1
Such a generalized equation is called fractional Ginzburg-Landau equation.
Below we consider some special cases of the equation (1.5.8).

(1) In the one-dimensional case, Z = Z(x). Using the formulas for frac-
tional integration by parts

dﬁg o d?f(x
= (

)
/w fa)Dzg(eyis = [ " g(@) D2 f()da

we obtain the Euler-Lagrange equation

dx

(1.5.9)

(Cl(D x)af)fz> +C’1(D,x)g—]Z: =0, Ci(D,x)= (D)
Using (1.5.7), we arrive at
C;Y(D,z)D2(C1(D,x)D2Z) + aZ + bZ3 = 0.
For the case D = 1, we have C; = 1 and hence
D2*Z +aZ +bZ% =0,

where DY is the Riesz fractional derivative operator.

SR
2 cos(ma/2)T'(n — a) Oz

924
12

(D3 f)(z) =

(2) Consider
1 a2 1 B2, @2
Using (1.5.9), we get the following Euler-Lagrange equation

OF OF OF
« B _— =
D3 (CI(D’x)aDg‘Z) +D (Cl(D x)anZ> + C1(D,x) 57 0,

and hence the fractional Ginzburg-Landau equation

g1CT DY (Cy (D, 2)DEZ) + goC7 (D, ) D2 (Cy (D, 2) D2 Z) + aZ + bZ3 = 0.
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In particular, when D = 1, C; = 1 and hence
G D**Z 4+ g.D¥Z +aZ+02°=0, 1<a,f<1.
(3) For a more general case, we consider
F = F(2,D% Z,D%Z,D% 7).

In this case, the FGLE for fractal media is
g1C7 N (D, x ZD% (C3(D,2)D2*Z) + aZ + bZ* = 0.

Below we consider another generalization of the GLE. Consider the wave
propagatlon in some media, whose wave vector k satisfies k = ko + K =
ko + "EH + K1, where k‘o is the unperturbed wave vector and the subscripts
(|I, L) are taken respectively to the direction of ko. Considering a symmetric
dispersion law w = w(k) for wave propagation with x < ko, we have

R (1.5.10)

w(k) = w(|ko+R]) ~ w(ko) +c(|ko + & — ko) ~ w(ko) + ) + e

where ¢ = Ow/0ko. This equation is the momentum representation of the
field Z in the dual space corresponding to the following equation in coordinate

space

oz 07 c
—i— =ic— + —AZ 1.5.11
lat 1639:1 + 2% s ( 2 )

where x is the direction of Eo. By comparing the two equations, one has the
following correspondences between the dual space and space-time space

02 02

ox3 Oz}

w(k’) i l_{” — —1 (l_{L)Q o —A=—

o 0
alﬂ 81'17

Generalizing it into the nonlinear dispersion relation, one obtains
w(k, |Z)?) ~ w(k,0) + b Z|* = w(|ko + &],0) + b Z|?, (1.5.12)
with some constant b = (dw(k,|Z|?))/(0]Z|?) at |Z|?> = 0. Analogously, the

following equation can be obtained

C
i —e 2L S AZ— A VARYA 1.5.1
iy =ieo + o w(ko) b|Z|*Z, (1.5.13)

which is also called the nonlinear Schrédinger equation, and all its coefficients
can be complex numbers. Let Z = Z(t, 1 — t, x2, x3), then one has

07 )
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Generalizing the dispersion relation (1.5.12) into the fractional case, one
obtains

w(k,|Z)?) = w(ko,0) + cR) + ca(R2)Y2 +0]Z]2, 1<a<2,

where ¢, is a constant. By using the correspondence relation (—A)*/? ¢«
(R%)*/2 | we obtain
.0Z . 0Z c

P N a/2 2
iy =iegs 2/€0( A7 + w(ko)Z + bl Z)*Z, (1.5.14)

which is called the fractional Ginzburg-Landau equation (FGLE) or the frac-
tional nonlinear Schrodinger equation (FNLS). The first term of the equation
on the right hand side describes the wave propagation in fractional media,
and its fractional derivative can be caused by the super-diffusion wave prop-
agation or other physical mechanisms. The remaining terms represent the
interactions of the wave motions in the nonlinear media. Therefore, this equa-
tion can be used to depict the self focusing or related fractional processes.
In the one-dimensional case, the equation (1.5.14) can be simplified as

7

where g, b, c are constants. Let x = x3 — ct, then the traveling wave solution
Z = Z(z) of the above equation satisfies

gDSZ + cDLZ +aZ + b|Z|°Z =0,

or for the real value Z

gD2Z +¢DLZ +aZ +bZ° = 0.

1.6 Fractional Landau-Lifshitz equation

The Landau-Lifshitz equation (LLE) plays an important role in the ferro-
magnetic theory, which describes the movement pattern of the magnetization
vector. LLE was first proposed by Landau and Lifshitz when they studied
the dispersive theory of the magnetization phenomena of the ferromagnetic
body, which is also called the ferromagnetic chain equation [128]. After-
wards, the equation are often used in condensed matter physics. In the
1960s, Soviet physicists A.Z. Akhiezer et al studied the spin wave, travel-
ling wave solutions of the ferromagnetic chain equation and so on in their
monograph [7]. In 1974, Nakamura et al first obtained the soliton solution
of the Landau-Lifshitz equation without Gilbert term in the one-dimensional
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case. Since the 1980s, many mathematicians turned to study this equation,
and gained many important results. In China, at the frontier in this re-
gard is the research team led by Y. Zhou and B. Guo, the academician, who
obtained the global weak solutions of the initial and initial-boundary value
problems of the Landau-Lifshitz equation, and the global smooth solution of
the one-dimensional LLE [230]. Soon later, B. Guo and M. Hong studied
the two-dimensional LLE, and got the global existence for small initial data
and established the relationship between the LLE and heat flow of harmonic
maps [104]. Recently, mathematical problems of the Landau-Lifshitz equa-
tion has increasingly attracted the attention of the mathematical community,
and a large number of literature and monographs has been published. For
further knowledge, the readers can refer to the recently published monograph
by B. Guo and S. Ding [102] and the references therein.
The Landau-Lifshitz equation is of the following form

oM
o7 = VM X Heit — o®M x (M x Heg),
where 7 is called the gyromagnetic ratio, a > 0 is a constant depending on the
physical properties of the material, M = (M;, Ms, M3) is the magnetization
5Etot

oM

moment. Here, F;, represents the energy functional of the entire magnetic

vector, and Heg — is the effective magnetic field acting on the magnetic

field, which consists of the following parts [47]
Etot = Eewc + Eani + Edem + Eapp~

Recently, DeSimone et al [63] gave the following two-dimensional model when
studied the film micromagnetic theory, where

B = [ (1€ FxaP/lehd

5E‘tot
oM
~v = 0), then the following equation is obtained

M
88—15 — V(=A)"2divM + V(—=A)"2divM - MM =0,

where M = (M, Ms) represents the two-dimensional magnetization vec-

Now

= —V(—A)"zdivM. If we only consider the Gilbert term (i.c.,

tor. It can be seen that this equation is a partial differential equation with
fractional derivatives. We can also consider the following Landau-Lifshitz
equation having exchange energy. In this case,

B = [ [VMPdo [ (I Fxal*/leDas
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leading to

M 1 1
%—t =AM + V(=A)"2divM + ¢|VM|?M — V(=A) " 2divM - MM = 0.

In addition, recently B. Guo et al studied the initial value problem of the
following fractional Landau-Lifshitz equation with periodic boundary values
[108,182]

M, =M x (-=A)*M, T¢x(0,T

M(0,z) = My, =z €T

Applying the vanishing viscosity method, the authors considered the follow-
ing approximation problem and then proved the global existence of the weak
solutions

B M

o M

max{1, | M|}

Recently the authors obtained global existence of weak solutions by Galerkin
approximation and local smooth solutions by vanishing viscosity method for
the Landau-Lifshitz equation with or without Gilbert damping term. The
following fractional Landau-Lifshitz-Gilbert equation can be also considered
cf. [182, 183, 185],

My = yM x (—A)*M + BM x (M x (—A)*M). (1.6.3)

1.7 Some applications of fractional differential equations

This section introduces some applications of fractional differential equations
in applied disciplines, such as viscoelasticity mechanics, biology, cybernetics
and statistics. In this section, we only introduce several applications of the
fractional partial differential equations, from which we can catch a glimpse
of how powerful the FPDEs are in applied scientific branches. The interested
readers may refer to the literatures cited herein.

Viscoelasticity mechanics is one of the disciplines in which the fractional
differential equations are extensively applied, and a lot of related research pa-
pers have been published [38,155,194]. Almost all deformed materials exhibit
elastic and viscous properties through simultaneous storage and dissipation
of mechanical energy. So any viscoelastic material may be treated as a linear
system with the stress as excitation function and the strain as the response
function. In mechanics of materials, the Hooke’s low reads o(t) = Ee(t) for
a solid, and Newton’s law reads o(t) = nde(t)/dt for fluids, where o is the
stress and e is the strain. Both of them are not universal laws, but merely
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mathematical models of the ideal solid and fluid. Neither of them can ade-
quately describe the real situation in the real world. In fact, real materials
are between the two limit cases. Two fundamental methods are employed
to connect the above two models. One is the cascade connection and from
this the Maxwell model in viscoelasticity mechanics is obtained; the other
is the parallel connection from which the Voigt model is obtained. In the
Maxwell model, when the stress is a constant, then strain will grow infinitely.
However, in the Voigt model, the viscoelasticity does not reflect the exper-
imentally observed stress relaxation. To remedy the disadvantages of these
two models, Kelvin model and Zener model were proposed, both of which can
give satisfactory qualitative descriptions of the viscoelasticity. But neither
of them are satisfactory as far as quantitative descriptions are considered.
Hence more complex rheological models are proposed for the viscoelasticity
materials, leading to complicated differential equations of higher orders.

On the other hand, since the stress is proportional to the zeroth deriva-
tive of strain for solids and to the first derivative of strain for fluids, then
G.W. Scott Blair [25,26] proposed “intermediate” derivative models for such
“intermediate” materials

o(t) = BoD2e(t), (1.7.1)

where a € (0,1) depends on the property of the material. Almost at the
same time, Gerasimov [88] employed the Caputo fractional derivative to get
the following model for 0 < a < 1,

o(t) = koo Di¥e(t). (1.7.2)

By using the fractional derivative, we can get the generalized Maxwell model,
Voigt model and Zener model. They are all special cases of the following
general high order model

> apD*a(t) =Y bpDe(t).
k=0 k=0

The fractional derivative is also successfully applied to statistics. Assume
that we need to model the impact of the hereditary effects in steel wires to
study the mechanical properties. To describe some basic disadvantages of
the classical polynomial regression models, we consider the two main stages
of the change of mechanical properties of such a steel wire. In the first
stage, within a period of time after the wire installation, the performance
enhancement can be observed, and in the second stage, then its performance
gradually declines, getting worse and worse, until breaks down. The period
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of performance enhancement is shorter than the period of decline, and the
process are generally asymmetric.

In the classical regression model, the linear regression can well describe the
second stage, but can not well describe the stage of performance enhance-
ment. The second order regression provides symmetrical regression curve,
hence is not well consistent with its physical backgrounds of the process.
The high order polynomial regression can give better interpolation within the
time interval for which measurements are available, but cannot give a rea-
sonable prediction of performance change of the wire properties. Of course,
in practical problems, the exponential regression model, Logistic regression
model and other models can be used. Here we would like to introduce the
fractional derivative model.

Consider n experimental measured values 1,2, - - , ¥, and assume that
the interpolated function y(¢) satisfies the following fractional integral equa-
tion for a € (0, m]

m—1
y(t) = 3 at® — awoDy y(0),
0

where o, ag, k = 0,--- ,m, are parameters to be determined and m is the
m—1
smallest integer greater than or equal to a. Let z(t) = y(t) — Z ayt®, then
0

z satisfies the following initial value problem [179]

m—1
0D2(t) + amz(t) = —am Z apth,
k=0

2B0)=0, k=0,---,m—1.

(1.7.3)

Besides the fractional models introduced above, there are many other
important fractional models in various fields, some of which are listed below
without introducing their detailed physical background. We will list some
equations below which are actively studied.

1. Space-time fractional diffusion equation [139].

0%u(x,t)

ot
w(z,0) = f(z), 0<z<L,
u(0,t) = u(L,t) = 0.

= Dfu(x,t), 0<z<L, 0<t<T,

where D?(1 < 8 < 2) is the Riemann-Liouville fractional derivative
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19 [" (b
[ B 1<p<2,
_ 2 — \p-1
Diu(z,t) = ggi(aji; or /0 (= =¢)
" ou? F=2,

and 0%/0t%(0 < o < 1) is the Caputo fractional derivative

1 " u(x,n) dn
o ) 1’
Ou(x,t) F(l—ﬁ)/o an  (t—n)> O<as
ot~ ou(z,t)
— a=1.

When a = 1, 8 = 2, this equation is the classical diffusion equation

ou(z,t)  d%u(x,t)
ot 0x2

When o < 1, the solution of the equation is no longer a Markov process,

whose behavior will depend on the behaviors of the solution at all the previous
times.
2. Fractional Navier-Stokes equation [227].

du+ (—A)Pu+ (u-V)u—Vp=0, in R
V.u=0, in R
Ult—o = up, in RY,
where 5 € (1/2,1). When the time fractional derivative is considered, the

following fractional Navier-Stokes equation can be obtained [169]

o 1
8?11—1— (u-V)u= —;Vp—FVAu,
V.-u=0,

where 0%/0t*(0 < a < 1) is the Caputo fractional derivative.
3. Fractional Burger’s equation [24]

ur + (—A)%u = —a- V(u"),

whereaeRd,0<a<27r>l.
4. The semi-linear fractional dissipative equation [164]

ug + (=A% = +v|u)u.
5. Fractional conduction-diffusion equation [164]

up + (—A)%u =a- V(jul’u), acRI/{0}.
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6. Fractional MHD equation [222,229)

Ou+u-Vu—>b-Vb+ VP = —(—A)%,
Oib4+u-Vb—b-Vu=—(—A)"b,
V-u=V-b=0.

33



Chapter 2

Fractional Calculus and Fractional
Differential Equations

This Chapter mainly introduces definitions and basic properties of frac-
tional derivatives, including Riemann-Liouville fractional derivative, Caputo
fractional derivative and fractional Laplace operator, etc. For the fractional
Laplace operator, some basic tools of partial differential equations are intro-
duced, such as pseudo-differential operators, fractional Sobolev spaces and
commutators estimates, etc. Also, some existence results of fractional ordi-
nary equations are obtained by iteration. For readers’ convenience, some
basics of Fourier transform, Laplace transform and Mittag-Leffler function
are given at the end of the chapter.

2.1 Fractional integrals and derivatives
2.1.1 Riemann-Liouville fractional integrals

To introduce R-L fractional integral, consider first the following iteration
integrals

DYf)(t) = / ' f(ryar
D2[f](t) = /0 “an /0 " fryar,

D A1) :/Otdf1 /0 dTQ-.-/OT"lf(T)dT.

These multiple iteration integrals can all be expressed as

/ K, (t,7) f(r)dr,
0

for a certain kernel function K, (¢, 7). Obviously, K1(¢,7) = 1. When n = 2,
then

34
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/t dr ’ flr)dn = t f(r)dr /t dm
0 0 0 r
= [ (= s

0
thus Kq(t,7) = (t — 7). When n =3,

/dT/ dﬁ/ f(r2)drs = /dT/ (r — m)f(m)dn
_ /0 fr)dr /T (r — 7)dny

t _ )2
15

hence Kx(t,7) = (t —7)2/2. Generally, K,(t,7) = (t —7)""1/(n—1)! by
induction, yielding

7

1

D™"[f](t) = W/o (t — )"~ f(r)dr, (2.1.1)

where I'(n) = (n—1)!. Assume f € C[0, T}, the space of continuous functions

n [0,7], then for arbitrary ¢t € [0,T], the integral exists in the sense of
Riemann integral for any n > 1. Certainly, this idea can be extended to
the situation 0 < n < 1, where the integral exists as a generalized integral.
Extending n to a general complex number, one obtains the definition of the
R-L integral.

Definition 2.1.1 Suppose that f is piecewise continuous in (0,00), and
integrable in any finite subinterval of [0,00). For any t > 0 and any complex
number v with Rev > 0, the v-th R-L fractional integral of f is defined by

1 t
DV f(t) == [ (t—7)"""f(r)dr. 2.1.2
WDFS0) = s [ =0 (e (212)

Below, C will denote the class of functions of f such that (2.1.2) makes
sense.

Example 2.1.1 Let f(t) = t* and p > —1, then obviously f € C. By
definition,

1 t
D;ViH = t— 1) IrHd
oD, F(V)/O( TV rhdr
:B(V’M"i_l)ty-&-p
I'(v)

— F(:U/+ 1) tu+y

, Rev>0,t>0,
Mp+v+1)
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where B and T' are the Beta function and the Gamma function, respectively.
When p and v are integers, it reduces to the classical situation, and is con-
sistent to the multiple iteration integrals above.

Now, we give several discussions on this definition.

1. The class C includes functions which behave asymptotically like Int¢ or
t* near t = 0 for —1 < p < 0, as well as functions like f(7) = |7 — a|* for
uw>—land0<a<t.

2. Rewrite the integral in (2.1.2) in the Stieltjes integral, we have

D) = Fs | 1a066)

where ¢g(7) = —(t — 7)” is a monotone increasing function on the closed
interval [0,¢]. If f is continuous in [0, t], then ¢D; ” f(t) = mf(f)t” by
the mean value theorem for some ¢ € [0,t]. Therefore, lim; g0 D; " f(t) = 0.

If f € C, such limit does not necessarily hold. Indeed, from Example 2.1.1,
when > —1 and v > 0, there holds

0, nw+v>0
1 _Vlu‘: =
}E%ODt t I'(p+1), w+rv=0

00, w+v<o.

3. In the symbol ¢D; ” of the definition of the R-L fractional integral, the
left subscript 0 can be replaced by any constant c, leading to the following

definition
1 t
D10 = 55 / (t— ) f(r)dr.

We will use D™" to denote the operator oD, ” for simplicity in the rest unless

otherwise stated.
4. Under certain assumptions

lim D™ f(t) = f(2), (2.1.3)
and hence one can regard
DOf(t) = f(t). (2.1.4)

When f is continuously differentiable, the conclusion obviously holds. Inte-
grating by parts, one has

£ f(0)

D7Vf(t) = =—— T+ 1)
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and hence

v—0

tim D750 = [ (r)dr -+ £(0) = 100

When f(t) is only continuous for ¢ > 0, the proof will be somewhat
complicated. We should prove that for arbitrary € > 0, there exists § > 0
such that when 0 < v < § there holds | D" f(t) — f(¢)| < e. For this purpose,
rewritting D~ f(t) as

D10 5 || (t—T)”l(f(T)—f(t))dT+% [a=nrar

1 o v—1 _ T
55 / (t — 1) (f(r) — F(1)d

i ' v—1 _ ﬂ
+m/t_n(t_7) (f(r) = f(£))d7 + o) (2.1.5)

Since f is continuous, for any & > 0, there exists 4 > 0, such that for [t—7| <
8, there holds | f(7) — f(t)| < & Hence the second term of the right hand side
of (2.1.5) can be estimated as

~ t ~c
5 g0
L] < — t—7) 7 < —,
Bl < 755 /t_g( ) T(v+1)
where we have used T'(v 4+ 1) = vI'(v). Therefore, |Io| — 0 when € — 0.
Let € > 0 be arbitrarily given. There always exists 0 < 1 < ¢ such that
|I2| < €/3 holds, for every v > 0. Fixed 7, then the first term of the right
hand side of (2.1.5) can be estimated as

M b v—1 M v v
Bl< g [ = < o - ),

For such a fixed 7, when v — 0, the right hand side tends to zero, i.e., there
exists 61 > 0 such that for 0 < v < 41, one has |I;| < ¢/3. For the third
term of the right hand side, |I3] < Mt”/T'(v + 1), and hence there exists
d2 > 0, such that for 0 < v < d2 we have |I3] < £/3. Summarizing we have
limsup,,_, |D~Yf(t) — f(t)] = 0, completing the proof.

Theorem 2.1.1 Let f € C([0,00)) be a continuous function and p,v > 0.
Then, for any t > 0,

D™D f(t)} = D™V f(t) = D™DV ().
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Proof By definition,

—viD—HK :L ' —_ )1 L xx_ p—1 T
DD ) =g [ = [ [ @m0 ]

1 t ot vy i1y
:W/O/y(t—@ (z — y)"~da f(y)dy.

Substituting = (¢t — y)§ + y, we have

t 1
DD M f (1) =m / / €91 (1 — €)Y 1dE(E — ) P f(y)dy

_M ' _ o \vtpe—1

=D f(1),

where we have used B(v,u) = I'()I'(v)/T'(v + ). The second equality is
proved similarly.

From above, one can see that when v = n > 0 is an integer, D~" f(¢)
represents the n-fold integral of f. For any real number p = n + v with
n > 0, one has from this theorem

DTHf(t) = D7D f(t)] = D™D f(1)].

It shows that the pu-th (1 = n+v) R-L integral of f is equal to firstly taking
n-fold integral and then the v-th R-L integral of f or firstly taking the v-th
R-L integral and then the n-fold integral of f. Now consider the derivatives
of R-L fractional integrals and the R-L fractional integrals of derivatives.

Theorem 2.1.2 Let n be a positive integer, v > 0 and D™ f € C([0,00)).
(1) When D™f € C, then

D™D f(8)] = DTV f(t) = Ra(t,v);
(2) When D" f € C([0,00)), then fort >0
DD f(t)] = D™V[D" f(#)] + Rn(t,v — n),
where Ry (t,v) = ”i: t"TRDR £(0)/T (v + k 4 1).
k=0

Proof First we prove (1). When n =1, let n > 0,8 > 0, then (¢t — 7)*~! and
f(7) are both continuous and differentiable in [4, ¢t — n]. Integrating by parts
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then yields
t—n
/5 (t — 7)"[Df(r)]dr

[ T ) S —) — (- ) 1(6).

Letting d,7n tend to zero respectively, dividing both sides by I'(v 4+ 1), and
using the property of Gamma function (2.7.1), one can prove the conclusion
(1) for n = 1. For a general n > 2, applying repeatedly the conclusion of the
case n = 1, we have

Df(u+n71)71[D1Dn71f<t)] :Df(VJrnfl)[anlf(t)] _ ?zy:-_fg))) tu+n71
:D7V+nf2[an2f(t)]

Dn72f(0) tu+n72 o anlf(o) tVJr’ﬂ*l
Pv+n-1) T(v+n)

=D7Vf(t) — Ry(t,v).

Hence the conclusion (1) holds for a general positive integer.
We prove the (2). Let 7 =t — £'/7 to obtain

D = F /0 Ft - €77)de.

Hence for ¢t > 0,

DD~ f(1)] =

) / 7t 1/"d§]

Letting ¢ — £/ = 7 in the equation then completes the proof for (2) when
n = 1. For a general positive integer n > 2, one can complete proof by
induction similarly.

I'v+1)

It shows that in general, D™ and D~" do not commute. But we have the
following.

Corollary 2.1.1 Under the assumptions of Theorem 2.1.2, if moreover
D¥f(0)=0 for all k=0,1,--- ,n— 1, then

D7D f(t)] = DV f(t)

and

DU[D™Vf(t)] = D7V[D" (1))
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Theorem 2.1.3 Let n be a positive integer, v > n and D™ f be continuously
differentiable in [0,00), then for arbitrary t € [0,00), we have

DD~ f(t)] = D~ f(1).

Proof Let v > n. First, when n = 1 we have by definition D"~!
[D=Vf(t)] = D-=D=1f(t). Indeed, similar equality holds for a general
n > 2withn <v, ie.,

D" DTV f(t)] = DTV TTLA().

We will show that this also holds when n—1 is replaced with n. Differentiating
the expression by D, we have

D"[D™Vf(t)] =D[D~ "7 f(#)]
:Df(ufn)fl[Df(t)] + F(V {(2)—’— l)tufn
=D~ f (1),

where we have used (2) and (1) of Theorem 2.1.2 in the second and third
step, respectively.

Theorem 2.1.4 Letn andm be positive integers, v, it > 0 and v—pu = m—n.
Assume f is r-th continuously differentiable in [0,00), then for arbitrary t €
[0, 00)

r—1 v—m—+k Mk
D™[D™f(t)] = D™*[D"f(t)] + sgn(n —m) > Ft(l/ - mﬁ kf(f)l)

k=s

(2.1.6)

where r = max{m,n} and s = min{m,n}, and for arbitrary t € (0, 00), there
holds
D*[D™"f(t)] = D™ [D~" f(t)].
Proof 1If m = n, the theorem holds obviously. Now assume n > m and
denote 0 = n — m, then using Theorem 2.1.2, we can see that
o—1 tu+ka+mf(0)

D™ e) = D7D W)+ )L )

k=0

(2.1.6) then follows since v+ o = p and o +m = n. On the other hand, from
Theorem 2.1.3, we have

D?[D™77f(t)] = D™V f(t),
since v > 0 here. Differentiating this formula m times then yields
D™DV f(4)] = DM [DV [ (1)

This completes the proof.
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Let n > 1 be a positive integer, when f and g are m-th continuously
differentiable, the classical Leibniz rule holds

D™( ZC”“D’“ tyD"*g(t).

To extend the Leibniz rule to the R-L fractional integrals, we first consider
the following example.

Example 2.1.2 Assume v >0 and f € C, then
tnf Z Ck DktnD_V_kf(t).
Indeed, by definition,

D ()] = —— / (t — ) [ f(r)dr

Writting
D S S e
k=0

and applying the generalized binomial coefficients (2.7.2), we have

DVl ()] :ﬁ Z(—l)kabt"’k/o (t— 7)1 f(r)dr
k=0
1 n

=Y (~DFCET (v + k)t ED TR £ (1)

)=

CE, D™D f (1)),

[
- <

>
Il
o

where C*, = (=1)*T'(k + v)/k!T'(v).

Theorem 2.1.5 Suppose that f is continuous on [0,T] and g is analytical
at t for arbitrary t € [0,T]. Then for any v >0 and 0 < t < T, there holds

D™ ZC’“ [DFg)][D™ ().

Proof The idea of proof is illustrated in the above example. From the
assumptions of f and g, we have fg € C. Therefore, the fractional integral
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D="{f(t)g(t)} exists for arbitrary v > 0. Since g is analytic, it can be
expanded in Taylor series

<k
o) =)+ 3 I oy
k=1

which converges uniformly on 7 € [0,¢]. Substituting this into the expression
of D7V[f(t)g(t)], we have

Z ka (t T—t)k_ll dr.

k=1

Since f is continuous on [0,7] and v > 0, (t — 7)" f(7) is bounded on [0, ¢],
and hence interchanging the order of integration and summation yields

DI 09(0] =D~ ) + (-1 i S D (0]l £ (o)
k=1
=3 CLID gD~ o)

This completes the proof.

2.1.2 R-L fractional derivatives

Based on the R-L fractional integral, the R-L derivative can be defined nat-
urally.

Definition 2.1.2 Let f € C and p > 0. Suppose that m is the smallest
integer greater than p and m = p+v for v € (0,1]. Then the u-th fractional
derivative of f is defined by

D*f(t)=D"[D™Vf(t)], w>0,t>0,
where D™ represents the traditional m-th derivative.

Consider the special case p = n. In this case, m = n + 1,v = 1 and by
definition

DHf(t) = D™D~ f(t)] = D" f(¢),
where the right hand side is understood in the classical sense of derivatives.
Namely, when 4 = 0,1,2, - -- are integers, the fractional derivative reduces to
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the conventional derivative. This is why it does not make confusions to use
the conventional derivative symbol D in fractional derivative. When p = n is
an integer, the condition f € C is not necessary for the existence of D™ f(t).
For example, f(t) =t~! does not belong C, however D f(t) obviously exists.
Indeed, in this situation, f(¢) has arbitrary integer-order derivatives.

To give some insight for the differences between the R-L fractional inte-
grals and the R-L fractional derivatives, we consider the following two exam-
ples.

Example 2.1.3 (Continuation of Example 2.1.1)  Consider f(t) = t*, A >
—1, obviously, f € C. Assume p > 0 and m is the smallest integer greater
than u, then by definition D*[t*] = D™[D~"t*| for v = m —u > 0. But from
Ezxzample 2.1.1, we have

F()\ + 1) t)\+u

DVt = ——2 t> 0.
F(A+v+1) L
From this, we can see that
'(A+1) '(A+1) _
DHr = L1 pmpMv — T e s,
FA+v+1) F'A—pu+1)

Comparing this example with Example 2.1.1, we see that the fractional
derivative of t* of the order y can be written in the form of a fractional inte-
gral in Example 2.1.1 by replacing the integrating order v with —u. Namely,
if D7t* represents the v-th R-L integral of t*, then the p-th R-L derivative
DHt> of t* can be expressed as D#t* = [D™V#*]|,—_,, and vice versa. How-
ever, it does not always hold for general functions in C. This is illustrated in
the following example.

Example 2.1.4 Consider f(t) = €', then by definition

; (oo} tk o0 tk71,
D'e'=D"» — = E T R—— (2.1.7)
| —
o I'k—v+1)

When v = n is a positive integer, then D"e = et, which is the correct answer.
But by definition of the R-L fractional integral,

t
D let = / eTdr = et — 1.
0

Therefore, we cannot find Det from D~ 'e! and vice versa.

The following is a generalization of Theorem 2.1.2.
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Theorem 2.1.6 (1) Suppose that f € C([0,00)) and if p = q > 0, that
DP=1f(t) exists, then

DPID™If(t)] = DP~If(¢). (2.1.8)
(2) When D™ f € C([0,00)) and 0 < k—1 < g <k, then for allt >0

p—J

k
D)= DO - Y o

_ DI £(0). (2.1.9)
p—1J)

j=1

Proof First, we prove (2.1.8). When p = ¢ =n > 1 are integers, the equality
holds obviously. Taking now k—1 < p < k and using Theorem 2.1.1, we have

D7Ff(t) = D= PDPf(t)],

and therefore

DP[ID?f(t)] = DMD~*"P[D P f(t)]} = D*[D~*f ()] = f(1).

This proves the theorem for p = ¢. For general p,q, two cases must be
considered: ¢ > p > 0and p > g > 0. When ¢ > p > 0, by Theorem 2.1.1,
we have

DP[D™1f(t)] = D{D~P[D~ P f(t)]} = D~UP) f(t) = DP9 f(1).

When p > q 0, let m,n be mtegers such that 0 < m —1 < p < m and
0<n—1<p—qg<n. Obviously, n < m. By deﬁmtlon of the R-L fractional
derivative and Theorem 2.1.1,

DP[D~f(t)] =D™{D~ " P [Df(1)]}
—D"[DP I (1)) = D D™ DY f(D)
—D"[DPIn f(1)] = DPIf (1),

Here, in the first and the second equalities, we have used Theorem 2.1.2 and
the fact that m —p > 0, m > 0 and ¢ > 0, respectively. The third step is
obvious since m and n are both integers. In the last two steps, we have used
Definition 2.1.2 for p—g—m <0, m—-n>0and p—qg—n < 0, n > 1,
respectively.

To prove (2.1.9), we first consider the case when p = ¢. By assumption
0 < k—1<p<k. From the definition of R-L fractional integral,

~2(DP £(1) 1) / (t— 7y DP f(r)dr

R0

) . (2.1.10)
=D {ﬁ(p ey /o (t —7)PDP f(r)dr| .
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The integral of {---} is given by

1 ! P NHp
7F(p+1)/0(t—7) DPf(r)dr

1 t

7T /0 (t — 7)PDF[D=*=P) f(7)]dr
“T(p —1k +1) /t(t -t

B i DF- J p - 2)_5))]|T_Otpj+1

~ DPIS0)

—p—(p—k+1) (k—p) p—j+1

-7 SN ; pr2—J)

" Drif(o

_ 1 p— ]Jrl

D ; I(p+2- J)t

where we have used Definition 2.1.2 and & — p > 0 in the first equality,
integration by parts k times in the second inequality, Definition 2.1.2 in
the third inequality and finally Theorem 2.1.2 in the last inequality. Since
DP f(t) is integrable, DP~7 f(t) is bounded at the endpoint ¢t = 0 for each
j =1,2,--- k, and hence all the terms in the above formula exist. Using
(2.1.10), if the fractional derivative DP f(t) of f(t) is integrable, then

k
tPI[DPI £(0)]
DP , (k—=1<p<k).
PDPE() ]; To—7+1) ( p<k)
When p # ¢, two cases must be considered: ¢ < p and ¢ > p. When
g < p, Theorem 2.1.1 can be applied. When ¢ > p, (2.1.8) can then be

applied. Recalling Example 2.1.3, we have in both cases

D7P[Df(t)] =DIP{D~I[Df(t)]}

—pDa>p Z (D171 (0 197
j=1 7j+1
k

—pDa>p Z (D77 £(0 p—i
j=1 _‘7+1

The proof is complete.

Comparing Theorem 2.1.6 with Theorem 2.1.2, we can see that (2.1.9)
reduces to (1) of Theorem 2.1.2 when ¢ = n and p = v + n and (2.1.8)
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reduces to (2) of Theorem 2.1.2 when ¢ = v and p = n. Comparing (2.1.8)
with (2.1.9), we can see that unless DP~7 f(0) =0 for 0 < k — 1 < p < k, the
R-L fractional derivative DP and integral D~¢ do not commute in general.
Similar to Corollary 2.1.1, the commutativity of fractional derivatives can be
considered. By definition of the fractional derivative, we have

N DnJrk o—1
DD f (1) = o) /O(t—T) J(m)dr (2.1.11)

=D"tFef(1), 0<a<l.

Denoting p = k — « leads to D"[DP f(t)] = D™*? f(t). On the other hand, by
definition of the R-L fractional integral and integration by parts, we have

D (1) :ﬁ / (t — 1)L f O (r)dr
n— lf(J)

"X TGy

Using the conclusion (1) of Theorem 2.1.6, one gets

DPIf" ()] =DPH{ D~ [f ) (1)]}

—pprtn Z f
L(j + 1

(2.1.12)

[ n—1 ; i
f9@(0)ytr—p—n
:D;!>+n _ § :

This shows that D™ and DP do not commute in general, except f (k)(()) =0,
k=0,1,--- ,n—1.

Furthermore, we can consider the commutativity of the R-L fractional
derivatives DP and D9. Assume m —1 < p <m and n — 1 < ¢ < n, then by
definition of fractional derivative and (2.1.9), we have

DPIDf(t)] =D"™{D~""P[D?f(t)]}

n D=3 f(0)tm—P=i
—Tl+m—p—j) (2.1.13)

—pm | prta—m _

" DI f(0)t=PI

__nptq _
=Dr) fi—p—J)

=0
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Similarly, there holds

m DP=If(0)t—977

a1 PP — pt+q _
DI[DP f(t)] = D" f(t) £ T —q—))

(2.1.14)

Comparing these two formulas, it can be seen that the R-L fractional deriva-
tive operators D? and DP do not commute except p = g or the summations
of (2.1.13) and (2.1.14) are zero, i.e.,

We continue to introduce the Leibniz rule for the fractional derivatives.
For this purpose, we introduce the subclass € of C. We say that f € €
if f € C has both a fractional integral and a fractional derivative of any
order. Let 7(t) be analytical in a neighborhood of the origin, the family of
functions % can be defined as the space of all functions of the form t*n(t)
and t*(Int)n(t) with A > —1. For example, polynomials, exponentials, sine
and cosine functions all belong to €.

Consider a simple case below. Assume p > 0 and n be a positive integer,
then the R-L fractional integral of t"f(¢) exists if f € C. Let m be the
smallest integer greater than p, then by definition of fractional derivative

DH[tPf(t)] = D™D £(1)].
From Example 2.1.2, we have
D=m=m[n £ (1) Z WD DRk £ (1)), (2.1.15)
We can show that if f € €, then for arbitrary [ = 0,1,2,--- , there holds
DDk f(1)] = DI f(r)

Hence, if f € €,
DI f(6)] =Y Ch_,, D™ {[D*[D™ R f(1)]}

=G Y G DT p )
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Denote r = j + k,s = k, then

D[ f( Z (Z S O ) (D7) (D7 £ (1))

=0 (2.1.16)

= Z Cu D™D f ()], > 0.

Theorem 2.1.7 Suppose that f € € and g is analytical at t for arbitrary
t €10,T]. Then for any v >0 and 0 <t < T, there holds

D}l. ch Dk D—u kf( )]

Proof The proof is similar to Theorem 2.1.5, and hence omitted.

2.1.3 Laplace transforms of R-L fractional derivatives

The Laplace transform .Z is an important tool in fractional calculus. Readers
may refer to Appendix B for the definitions and properties. The purpose of
this section is to apply Laplace transform to fractional integrals and deriva-
tives, and compare them with the conventional integrals and derivatives. Let
F(s) and G(s) are the Laplace transforms of f and g, respectively, then there
holds

t
% {/ b - T)g(T)dT} — F(s)G(s). (2.1.17)

0
Let p > 0. If f € C, then the u-th R-L fractional integral D~* f(¢) is, by

definition, a convolution of the kernel functions t*~! and f. Hence, if f is at
most exponentially increasing, then

LIDHf()] = Lt NLf ()] = sTHF(s), (2.1.18)

b
I'(w)
where F(s) is the Laplace transform of f(t).

Example 2.1.5 The following Laplace transforms hold

e Tw1)
Z[D #t]:Wa p>0,v> -1,
1
LD FeM =, > 0,
[D™He™] se-a "
1
LD cosat] = > 0.

sh=1(s2 + a2)’
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Compare the Laplace transforms of the following two case. In the first
case, we first take the R-L fractional order derivative and then the conven-
tional derivative, while in the second case, we first take the conventional
derivative and then the R-L fractional derivative. Let f € C([0,00)) and
Df € C grow at most exponentially, then using (2.1.18) and the properties
of Laplace transform, we have for u > 0

L{DHDFB)]} = s LIDF()] = s~ [sF(s) — £(0)], (2.1.19)

while using Theorem 2.1.2, we have

LD O]} =2 D HDSON) + 2 [0

=s""[sF(s) = f(0)] +s7"[(0)
=s'"FF(s). (2.1.20)

This shows that the Laplace transforms in the two cases are different. Fur-
thermore, when p — 0, the right term of (2.1.19) tends to sF(s) — f(0),

while the right term of (2.1.20) tends to sF(s). The underlying reason may

thl
be that lim,_,o m =0, but lim, 0. [t”_l/l"(p)] = 1. This shows that
I

the Laplace transform .# and the limit operator lim do not commute. Further
distinguishes can be seen in forthcoming chapters and sections.

Now, consider the Laplace transform of the R-L fractional derivative. Let
f € € be of the form

FO) =t ant" or tM(Int) Y ant", A> -1
n=0 n=0

For simplicity, we only consider f(t) = t*n(t). By definition, we have

Fn+A+1)

DEF) =Y an
=AM+ A+ 1)

If f grows at most exponentially, the Laplace transform F'(s) exists and can

be written as

1 o0
F(s) = presy Z apL'(n+ A+ 1)s7™

n=0
Moreover, if A — 1 > —1, then the Laplace transform of D* f(t) exists and
L T(n+A+1)
LD O] =) it

n=0
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Comparing these two formulas, one can see that Z[D" f(t)] = s*F(s) for
i< A+ 1. When u < 0, it reduces to the R-L fractional integral (refer to
(2.1.18)). When g > 0, let m be the smallest integer greater than y, then
w—m < 0. If f € €, by definition of the R-L fractional derivative, D f(t) =
D™[D~(m=#) £(t)] exists. Using the properties of Laplace transform, we have

LID* ()] =Z{D™ D~ "M f (1))}

-1

3

2D (0] = 3 DD o]

(]

k=0
m—1
=s"[s~ ("M E(s)] = Y s HTIDE M £(0)
k=0
m—1
=s"F(s) = Y s DR £ (0),
k=0

where m — 1 < p < m. This is the Laplace transform of the R-L fractional
derivative. By comparing this formula to (2.1.18), we can see the differ-
ences and similarities between the R-L fractional integrals and R-L fractional
derivatives. In particular, we can compare the fractional order case with the
integer order case. When p is an integer, this reduces to the situation of
integer order case.

2.1.4 Caputo’s definitions of fractional derivatives

Caputo’s fractional derivative is another method for computing fractional
derivatives. It was introduced by M. Caputo in his paper [35]. See also
[35,36,78,79]. The u-th Caputo’ fractional derivative of f is defined by

¢ (n)
CDIF(t) = r(nl_ m /a e ;fT>§:)1_ndT, (n—1<p<n). (21.21)
Here, we denote the Caputo’s fractional derivative by ng to distinguish it
from the R-L fractional derivative. Without confusions, the R-L fractional
derivative is still denoted by D. When a = 0, the u-th Caputo’s fractional
derivative is simplified as “D*. The obvious difference between the R-L frac-
tional derivative and the Caputo’s fractional derivative is the order of differ-
entiation. In the R-L fractional derivative, it first takes the fractional order
and then the integer order conventional derivative, while in the Caputo’s
fractional derivative, it first takes the integer order conventional derivative
and then the fractional order derivative.

First, we observe that when p — n, the Caputo’s fractional derivative
reduces to the n-the derivative in the classical sense. Indeed, assume that
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0<n—1<pu<nand fisan+1 times continuously differentiable function
in [0, 7], then by definition and integration by parts, we have

() ((ygn—n t (g _ oyn—p p(nt1) (o
“DRf() = If(n EO;)LZ 1) +/ ! r(; — ;f+ 1)( Lar.

By dominated convergence, taking p — n then yields

lim © D f(1) = /fM” P O, n=1,2,-
n—n

This shows that, similar to the R-L approaches, the Caputo approach also
provides an interpolation between the integer order derivatives.

Now, we make a simple comparison between the Riemann-Liouville frac-
tional derivative and the Caputo’s fractional derivative. The R-L fractional
derivative and Caputo’s fractional derivative can both be expressed by the
R-L fractional integrals. The v-th R-L fractional integral can be written as

_y 1 Eof(r)dr ,
D10 =505 ), Gy ¥>O

By R-L fractional integral D™", the R-L fractional derivative can be written

as

FDLIO =y | i = gl A

for v =n — p > 0. Similarly, for v = n — u > 0, by the R-L integral D™",
the Caputo’s fractional derivative can be written as

0110 =ps [ L = o [ ).

Therefore, the R-L fractional derivative takes a fractional integral first and

then integer order derivatives, while the Caputo fractional derivative takes
an integer order derivative first and then fractional integral. They are related

by
n—1 k—

BLDL (1) = §DYF(1) +Zir S

fort > 0 and u € (n—1,n]. The right hand side is equivalent to the Grunwald-

F%0),

Letnikov definition of fractional derivative, which requires that the function
f(t) be n times continuously differentiable. But the Riemann-Liouville def-

inition provides an excellent opportunity to weaken the conditions on the
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function f(¢). It is enough to require that f(¢) is integrable, then (2.1.2)
exists for all t > 0 and can be differentiated &k times.

Although the R-L fractional derivative weakens the conditions on the
function f(t), Caputo’s fractional derivatives are more widely used in initial
values problems of differential equations and have stronger physical inter-
pretations. This can be illustrated via the Laplace transform. The Laplace
transform of the R-L fractional derivative is from the last section

LD A0)] (3) = S F ()~ S DI o8-, (212)
k=0

Hence in general, to solve a initial value problem of a fractional differen-
tial equation, we have to know the fractional initial conditions (§LD}' —het
F@&)|t=0, k=0,--- ,;n—1of f(¢). Although the initial value problems with
such fractional initial conditions can be solved mathematically, their solu-
tions are practically useless, since there is no known physical interpretation
for such types of initial conditions. For a specific physical system, the initial
conditions are the measurable conditions of a system but not the fractional
derivative conditions. On the other hand, the Laplace transform of the Ca-

puto’s fractional derivative is (cf. [35])

n—1

ZISDY F(1)](s) = s"F(s) Zs” F=L(DF £(t))]e=0- (2.1.23)

To solve an initial value problem of the Caputo type, like the integer order dif-
ferential equations, only initial values of integer order derivatives of unknown
functions at the initial time required. The Caputo fractional derivative can
better reconcile the well-established and polished mathematical theory with
practical needs.

2.1.5 Weyl’s definition for fractional derivatives

The Weyl fractional calculus was first introduced by Weyl in [219]. Let f be
of the Schwartz class, the pu-th Weyl fractional integral of f is defined as

W Hf(t) = 1 ] /OO(T — t)“ilf(T)dT, Rep > 0,t > 0. (2.1.24)

IN(Z
Usually, we use to W* to simplify ;W_*. Let 7 =t + ¢, then

1

W= f(t) = )

/O 1 f (4 €)de,
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and hence
—v 1 >~ v—1
Diw f@N=D[/ié' Jt+ €
o e e e

‘r@)A €7Dt + )
=W DS,

Similarly, for a general positive integer n, one obtains

DMWY f(t)] = WY[D™f(1)]. (2.1.25)

Now we consider the composition of two Weyl integral operators. If f is

rapidly decreasing, then W~# f(t) is also rapidly decreasing, hence for any
arbitrary v > 0

W W f(1)] :ﬁw—u { /f T f(T)dT}

=ﬁ5ﬁ5lm@—wwwamv—akvvm{.

By definition of the Beta function, we have
B(p,v) / °° -
WV W Hf ’ T — )P (r)dr
W) =g [ e
yielding that
WrW R = k), (2.1.26)
The Weyl fractional derivative is defined by the Weyl fractional integral,

just like the R-L fractional derivative is defined from the R-L fractional in-
tegral. Let L = —D, then (2.1.25) can be written as

L"W™" =W"L". (2.1.27)

For a rapidly decreasing function f, by integration by parts and (2.1.27), we
have
1

:TM) /too('r — t)'uilf(T)dT
WU L (1)

=L" W) f(¢)].

W=rf(t)

Applying the operator L™ at both sides then yields
LMW ()] = L™ W =) £ (1)), (2.1.28)
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Definition 2.1.3 Let > 0 and n = [u] + 1 be the smallest integer greater
than p. Denote v =n — u, assume the —v-th Weyl integral of the function f
exists and is n-times continuously differentiable, then the p-th Weyl derivative
of f is defined as

WHEE() = LMW~ =1 £ (1)]. (2.1.29)

Example 2.1.6 We give two examples here.

1. Let u > 0 and a > 0, then by definition, we have W ~Fe~% = g~ Fe 9,
Let n = [pu] + 1 be the smallest integer greater than p and v =n — u. First,
by definition of the Gamma function

1 oo
W*Vefat :F(V) / (7_ o t)uflefa‘rd,]_
t

:a_”e_‘“F(v)/ t'le~tdt
0

The result then follows from (2.1.29).

2. Let A > v > 0, then by definition of the Weyl integral, definition of the
Beta function, change of variable and B(v,\ —v) = T'(v)['(A — v) /T (XN), we
then have W—vt=* = (A — v)t*=*/T'(\). Let n be such that 0 < n — u < A,
then by (2.1.29), the u-th Weyl derivative of t=> is given by

WHt= = LMW~ =2 = DA + p)t =2 /T(N).

Proposition 2.1.1  For any arbitrary u, there holds W= HWH = 1T =
WHEW —#.,

Proof First, when p = n is a positive integer, by integration by parts n-times,
we have

WL O] = g [ (=" T = £,

yielding the result. More generally, let n = [u] + 1 be the smallest positive
integer greater than p. Using (2.1.26), we know

WH[W=RF(t)] =L W~ =0 [W=r f(1)]}
=L "W f(t)]
=f().
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Similarly, by definition, (2.1.29), (2.1.27) and (2.1.26), we have
W W F)] =W LW e ()]
=L W f )|

=L" [ f(1)]
=1(0).

This completes the proof.

Similarly to (2.1.26), we can prove the law of exponents of the Weyl
fractional derivative. We shall define W° = I, the identity operator.

Proposition 2.1.2 Let p and v be real numbers, then the Weyl fractional
derivative satisfies the following exponential relation

WHWY = WHtv,
Proof The proof is omitted.

Finally, we consider the Leibniz rule of the Weyl fractional integral. To
illustrate, we first consider W—#{¢" f(¢t)} and note

=t —t)+1¢" ZCk Y=k,
Therefore,

Wor[en £ (1) Lickt" k/m — Y — 1) f(r)dr
k=

L'(p)

:En: F( )thnfkwfp,fkf(t)
= T

_ - F( ) kyn —p—k

By using the generalized binomial formula, we then arrive at the more familiar
form

THET()] = CF LR W ER F()]. (2.1.30)
k=0

More generally, similarly to Theorem 2.1.5, we have
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Theorem 2.1.8 Let f and g are two rapidly decreasing functions, and g is
an entire function, then for arbitrary p > 0,

oo

WH[f(t)g(D)] = Y CF [LF @)W * (1)),

k=0

Proof The proof is omitted for simplicity.

2.2 Fractional Laplacian

As is well known, the standard Laplace operator (Laplacian) A = 8%1 + 4
02 , in a d-dimensional domain possess an explanation in terms of the dif-
fusion and Brownian motion. This explanation has enormous success both
in Mathematics and Physics. In recent years, there has been a plenty of
work on anomalous diffusion, with standard Laplace operator replaced by the
so-called fractional Laplace operator, with the aim of extending the diffusion
theory by taking into account the long range interactions. As we will see,
such a Laplacian is non-local and do not act by pointwise differentiation but
by a global integration with respect to a singular kernel. This section consists
of the definition and basic properties of the fractional Laplacian, pseudodif-
ferential operator, Riesz and Bessel potentials and fractional Sobolev spaces,
and finally commutator estimates for the fractional Laplacian. These are
very fundamental topics in analysis and partial differential equations with
fractional Laplcian.

2.2.1 Definition and properties

Let f € S(R?) be a function in the Schwartz class, then —Af = F~1(|£]2Fu).
The (—A)*/2f can be defined naturally via Fourier transform

(“A)72f(€) = €] £(£).

The fractional Laplacian on a torus can be similarly defined. The interest in
these fractional Laplacian operators has a long history in probability since
the fractional Laplacian (—A)* for a € (0,2) are infinitesimal generators
of stable Lévy processes. Indeed, let X = {X; : t > 0,P,,z € R} be a
rotational invariant a-stable process in R%, then X is a Lévy process, and
for arbitrary z € R? and ¢ € RY, E, [eif'(xt’XO)] = ¢ "l". For such a
process, the generator is —(—A)“, and can be represented by

fly) — f(=)

a/2 :
— (~A)*2(x) = caulim o g

im dy, (2.2.1)

ly—z|>e
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207 1al((d + «)/2)
/2T (1 — a/2)
of variable, this is equivalent to

where ¢cg.o = is a normalization constant. By a change

flz+y)+ flx—y) —2f(x)

|y|d+a

—(=A)*2 f(z) = %cd,a lim

dy.
el0 y

ly—z|>e

This formula is very useful in studying local properties of equations involv-
ing the fractional Laplacian and regularity for critical semilinear problems.
When o € (0,2), the operators (—A)~%/2 is defined to be the inverse of
(—A)®/? and are given by the standard convolution

(—A)"2f(x) = c4,—a /Rd |z — y| = f(y)dy, (2.2.2)

_ I((d=-a)/2)
nd/220T (o /2)
In what follows, we consider some properties of the fractional Laplacian,

in terms of the Riesz potential, where cq,_o

which proves very useful in partial differential equations. For notational
simplicity, we denote A = (—A)z and hence A® = (—A)*/2. The following
discussion is based on R? or T2, but can be extended to R? or T¢ without
essential difficulties. First we prove (2.2.1) from the Riesz potential (2.2.2).
The following several theorems are modified from [58].

Proposition 2.2.1 Let 0 < a < 2,2 € R?, and f € S is a function in the
Schwartz class, then

f(x) = fy)

A f(x) = co P.V.
(@) r2 |z —y[*t

dy, (2.2.3)

where ¢, > 0 is a constant.

Proof By definition of the Riesz’s potential, A® can be expressed

A o) AP =eo [ 2204

o, [ DU SO,
« R2

|z —yl*
= lim ca/ Aylf (@) = Wl
lz—y|>e

e—0 |x — y|0‘

=: lim ¢, A%0
e—0 atte ™
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rz)
n22-aT (1 - %)

A F ) o, /| f@) = 1),

r—y|>e |.13 - y|2+a

where ¢, = By Green’s formula, we have

1
|z —y|*

o[ e - s tas,
- L 0@ - fw)
|

r—y|=¢ |‘T - y|a on

=11 + 1> + I,

where ¢, > 0 is a constant and n is the unit external normal vector. When
e — 0,

1 —
B wd% = 0(e>) =0,
|z—y|=¢ n

and I; is what we want, yielding the result.

Proposition 2.2.2 Let 0 < a < 2, x € T? and f € S be a Schwartz
function, then

(y)
Af(x)=¢c E PV/ —dy7 2.2.4
* kez? 2 |{E —Yy- k|2+a ( )
where ¢, > 0 is a constant.

Proof From the definition,

= YRR = = D7 (R AT (k).

|k|>0 |E|>0

Let x € C* be a truncated function

and @ (x) = e 2p(Z) be a standard approximation of the identity with

0<p<C®, suppy C By and /<p:1,
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Let ®.(z) = (|2|*"2)c * -(2), where (|z|*2)c = |2|* 2 % x (|I|>, then
€

Af(z) =— hm Z D ( el

=_ iﬂ% (Z o (k e‘k‘””) * (Z E\f(k)eik'z) .

Taking Poisson summation then yields

ACf :—hm(sz v —k >*Af()

e—0
22%231;54x—y—MAU@»—NMMy
= lim (x —y=k)(f(2) - f(y))dy. (2.2.5)

Noting

. () =([2]°2)c(n) - B-(n) = ([21°2)(n) - Blen),

AB. (1) =A(([z]2=2).) () - Flen) + Oe),
(‘m)s(n) :W — /e*in'$|x|a72

there exists § > 0 such that

%:A(‘T’ (y—k) CQZW <Z|y rzve Y )>-

Substituting this formula into (2.2.5) completes the proof.

The positive property is often useful in PDEs, which was firstly presented
by A. Cordoba and D. Cordoba [58], and then extended to the general situa-
tion by Ju [120]. See also [57]. First consider the Laplacian A = (82 + 92))
in R?, using the chain rule, we obtain

A(f?) —2fAf =2|Vf]* >0, (2.2.6)
which can also be rewritten in the following form
2f(=A)f = (=A)(f*()).

This pointwise positivity plays an important role in a priori estimates of
PDEs, and is often essential. The results derived from Cordoba-Cordoba
and Ju extend (2.2.6) to fractional Laplacian.



60 Chapter 2 Fractional Calculus and Fractional Differential Equations

Lemma 2.2.1 Let0 < a <2,z € R? or T? and f € S be a Schwartz
function, then there holds the following pointwise estimate

2fA" f(x) = A (f?)(2). (2.2.7)
Proof From Proposition 2.2.1, we have

2(z) - x
278 f(2) <2e,PV. [ U (|;Z_f|(3+)§ @,

_ f(y)]
CaPV/ |o¢+2 d +CaPV/Wdy

>AY(
This completes the proof.

Proposition 2.2.3 Let 0 < a < 2, z € R? or T? and f,A*f € LP for
p = 2", then there holds

/Ifl” 2fACfdz > — /IA (f%)[da. (2.2.8)

Proof The situations for &« = 0 and o = 2 obviously hold. When 0 <
a < 2, repeatedly using (2.2.7), we have

[1s72pnepan =5 [ 1200 rae = 5 [ 1577200

1 , o
>Z/|f|p_4Aaf4dx>“'> W/lfl2 A da

Using the Parseval’s identity, one completes the proof.

Because of the restriction p = 2", this theorem can not be well applied to
many situations. To generalize this result to arbitrary p > 2, we first prove
the following lemma, which can be regarded as a generalization of Lemma
2.2.1. See [120].

Lemma 2.2.2 Assume « € [0,2], 84+ 1>0 and f € S, then there holds

1

z g M z)|?*2. (2.2.9)

|f(@)” f(2)A f () >

Proof We consider the case a € (0,2). Similar to the proof of Lemma
2.2.1, by the Riesz potential, we have

a [z
A - aPV/ |2+0¢ y?
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which yields

842 | ()18
£(@)]? f(@) A f(z) = caP.V./ /(@) " |fy(|y2ﬁaf(x)f(y) dy.  (2.2.10)
When 8+ 1 > 0, by using the Young’s inequality,
FOP1@I0) < @10 < Ty @ + S0P,

hence

(@) f(@)A* f(2) Zca

1 @I~ 1))
R ey

_ 1 @ B
=A@,

When S+ 1 =0, directly estimating (2.2.10) yields the conclusion.

Remark 2.2.1 When a € [0,2], 8,7 >0, if f € S and f > 0, then there
holds the pointwise estimate

AN () > ﬁz\aﬂjﬂ(m). (2.2.11)

Theorem 2.2.1 Let a € [0,2] and f,A*f € LP, then for any arbitrary
p = 2, there holds

/If\p*QfA“fdw %/(A%mg)de.

Proof When a =0 or a = 2, and p = 2, the theorem obviously holds.
Let p > 2 and « € (0,2), and assume f € S. Let 8 = g —1, then 5 +1 >0,

using the lemma above, we obtain
J15@P 2@ s@ys = [ 1@ 7@ @A )
2 P P
> Z 2 A% 2
> [ 2r@lEai ) s
2 o . 2\?
= / (A%171%) az.
The proof is complete.

These estimates can be developed for complex functions, which are very
useful for complex partial differential equations, such as Ginzburg-landau
equation and nonlinear Schrodinger equation.
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Proposition 2.2.4 Let « € [0,2] and f € S be complex, then there holds
the following pointwise estimate

Fr@)A“f (@) + f(2)A f*(2) = A f*(2).
Proof We only consider the case a € (0,2). From the definition, we have
A“f(z) = co P.V. Mdy, (2.2.12)
Ra |z —ylte
hence
@) A" f(z) + f(2)A 7 (2)
oo 2y, [ UL () - S I,
Rd.

|z — y|ite Yy

2 2
Seo PV, |f(@)]" = |f(y)l q
Re |7 —ylite

=AY f* ()
Moreover, this theorem obviously holds for o = 0, 2.

Proposition 2.2.5 Let a € [0,2], B+1 >0 and f € S, then there holds
the pointwise estimate

[f@)P(F*(@)Af (2) + f@)A () > = A% (@)

B +2
Proof Using (2.2.12) and the Young’s inequality

B+1
B+2

L rwye

B+2
@I+ 5

|f(@)|7 f*(2) f(y) <
one obtains

()P (f* (2) A F () + f2) A% f* ()
.4QRV/m2“®W””ﬁﬂ@ﬁﬁ“@ﬂ@+f@ﬁﬂwh

B Rd |z —yldte Y
2 B+2 _ B+2
o2y [ Mg,
B + 2 R |z — yldte
Aa B+2
— AP ).

When o = 0,2 or g = 0, the conclusion obviously holds.

Lemma 2.2.3 Let « €[0,2],p > 2, f,A*f € LP, then

t/m“%ﬁNﬁ+ﬁWme>%/Mﬂﬂ%%w
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Proof When p > 2 and a € (0,2),
J1s@I2eans + a0 pyde = [ 1@l 175240 + A% )da
4 2oy
>0 [ 1@l Al @)
_2 [(as 518y
— [ aatiEra
For a = 0,2 or p = 2, the theorem obviously holds.

2.2.2 Pseudo-differential operator

The research of pseudo-differential operators (PsDO) started with the work
of Kohn and Nirenberg in 1960s, cf. [127]. Before this, the work on PsDO
focused on singular integral and Fourier analysis; after this, the PsDO are
widely popularized, among which, Hérmander’s work is striking. At present,
the theory of PsDO becomes a powerful tool in partial differential equations
with variable coefficients and distributions of singularity set, especially in the
field of PDEs. This section simply introduces some concepts and properties
of PsDO. For more details, readers are referred to monographs [9,85,113,114,
186,204, 212].

The function a € C'*° is called a slowly increasing function, if there holds

Va € (N)4,3M, € N,3C, > 0,s5.t.|0%(x)| < Co(1l + |2V, V2 € R™

For a slowly increasing function a(¢), define the operator a(D) in S’(R%) by
(a(D)u) (&) = a(&)a(§), where a(§) is called the symbol of the operator a(D).
Using the Fourier transform, for v € S, one gets

(@(D)(a) = gz [ e Cal)ie)ic

Taking into account the inverse Fourier transform, one can see that, at the
frequency &, the effect of a(D) is multiplying the complex amplitude @(€) by
the coefficient a(&) in the phase space. More generally, one can generalize a(&)
to a function a(z, ) depending on z, and leads to the following definition.

Definition 2.2.1 The PsDO is defined as a mapping u — Tyu by the
following

(Ta)(e) = ale. Dyute) = g [ Sateite)ds,  213)

where

a(§) = /Rd u(z)e @S da
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is the Fourier transform of u and a(x,§) is called the symbol of the operator
a(z, D).

For the definition above, generally, some additional conditions should be
included for a(z, £), which leads to the definition of the symbol class, denoted
by S™.

Definition 2.2.2 Letm € R, a function a belongs to S™ and is said to be of
order m, if a(x,&) € C°(R? x R?) and satisfies the differential inequalities

1050¢ a(w,€)] < Cap(1 + €)™ 17, (2.2.14)
for all multi-indices o and 3. Define S~ =, S™.

Remark 2.2.2 We can also define a more general symbol class Sg?(;, Let
p,0€0,1],meR, Sy is defined as the set of functions C™ satisfying

10507 a(w, €)] < Ca,p(E)em PO,
for all multi-indices o and B, where (€) = (1 + |€]?)1/2.

Example 2.2.1 1. The symbol of the Laplacian operator A = 93 + - - - + 93
is a(§) = —¢I*;
2. The symbol of the fractional Laplacian operator (—A)*/? is a(€) = |€|*;

3. The symbol of partial differential operator L = Z ao ()OS for aq €
la|<m
C>(RY) is a(x, &) = Z aq(z)(i)”, and a is called a differential symbol.
lae|<m
4. If p € S, then p(§) € S™°;
5. The function a(x,&) = ¢ is not a symbol.

It is easy to see that the symbol of the differential operator L is the char-
acteristic polynomials of L. In particular, if a(z, &) = a1(§) does not depend
on z, then a(z, D) = a(D) is a multiplier operator @(f) =a1(§u(g). It
a(z,&) = az(x) does not depend on &, then a(x, D) is reduced to a multipli-
cation operator (az(z, D)u)(z) = az(z)u(z).

For a given symbol a € §™, it is not difficult to show that the operator
T, maps S to itself. Firstly, if u € S, then the integral (2.2.13) is absolutely
convergent, and T,u is infinitely differentiable. In fact, T,u is also rapidly
decreasing. Noting that (I — Ag)e®® = (1 + |z|?)el”, one can define an
invariant derivative operator L¢ = (1+|z|?) 71 (I —A¢) such that (L¢)Nel® ¢ =
el”¢. Substituting this formula into (2.2.13), and integrating by parts, we
have

(Tou)(x) = @ / (L) a(x, £)i(€)]e™.
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Hence Tyu is rapidly decreasing. From this, one can show that T, maps S to
itself, and the mapping is continuous. Indeed, if {a;} satisfies the inequality
(2.2.14) uniformly and is pointwise convergent to the symbol a € S™ in S™,
then Ty, (u) — To(u) is convergent in S, where u € S.

We also hope that T, can be extended to more wide function class §’.
The definition (2.2.13) can be rewritten in the following form

(Tyu)(z ) // a(z, £)eS Ty (y)dyde. (2.2.15)

However, even if f € S, this integral is not necessarily absolutely convergent.
To avoid such a situation, we can use symbols with compact support to
approximate a general symbol. Fix v € C°(R? x R%), and 7(0,0) = 1. Let
as(x,&) = a(x,&)y(ex,ef), then if a € S™, we have a. € S™ and satisfies
the inequality (2.2.14) uniformly for 0 < € < 1. On the other hand, from
the definition of T,u, Ty, (u) = T,(u) in S as ¢ — 0 for arbitrary u € S,
denoted by T,. — T,. In this case, for the symbol a with compact support,
the integral (2.2.15) is absolutely convergent, and

(Tou)(z) = lim Ld // ac(z, €)e® @Yy (y)dyde.

e—0 (23‘[)

Consider the integral expression of a PsDO. The purpose is to derive the
kernel function of a PsDO. First assume a € S™°°, one obtains for u € §

(Tou)(z // (2, €)' CVu(y)dyde

_W [ty [ e ategae.

The kernel function K of the operator T, can then be given by the following
oscillatory integral

K(e.y) = gz [ 0 ale. € = (7)o =),

where }"g ! represents the inverse Fourier transform with respect to £&. K (z,9)
is called the Schwartz kernel of the operator T, = a(x, D).

Proposition 2.2.6 K(z,y) is smooth away from the diagonal A = {(x,y) €
R? x R?: 2 =y} and

|K (2, y)| < Axl|z —y| 7V, Y|z —y| > 1,YN > 0. (2.2.16)
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Proof For any arbitrary a > 0,

(& —y)° K (z,y) = / €9 D2, €)de,

1
(2m)4
where D* = D" --- Dy, D; = —i0,,. From the definition of the symbol
class S™, we can see that when |a] > m + d, this integral is absolutely
convergent, hence (z—y)* K is continuous. Similarly, evaluate j-th derivative
of the formula above, as long as || > m + j + d, and then the integral is
absolutely convergent, and (z —y)*K € C7(R% x R%). Simultaneously, there
exists a constant A, > 0 such that |z —y|*| K (z—y)| < A, where |a] > m+d.
In particular, (2.2.16) holds.

For a operator A mapping S to itself, we can define an operator A*
mapping S to itself, such that (Au,v) = (u, A*v) for all u,v € S. By density
argument, one can see that if A* exists, then it is unique. Such an operator
A* is called the adjoint operator of A. In the situation of the PsDO defined
by (2.2.13), the dual operator of T, can be defined as the operator T such
that

(Tou,v) = (u, T)v), Vu,v€S. (2.2.17)

Noting that (u,v) = [u(z)v(z)dz, one immediately has

(Trv)(y) = lim (Q%V//aa(x,é)ei(ygc)'gv(:r)dxdf.

e—0

Using the invariant derivative, it is not difficult to verify T, maps S to itself.
Hence, using the duality (2.2.17), one can extend T, to a continuous mapping
which maps &’ to itself S'.

The boundness estimate of operators is a key problem in the theory of
PDEs, many important results of which ultimately attribute to the boundness
of an operator in a certain norm.

Theorem 2.2.2 Let a € S°, then the PsDO T, = a(x, D) satisfies
ITe(w)|lze < Allullrz, VYueS. (2.2.18)
Hence T, can be extended to a bound operator mapping L? to itself.

Proof The proof is divided into three steps. First, assume a(z, ) is compactly
supported in z. Integrating by parts yields

(V406 = [ a%a(e,&)e ™ da
R4
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and |(i\)¥a(A, €)| < Cq uniformly in €. Therefore for arbitrary N > 0,

sup la(\, )] < An(1+ |A\)~N. (2.2.19)
On the other hand,
(Taw)@) =) [ ae. e a(e)de
=(2m) "% / / a(\, €)eM el S g (g)dde
= [@w@ax

where (T*u)(z) = (27) =% (T (x e )u)(x). For a fixed A, Ty(y¢) is a multi-
plier operator, yielding from the Plancherel’s theorem

1 Targyullzz < Sgpld(Avéﬂ allz> = (27T)d5151p|&(/\75)| ull2-

Using (2.2.19), we have ||T?|| < (2n)?An (1 +|A\))~N. From T, = /T)‘d)\,
letting N > d yields

ITull < Ax /(1 L ADNdA < oo

Secondly, we show the following auxiliary conclusion. For arbitrary xzg €
R4,

2
Tou)(z)|*de < A / %dx, VN >0. (2.2.20
/Hogl( 2 N Jra (T+ [ = zo])¥ ( )

Let zo = 0 and B(r) = B(0,r) be the ball of radius r, centered at the
origin in R?. Decompose u = u; + ug such that supp(u;) C B(3) and
supp(ug) C B(2)¢, for smooth functions w1 and ug with |uq], |us| < |u|. Fix
n € C such that n = 1 in B(1), then nT,(u1) = Tya(u1) in B(1) and
n(z)a(z,§) has compact support in x. Using the results of the first step, one
has

/ | Ty |? g/ |Taur* < A/ lui|® < A/ |ul|?. (2.2.21)
B(1) Rd R4 B(3)

For us, using the Schwartz kernel to obtain

(Taug)(z) = K (z,y)uz(y)dy.
B(2)°
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When z € B(1), we have |z — y| > 1 for y € B(2)° and hence there exists a
constant such that |z — y| > ¢(1 + |y|). Using Proposition 2.2.6, we obtain

|(Tous)(x \<A/ Yllz —y|~ Ndy
<Ay / () |(1 + [y) N dy.

Letting N > n and using the Schwartz’s inequality to obtain

|u(z)[”
/B<1> |(Tauz)(z)Pde < A/de. (2.2.22)

Combining (2.2.21) and (2.2.22), (2.2.20) holds when zy = 0.

When z¢ # 0, let 7, be the translation operator such that (7u)(x) =
u(z—h) for h € R Then it is easy to verify 7,T,7_ = T, , where ap(z, &) =
a(x — h,&). Since ap, and a satisfy the same estimate in (2.2.14) independent
of h, (2.2.20) also holds for aj, independent of h. Setting h = z, we see that
(2.2.20) holds and the coefficient Ay is independent of xg.

Finally, we prove (2.2.18) without assuming that a(z, §) is compactly sup-
ported in x. Integrating (2.2.20) in R? with respective to 2o and exchanging
the orders of integration, one obtains

1 T, 2 < Allul?
) [ 1@ e < a ([ MO0 drdr < A

[Taullz2 < Allul| L2,

ie.,

completing the proof of the theorem.
Theorem 2.2.3 Ifa; € S™,ay € S™2, then there exists a symbol b €

1
Smatmz gych that Ty = Ty, 0 Ty,, and b ~ E |a€ala§a2'
a!

The proof is omitted here. After a simple calculation, b can be given by
([212, Vol.I1))

b(z,€) = (2ﬂ)’d/e’i(“y)“’")al(x,n)az(y,é)dydn

From the boundness of S? in L2, it is easy to show

Corollary 2.2.1 Let a € S™, then T, = a(x, D) : H*(R?) — H*~™(R%)
defined by a is a bounded linear operator.
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Proof By definition, the symbol of J™ = (I — A)™™/? is (£)e™™ € S~™ and
J™ . H¥(RY) — H* ™(R?) is a bounded linear operator. By symbolic
calculus, there exists b € S° such that T, = T, 0o J™ : H*™™ — H* ™ is a
bounded linear operator. Hence T, =T, 0 J~™ : H® — H®*~™ is a bounded
linear operator.

From the theory of singular integral, the following conclusions can be
drawn, cf. [204,212].

Theorem 2.2.4 Let a € S°, then T, can be extended to a bounded linear
operator from LP(1 < p < o0) to itself. Similarly, if a € S™, then T,
WP — WS=™P 4s a bounded linear operator.

Theorem 2.2.5 Let 0 € C°(R% x R? — (0,0)) satisfy

10800 (& m)| < Cap(€] + In) =110 v(g,m) # (0,0), 0,8 € (ZF)".
(2.2.23)

Let o(D) be the following bilinear operator

o(D)(a, h)(x) = / / &) (€ )a()h(n)dédn,

then
|o(D)(a, h)|2 < Clla]|sol[h]l2-

Remark 2.2.3 For the proof of this theorem, readers can refer to [48, p.154].
The result can also be generalized to LP(1 < p < 00), see the literature [62,
p.382]. Indeed, they verified that when a(-) is fized, the linear operator T(-)=
o(D)(a,-) is a Calderon-Zygmund operator, and the norm can be bounded
by Cllal|eo- In this theorem, we onlyneed to assume (2.2.23) for |al, |5 <k,
where k only depends on m, q. Without loss of generality, we can assume k>=m.

2.2.3 Riesz potential and Bessel potential

Both Riesz potential and Bessel potential are often used in PDEs. For the
sake of completeness, we simply introduce Riesz potential and Bessel poten-
tial in the case of R?, for the further discussion, One can refer to Stein’s
monograph [203] and Miao’s monograph [59]. Denote Zy; = (—A)~z and
Ja=(I—A)%.

Definition 2.2.3 The Riesz potential of f can be defined as

I3 = (8)E @) = = [ o= s 0> a0, (2224

o) =azer (5) m (5 5)-

where
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The Bessel potential of f can be defined as
Tif=I—-D)"2f(@)=GCGaxf= | Galz—yflydy, a>0,
R

where ) ) - 46
- - - —n|x|?/5 ,—8/(4m) s =F GO
o) = Gyt J, ¢TI

Theorem 2.2.6 Let 0 < a < d, then
1. for any arbitrary ¢ € S(R?), we have

/ 2]~ G@)de = / () (2m]])~ B()d.

Namely, in the sense of S', F(|z|~4+) = y(a)(2m) ~%|x|~*
2. for any arbitrary f,g € S(R?), then

/ 79(f)a(x)de = / (2nla)) @ f(2)(x)d.
Rd Rd

Namely in the sense of S’, Z/da\f(x) = (2n) |z~ f(z).
From the theorem, the following two further identities can be obtained,
which reflect essential properties of the Riesz operator IJ,

IG(IE ) =1%Pf, VfeS a>0,8>0a+f<d,
A(ZGN) =T3(Af) = =Z5%(f), VfeSd>32<a<d

Theorem 2.2.7 Let0<a<d,1<p<qg<oo,1l/q=1/p—a/d, then
1. if f € LP(RY), then the integral defined by (2.2.24) is absolutely con-
vergent for a.e. x € R?,
2. if 1 < p, then
125 (Dlly < Cral F (2.2.25)

3. if f € LYRY), then m{z : |I3| > A} < (Cl‘flll)q holds for any

arbitrary A > 0. Namely I3 is of weak type (1,q).

The condition 1/¢ = 1/p — «/d can be obtained by scaling, the treatment
can be referred to Appendix A. In fact, if (2.2.25) holds for f, then this
formula also holds for g(x) = f(z/d) and

1Z3 (91l < Cpqllgllp- (2.2.26)
However, in this case

lglly = 0% 1 fllps 128 (9)llg = 8°T = IZG (£)llg,

hence the necessary condition for (2.2.26) is 1/q = 1/p— «/d. The inequality
(2.2.25) is also called the Hardy-Littlewood-Sobolev (HLS) inequality [204].
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2.2.4 Fractional Sobolev space

Let Q C R? be a smooth domain of R%, define the Sobolev norm || - ||, as
follows. When 1 < p < oo, we define

1/p
[ullmp = | D Dl
0<|al<m
and when p = oo, we define
[ullm,co :=  max [|D%ul|co,
o<|al<m

where m is a positive integer and ||ul|, is the L? norm of u. For arbitrary
positive integer m and 1 < p < oo, WP is defined by

WmP(Q) ={u e LP(Q) : D € LP(Q),V 0 < |a|] < m}, (2.2.27)

where D represents the weak derivative. The space W™ P is a Banach space
under the norm || - ||, When p = 2, W™P is a separable Hilbert space
under the inner product

(U, V) = Z (D%u, D*v),

0<|al<m

where (u,v) := / u(x)v(z)dx is the inner product on L?(Q).

Another approach to introduce Sobolev space is to consider the com-
pleteness of the class of smooth functions under certain norm. For arbitrary
positive integer m and 1 < p < oo, define H™P to be the completeness of
the space C*°(Q2) under the norm || - ||, ,. However, we can prove that when
1< p<oo, H™P = W™P cf. Meyers and Serrin [163]. It also shows that
the space C°(2) is dense in W™P?(Q). In particular, when Q = R4 C°(RY)
is still dense in W™P?(R4).

It is worth noting that, this conclusion does not hold when p = co. A
simple example is given in [3]. Let @ = {x € R, -1 < 2 < 1} and u(z) = |z|.
In this case, when x # 0, u/(x) = x/|x|, hence u € W1>°. However, such u

1
does not belong to H>. In fact, for arbitrary 0 < ¢ < > there does not

exist ¢ € C' such that ||¢' — v/||c < €, since L™ is not separable.

The Sobolev space satisfies the following embedding theorem, which plays
an important role in PDEs, whose proof can be found in [3,203]. For more
details on embedding theorems and embedding inequalities, one may refer
to [3,89,214,232].
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Theorem 2.2.8 Let m be a positive integer, and 1/q = 1/p —m/d, then
1. if ¢ < oo, then W™P(R?) — LY(R?) continuously.
2. if ¢ = 00, then the restrictions on any arbitrary compact set R of the
functions in W™P all belong to L"(R?) for all r < oco.
d
3. if p > 7 then after possibly modifying the function on a null set,

f € WmP(R?) is a continuous function.

We consider the Fourier characterization of functions in H*(R%) = W12
(R?). Let f be the Fourier transform of f € L*(R%), then f € H*(RY) if
and only if |¢]f(€) € L2(R?). In this case, V f(¢) = i¢f(€) holds and

ey ~ [ (0 + EPIFOR e, (2.2.28)

Indeed, if f € H', there exists a sequence of functions {f;}72; in C°
such that fi converges to f in H'. For f, integrating by parts, we have
V/J?k(f) = iffk(f). From the Plancherel’s theorem, we can see that f, and
ﬂc converge to f and 67‘ in L2, respectively. On the other hand, up to a
subsequence, ffk(§) and iffk(f) converge to §f(§) and 6?(5) a.e.. Therefore,
67‘(5) = igf(g). By Plancherel theorem, (2.2.28) is obviously established.

The Fourier transform can also well depict the integer order Sobolev space.
It is easy to show that the following two norms are equivalent

1/2

S 02|~ [ Ja+ignmiera

laf<m

1/2

Hence f € H™(RY) if and only if (1 + |- (%)% f(-) € L2(R%). In another
perspective, H™(R?) is nothing but L*(RY) with the usual Lebesgue mea-
sure replaced by (1 + [£]?)™d¢. Using Fourier transform, it is easy to define
fractional Sobolev space. When p = 2, the Sobolev space H?® of order s can
be defined as

H® = H*(RY) = {f € S'(RY) : f is a function and ||f]|%. < oo}, (2.2.29)

where

= [+ IRy < o

Obviously H® = L. It is easy to verify that H* is a Banach space as well as
a Hilbert space under the inner product

(f.9) = / FOHE + 6P de.
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When p # 2, the definition of W*P space is more complex. When € is a
smooth domain of R, W*? is defined by complex interpolation. Let s > 0,
m = [s] + 1 be the smallest integer greater than s, define

Wer(Q) = [LP(Q), W™ ()]

s/m "
We have the following description. Let s = [s] + A with 0 < A < 1, the

fractional Sobolev space can be defined as the completion of the set

0% (u(z) — u(y))] crr
o — y|5

{u € C™(Q) : (QxQ), Yae(ZU{OD" |o| = [s]}

under the norm

1/p

0° (ula) — u(y))?
Jullwesioy = Nellweeiy + | 3 [ D) U 4o,
axQ [z -yl

ler|=[s]

When s = m is a positive integer, such W*P(Q2) and the integer order Sobolev
space W™P defined by (2.2.27) is equivalent.
When Q = R4, the fractional Sobolev space W*? is defined as

WP = {f €S8 : there exists g € LP(R?) such that (1+]-]?)*2f(-) = §()},

with norm || f|lws» = ||[(I — A)*/2f||r». Such a space is also called Bessel
potential space. When s = m is a positive integer, this definition reduces to
the ordinary Sobolev space. When p = 2, it reduces to the fractional Sobolev
space defined by (2.2.29).

The norm || - ||ws» is well-defined. For this purpose, we only need to
show that if J7(g1) = Jj(92), then g1 = go. In fact, for arbitrary ¢ € S, by
Fubini’s theorem

[ gi@et@ns = [[ 6.~ nawiptaidedy = [ 93(0)da

On the other hand, the map J;] : § — § is surjective. For a given ¢ €
S, let $(€) = (€)(1 + [€]*)~*/2, then ¢ € S, hence ¢ € S. Noting that
O(€) = (1 + [€]2)/2¢(€), we immediately have ¢» = J3(p). Finally, since

Ji(g1) = Jj(g2), we then have /(91 — 92)J7(¢) = 0. Therefore g1 = go
from the surjectivity.

Such defined space W*P is a Banach space. Assume f, is a Cauchy
sequence of WP, then there exists g, € LP such that f, = Jjgn. By
definition, g,, is a Cauchy sequence in LP and hence there exists g € LP such
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that g, = g and || fo—T°gllsp = |T °fa—gllp = 0asn — oco. Let f = J°g,
then obviously f € W*P_ completing the proof.

It follows from the theory of Fourier multiplier, when 0 < 8 < «a,
WP WP and| fllws,p < | fllwaop-

When 8 > a >0, jf_a is an isomorphism from WP to W5»,

Similarly, when we consider Riesz potential, it leads to the definition of
homogeneous fractional Sobolev space W5, When p =2 and s € R, then
for a tempered distribution f on R?, we define the norm || - |52 := || - [l4ir-.2
as

1/2
Il =140l = ([ e 17@0ag)
R4
The homogeneous fractional Sobolev space can then be defined by
W2 = (f €8 |[fllyse < 00}
When 1 < p < o and s € R, the space W*? can also be defined as
WP .= {feS": there exists g € LP(R?) such that |- [*f(-) = 4(-)}.

The || - ||s.p = I| - ||Wp norm of f is defined by || flls,, = [|A®f]|p. For p =2,
we denote H® = W92,

In summary, for s € R, the nonhomogeneous and homogeneous fractional
Sobolev space can be defined by W*? = 75 (LP(R)) and W*? = T5(LP(R%))
by Bessel potential 7§ = (I — A)~*/2 and Riesz potential 3 = (—A)~%/2,
respectively. When s = m is an integer, they reduce to the integer order
Sobolev spaces.

Lemma 2.2.4 Let 1 <p < oo,5 > 0. Then f €¢ W*P(R%) if and only if
feLP(RY and I,°f € LP(RY). The norm || - ||sp and |||, + | f|ls,p are
equivalent.

Proof The inequality || f]l, + || f]ls.p < ¢l|f]ls.p obviously holds from 1 +
€125 < (14 ]€]?)%. On the other hand, for (1 + [£]?)*/2/(1 + [£]*), using the
Mihlin’s multiplier theorem, the reverse inequality holds.

In particular, when s > 0 and 1 < p < co, WP = LP N WP, cf. [21].
We can extend the interpolation theory and embedding theorem of Sobolev
space to the fractional Sobolev space. For the proof and further discussions,
readers are referred to [3,21,212,214].
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Lemma 2.2.5 Lets€ R, 0 € (0,1) and p € (1,00), then
[LP(R), W*P(R)]s = WO P(RY).
More generally, for s1,s2 € R, 6 € (0,1) and p € (1,00), there holds
(Werp(RE), W22 (R)], = W-0s1+0s2.p(Rd)

Theorem 2.2.9 Let 1 <p < oo, —00 < s < 00, then
1. W#%P s a Banach space;

2. SCcwWsPcS8;

3. Weter < WSP(e > 0);

4. WoP(RY) < L7755 (RY), s < d/p;

5. WoP(RY) — C(R?) < L®(R%), s > d/p.

At the end of this section, we simply discuss the relationship between the
space H'/? and the operator A = (—A)'/2. For this purpose, we consider
the definition domain of the operator A = (—A)Y/2. If T is a distribution,
it is infinitely differentiable in the sense of weak derivatives. Hence, for a
distribution T, it makes sense to discuss AT. However, to ensure AT makes
sense, only requiring 7' to be a distribution is not adequate. To illustrate
this, we first recall come concepts about distribution. Let C2°(RY) be the
space of infinitely differential complex valued functions compactly supported
in R%. The space of D(R?) of test functions is defined to be C°(R?) with
the topology induced by the limit of a sequence of elements in D(R%). A
sequence ¢ € C2°(RY) is said to be convergent to ¢ € C°(R?) in D if and
only if there exists a given compact set K C RY, such that for arbitrary
k, Usuppoyr C K and for arbitrary multi-index a, D%¢r — D¢ uniformly
as k — oo. Under this topology, D(R?) becomes a complete locally convex
topological vector space satisfying the Heine-Borel property. A distribution
T is a continuous linear functional in D. Here, the continuity means if ¢ — ¢
in D, then T'(¢1.) — T(¢). The space of all distributions on R? is denoted by
D’'(R4). Equivalently, the vector space D’ is the continuous dual space of the
topological vector space D. If T; € D', we call T; — T € D' if T;(¢) — T(¢)
for any ¢ € D.

The meaning of the product of two distributions is not clear. However,
distributions can be multiplied by and taken convolution with C'* functions.
Consider T' € D' and ¢ € D, then the product of them T is defined by
YT(¢p) := T(p¢p). Such a YT is a distribution. In fact, if ¢ € C2°, then
Yo € C°. In addition, if ¢, — ¢ in D, then ¢, — ¢ in D. The convolution
of the distribution T with a C° function j is defined by (j*T)(¢) := T(jr *
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¢)=T (/Rdj(y)qb(- + y)dy) for all ¢ € D, where jr(z) = j(—x). Here, j

is required to be compactly supported. Otherwise jr * ¢ is not compactly
supported and fails to define a distribution.
Now we turn to discuss AT. By definition, AT is defined by

(AT)(¢) :=T(A¢), V¢ € D(RY). (2.2.30)

Since A is a nonlocal operator, A¢ is not compactly supported in general and
hence AT is not a distribution. However, when T is a distribution defined
by a function, then (2.2.30) defines a distribution. Indeed, as long as f €
H'Y?(R%), then Af is a distribution, i.e., the mapping

o Af0) = [ If©H-0)

makes sense. In this case, we have |¢[}/2f € L2(R?) and the mapping is
continuous in D. Let ¢ — ¢ in D, then from the Schwartz’s inequality and
the Plancherel’s theorem,

X 1/2
A6k — )] <clllz ( / E21d(€) — (§)|2d£>

=c[|fll2'V(¢x — &)l[2-
It follows when k — oo, [|[V(¢r — @)|l2 — 0 and Af(édr — ¢) — 0, showing
Af € D'(RY) is a distribution.
2.2.5 Commutator estimates

In this section, we consider the commutator estimates of the fractional Lapla-
cian. For this purpose, we first consider the following proposition.

Lemma 2.2.6 Let k be an integer, and B,~ be multi-indices. If |8|+]|y| = k,
then for arbitrary f,g € Co(R?*) N HP(R?), there holds

IDZ YD) 22 < Cllfllzellgll ez + CULF el gl -

Proof Let |B8] = I,|y| = m, then I + m = k. Using the interpolation
estimates yields
1D ul| awse < Ol | D) L (2.2.31)

It follows from Holder inequality that
1(D? £)(DYg) || 2 <D f porst | D gl g2
1-1/k l/k 1-m/k m/k
SCIFIE IR gl = g i

Noting that 1 — I/k = m/k, the result follows from Young’s inequality.
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Theorem 2.2.10 Let k be an integer and f,g € L> N H", then there holds

gl < Clifllze=llgllax + Clflaxllglzes,

and for arbitrary multi-index a with |«| < k, then

I1D*(fg) = fD%llL2 < CIV fllar=llgllLe + CIV fllzoe [l zzx-1-

Proof From Lemma 2.2.6, it follows the first inequality. For the second
one, from Leibniz formula

Y. CUD (D).

Btr=a

Hence, if a = k,

D*(fg) - fD%g= Y CRD’f)(Dg)

B+y=a,8>0

= Y. Cinn(D°Dif) (D),

1Bl+1vI=k=1

where Cjg- is a constant only depending on j, 3,7. Let u = D;f, then the
second inequality follows from Proposition 2.2.6.

Lemma 2.2.7 Let f = (fi.-++, fu) € L°NH", then if |B1|+- -+ 8. = k,
there holds

1D% f1 - D% fullis <C Y (Ml - [hull e - Ifullzoe ) 1S e,

where, ~ represents that the term is deleted from the expression.

Proof From the generalized Holder inequality, it follows

D f1 - DB foll 2 < |IDP* fill porsisnt <+ 1D full ponsis -

Then from the interpolation inequality (2.2.31),
k k 1—|Bul/k ul/k
IDP fr--- D% fllae < LA™ - 1AM £l

Noting that [81| + --- 4+ |B.] = k, we have from the Young’s inequality that

il/k Bu k
LA B < fll e + -+ (Ll e

and by repeatedly using the Young’s inequality

T P P P D S (L ISR TR PR TA T B

This completes the proof.
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Proposition 2.2.7 Let F be a smooth function, and F(0) = 0. Then for
arbitrary w € H* N L™, there holds

IE @)l < Cr(llulloe) (X + [l ).
Proof Tt follows from the chain rule

D°F(u)= > CgDMu---DPruF(u).
Bt t+Bu=ar

By Holder inequality, there holds
ID*F(u)| e < Ci(luflz=) Y |1DMu--- DPrul.
The result follows from Proposition 2.2.7.

In what follows, we will generalize the inequalities to a more general
fractional operator.

Theorem 2.2.11 Lets >0 and 1 < p < oo, then
1T*(F9) = F(T* e < UVl lT* " gle + 1T Fllio lgllie). (2:2.32)
Proof Define the real valued C'*° functions ®; in R such that
0<®;<1, 7=1,2,3, @1+ P2+P3=1,

and

11 1
supp®; C {—3, 3] , suppPa C [474} , supp®s C [3,00).

Then by definition of the operator [J°, one obtains
[T°(f9) = F(T*9)(x)
_C/ / S {(1 4+ I ) - (L 1) F} (€ gnded

—CZ%‘ f:9)(@),
j=1

where
oi(&m) = [(L+1E+n*)% — (L+[nl*)2]1®,(1€]/Inl)-

First, we consider o1(D)(f,g). Rewrite the formula as

or(&m) =L+ 02 {1+ (L +nl*) &€+ 2m)]2 = 1} D1(€]/In])
=c1(L+[n*)27HE & + 2n) @y
+eo(1 4 n|?)272(E, € + 2n)e’ Dy + -
e (140?277 €+ 2m)e Dy + - (2.2.33)
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After multiplied by f (£)g(&), the r-th term can be written as

—

(010 (Em), (W /3) ENT 1 g) (),
where
a1r(€,m) = er(L+ [n[2) 7" HE(E, € 4+ 2n) 7L (E + 2n) @1 € RY.

It is easy to see that o, satisfies the condition (2.2.23) of Theorem 2.2.5.
Also if ® # 0, then we require || < |n]/3 to ensure convergence of the series
(2.2.33). Then Theorem 2.2.5 yields

o1 (D)(f D)o < eV FlloollT>gllp- (2.2.34)
Secondly, we consider o3(D)(f,g). Let 03 = 031 — 032 with
o31(&m) = [(1+ &+ n*)*/2 = 1]@s,
and
o3.1(&,m) = [(1+ [n]*)*/? = 1],
then
05,1(6,m) F(©F(n) = (1+ [€2)7/2[(1 + [¢ +n*)*/* = 1](T* F(E)a(n)s.

Since ®3 # 0 only if || > 3|n| and o3 satisfies the condition (2.2.23) of
Theorem 2.2.5, one has

llos, 1 (D)(f;9)llp < ellT*Fllpllglloo- (2.2.35)
Define the operator GG, such that
(Gh)(n) = nlnl =2 (1 + [nl*) 2 =2 [(1 + [nf*) % — 1h(n).

Then using the Mihlin’s multiplier theorem, we can see that G is a bounded
operator in LP, cf. [21]. In this case, 032 can be expressed as

7a2(En)f(€)an) = 6P (€ (VD©) (0. (GT* 1) () P,
which, since [£|2£;n;,®5 satisfies the condition (2.2.23), has the bound
los2(D)(f, 9)llp < el V flloellT* gllp- (2.2.36)

Finally, we estimate o2(D)(f,g). Since £ + 1 may be zero, any negative
powers of 1+ |€+ 7| fails to satisfy the condition (2.2.23). Divide o5 into two
parts o9 = 02,1 — 02,2, where 02.1(§,7) = (1 + [£ + n|?)2® and g92(€,7m) =
(1+ |n|?)2 ®5. Since

02.2(&, M F(€)dn) = (1+ )21+ |62/ (T* ) () (n) s,
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the assumption of Theorem 2.2.5 is satisfied and hence

lo2,2(D)(f, 9)llp < el T* Fllpllglloo- (2.2.37)

For o3 1, it can be rewritten as

02,1 (&M F(©)3m) = (14 €+ 0|22 (1 + 1€~ (T* ) (€)g(n)s.

Denote 62.1(€,1) = (1 + |€ +n[>)%/2(1 + |£]?)~5/2®,, hence |59,1| < C. Fur-
thermore, when s > 2, from the definition of ®5, one has

(LA le+n) 2 Ml _ clnl

0y52,1(§:m)| < (1+ [€2)3/2=1(1 + [€]2) 1+ [¢]>

Also from the definition of ®2, [1|? < ¢|¢|? holds, hence

cln| c
L¢P~ &l +Inl’

|OnG2,1(€,m)| < (2.2.38)
satisfying the condition of Theorem 2.2.5. In fact, as long as s is big enough
such that and negative powers of 1+ £ +7|? do not appear in (2.2.38), then
the discussion above is applicable. From Remark 2.2.3, when s is big enough
such that s > k(m,p), the estimate (2.2.37) still holds.

When s is not big enough, the discussion above is not applicable. To
overcome this problem, we need to extend o2 1(§,n) to the complex valued
case 03 1(§,n) for a complex s with 0 < Re s < k, and then apply the complex
interpolation theory. When s = k 4+ it,t € R, Remark 2.2.3 still applies to
yield

lo5 5 (D)(f, )l < CONT Fllpllglloos (2.2.39)

where C(t) depends on t. Since |al, |8]| < k in (2.2.23), we know C(t) = O(t¥).
To apply the complex interpolation theory, we need to handle the case when
s = it. For this purpose, first note

3
T*(f9) = Y- 03.(D)(F.9) (2:2.40)

for o5, = (1+[¢ +1[2)*/2®,;. When j = 1,3, by definition of ®; and ®3, the
condition (2.2.23) is easily verified, yielding

It (D). Dl < CONSlllgloes  G=1,3.  (22.41)

Moreover, from the Mihlin’s theorem [21], one has

17 (F s < CONfally < COFlIllgl oo, (2.2.42)
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where C(t) = O(t*). Using (2.2.40)-(2.2.42), we have

loz's (D) (f,9)llp < CONflpllglloo- (2.2.43)

Using the complex interpolation theory between (2.2.39) and (2.2.43), we can
see that the similar estimate holds for arbitrary s(0 < s < k). Since we have
proved that the conclusion holds when s > k, therefore

lo2 1 (D), 9)llp < el T Fllpllglloe: (2.2.44)

Combining the estimates (2.2.34), (2.2.35), (2.2.36), (2.2.37) and (2.2.44),
we complete the proof.

Theorem 2.2.12 When s > 0, 1 < p < oo, L2 N L* is an algebra. In
particular, we have

1£9lls.p < e[ flloollglls.o + 1F1ls.pllglloo)- (2.2.45)

Proof The proof is similar to the proof of the theorem above, hence we
omit it here.

Remark 2.2.4 When s is a positive integer, the results (2.2.32) and (2.2.45)
are well known, and can be proved by applying the Leibniz rule and the

d

Gagliardo-Nirenberg inequality. When — < s < 1, the proof can be referred
p

to Strichartz [207].

Theorem 2.2.13 Let s> 0,p€ (1,00). If f,g €S, then

1T7°(fg) = F(T°Dllp < CUV fllpalllglls—1.02 + [ fllspslgllpats  (2.2.46)
and
1T (D < CLUFllp9lls,p2 + 1 F 1 s,psl1g1lpa }s (2.2.47)

where pa,p3 € (1,+00) satisfies
1 1 1 1 1
S= =
p pP1 P2 p3 P4

This theorem follows by using the approach of the theorem above. When
p1 = p4 = 00, this theorem reduces to Theorem 2.2.11 and 2.2.12. For the
homogeneous operator A, we have

Theorem 2.2.14 Let s >0, pe (1,00). If f,g € S, then that

1A°(f9) = F(A°9)llee < CLIV Fllrllgllvys-1mn + 1 f lyipons 19l Lra}, (2.2.48)
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and the following product estimate holds

IA°(Fo)lle < CLUf Lo llgllyirsms + 1 lvioms 19l ra by
where pa, ps € (1,400) satisfies
1 1 1 1 1

p pi p2 ps pa

Proof We only need to apply Theorem 2.2.13 to f.(z) = f(z/e) and
g: = g(x/e) and then let € — 0.

d
Theorem 2.2.15 Let s; < d/p(j = 1,2), s1+s2 = s+ —, 0 < s <
p
min{sy, s2}, then
fgllwsr < cllfllwernllgllwszr.
Similarly, in the homogeneous case, there holds
1f9llvyen < cllf lorn gz
d d d d 1 1 1
Proof Let — =51 =— —s3+sand — = — — 51, then — + — = —. Using
b2 p b2 P pr p2 P

the Sobolev’s embedding theorem, we have

gllwsre < cllgllwser  and || fllLee < el fllwern.

The proposition then follows by interchanging f and g and using the result
of (2.2.47). The homogeneous case also holds by Theorem 2.2.14.

1 1
Theorem 2.2.16 Let g > 1,p € [q,+0), and - —l—% = —, then there exists
p q

a constant C > 0 such that for any f € S' and f is a function, then
[fllr < ClIA7 f]| Lo

Proof When g = 2, the proof is given by [197]. Since f is a function,
f(f) = |£|_‘7|§|"f(§) holds. Using the inverse Fourier transform, we can see
that f = ZJ (A% f), where ZJ is a Riesz potential operator. The proposition
then follows from the boundedness of the Riesz operator Z3 in Theorem 2.2.7.

2.3 An existence theorem

We consider the following fractional ordinary differential equation

D*y(t) = f(t,y), p€(n—1,n],te (0,t, (2.3.1)
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where n > 1 is an integer and D* represents either the Riemann-Liouville
derivative #L( D} or the Caputo derivative “oD}. To solve (2.3.1), we need
to prescribe n initial data for the unknown function y(t) at initial time ¢ = 0.
With different choice of the derivative, the initial data is different. From
(2.1.22) and (2.1.23), we see that, when D* = L, DI the fractional deriva-
tives of y(t) at time ¢ = 0 should be prescribed, while when D* = ©(D}| the
integer order derivatives of y(t) at time ¢ = 0 should be prescribed.

Before we state and prove the existence theory for (2.3.1), we consider
the following two examples when D* = BL D! In the first example, f(t,7)
depends only on y linearly

Dry(t) = Ay(t) (2.3.2)
D”’”*ky(t):bkﬂ, k:()’...’nil’ 0.

where A is a complex number and by, - - , b, are known initial data. By the
Laplace transform (2.1.22), we have

'Y (s Zsb k=AY (s),

where Y'(s) is the Laplace transform of y(¢). Therefore,

n p gn—hn—Jj

I YT

zn:bji)\ks_k“s” B=g,

k=0

<.
—

<.
—

Taking inverse Laplace transform, we have

=303

0

Negkpt(p—n+j)—1
k;,u/"l‘(ll n+]))

3, (),
j=1
where E, ,,—n1;(-) is the two-parameter Mittag-LefHler function. In partic-
ular, when y = n = 1, we obtain y(t) = b1 E11(\) = bie, which is well-
known. Similar results can be obtained when D* = L DI' and initial data
in (2.3.2) should be replaced with y*) = by, for k=0,--- ,n — 1.
In the second example, we consider

Dry(t) = f(t)
{Dﬂ_"-Fky(t) = bk+1a k= Oa e, 17 (233)
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where by, --- ,b, are known initial data. By Laplace transform, we obtain
Y (s) = s HF(s)+ Z by ps"H.
By taking inverse Laplace transform, we obtain

y(t):r(lu)/(t—ﬂ“ Lf(r) dT-l—ZF )t“ L (2.3.4)

It is important to note that from Example 2.1.3

D“’“( thi=t ) TR -, k>
L(p—=10)) o k<1,

and
=T+ k—1) k>1

p—1—1 ’
I R
a 0 k<l

We see (2.3.4) is indeed a solution satisfying the initial data. Furthermore,
by a simple argument, the solution can be shown unique in L*(0,7) for a
given T' > 0.

We now state an existence and uniqueness theorem for the fractional ordi-
nary differential equation with Rieman-Liouville derivative. Similar theorem
for the case of Caputo derivative can be obtained, which is omitted for sim-
plicity. In this R-L derivative case, the initial value problem is proposed as
finding y(¢) on [0,T] such that

{D”y(t)zf(t,y), pem—1,n], 0<t<T < oo, (2.3.5)

DM—(n—k)—ly(t”t:O =b,, k=1,---,n.

Assume that f(t,y) is defined in a domain G of a plane (¢,y), and let
R(h,K) C G be a region such that

0<t<h, [tyt)=) b

for some constants h and K.

Theorem 2.3.1 Let f(t,y) be a real-valued continuous function, defined in
the domain G, satisfying the Lipshitz condition with respect to y, i.e.,

|f(t,y1) — f(t,y2)] < Llys — 2l
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such that
lfty) <M <oo, V(y)€G.
Mh"
L1+ p)
in the region R(h, K) of the problem (2.3.5). Furthermore, if § is a solution
of (2.3.5) satisfying the initial conditions

Let K > , then there exists a unique and continuous solution y(t)

DF R G mo = b = b 4+ 0k, k=1,---,m, (2.3.6)

where 8, (k =1,2,---,n) are small constants, then for 0 <t < h there holds

ly(t) = G0 <Y 18:ltH = TITE, iy (L),

i=1
where Eq g(2) is the Mittag-Leffler function.

Proof By applying (2.3.4), we reduce (2.3.5) to the following equivalent
integral equation

W) = g7 [ = e+ Y s (280)

I

Consider the iterative sequence

n

btk (n—i)—1

W= 2 Gy

i=1
n bituf(nfi)fl 1

T (1) T

)/0 (t—7) " (T, ymo1(7))dT, m=1,2,--- .
(2.3.8)

Ym (t)

We need to show that lim,, o ym (t) exists and it is the solution of equation
(2.3.7). First, for 0 < t < h, we obviously have (t,ym(t)) € R(h, K) for all
m. Indeed,

n

b'ti71 tn—H t
{nTH m t) — 7 < . 1 . .
0 ;F(M—(n—i)) F(M)/O( (T, Yme (7))dT
Mit™ Mh"
s < <K, 2.3.9
T(1+p) ~T(1+p) (2:3.9)
and similarly
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Next, we show by induction that for all m

ML

TaTma (2.3.10)

[Ym (t) — Ym—1(t)] <

When m = 1, this holds since from (2.3.9), we have

Mt+
) —yo(t)] < =———, 0<t<h.
‘yl( ) yO( )| F(l +M)

Assume that (2.3.10) holds for m — 1, we will show that it also holds for m.
Using (2.3.8) and Example 2.1.3, we obtain

[ (8) — Y (8) <ﬁ / (t = 7" [gm—1(7) = ym_a(r)| dr

ML ! 1 /t
< t—r ;A—IT(m—l)udT
T+ - T Jo 77
m—1
:—ML D;#t(mfl)u
L@+ (m—1)p)
B Mmel
T+ mp)
Consider the series
y'(t) = lm (ym(t) = yo(t)) = D (yi(t) = ys-1(t)). (2.3.11)
j=1

By definition of the Mittag-Leffler function,

Li~'wir M -
Z T L FeaEh™)=1).

Applying the estimate (2.3.10), it is obvious that (2.3.11) converges uniformly
for 0 < ¢t < h. Since each term of the series is continuous for [0, k], y*(¢) is
a continuous function for ¢ € [0,h]. Let y(t) = yo(t) + v*(t), then y(¢) is
continuous. Letting m — oo in (2.3.8) then yilds (2.3.7).

Uniqueness follows from the Lipschitz condition of f in y. Let y(¢) and
g(t) be two continuous solutions, then z(t) = y(t) — g(t) satisfies

I et _
1) = 7 / (t = 7 (ry(r) — f(r(r)dr.

Since z(t) is continuous for [0, h], then |z(¢)| < B for some positive constant
B and hence
BLt#

|z(t)] < T+ )

0<t<h.
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By iteration, one has

BLItim
L(u)

where the bound is the nothing but j-th term of the Mittag-Leffler function

E,.1(Lt"), and hence for all t € [0, h], there holds lim;_,o L7t7# /T (1 + ju) =

0. Uniqueness then follows.

Next we prove the continuous dependence part of the theorem. This is
proved by induction since

|2(t)] <

j:1725"'7

y(t) = lm y,(1), g(t) = lim g,(t),

m— oo m— oo

where y,, and ¢, are the iterative processes of y and ¢, respectively. When
m = 0, it is easy to know

n tu (n—i)-1

|y0 yO | X Z |5z| n — Z))

When m = 1, by definition of the Riemann-Liouville derivative and the
Lipshitz condition of f(t,y), there holds

ly1(t) — ﬂl(t)|

n —(n—i)—1 1 t 1 - 3
= iy * | = ) f(T,yo(T))}>
n t” (n—1i)—1 L t 1 -
<13 — 1 | (=7 elr) ()l

t# S L ' Fh—(n—i)—1
Z n—Z))+F(M)/o {Z' Tl))}dT
S T | M ol
<ZI6| S P {;m < (n_z))}
—Zlél +LZ|5| e o
— - Jpp—(n—i)—1 LFtkn
;|5z|t {;:(:) F(k/‘+ﬂ—(n—z’))}'

Similarly, according to the induction, we obtain

n thku
_ Z p—(n—i)—1

th— (n—7)—1
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Letting m — oo then yields

kikpn
Iy |<Z\6|t“ (n=i)=1 Lot
T((k+ Dy~ (n— 1))

= Z ‘(;’i|tu_(n_i)_1Eu,u—(n—i) (Lt“),
i=1

completing the proof.
Furthermore, Let us consider example from partial differential equation

Example 2.3.1 Let a € (0,1). Consider the following fractional diffusion
equation

252 _
{ODtu(x t) = N0zu(z,t), t>0,—00 <z <00, (23.12)

OD?_ y(t)|t 0= (l‘), limg 4 o0 U(.Z‘,t) =0.

Taking into account the boundary conditions at infinity and applying the
Fourier transform with respect to variable x, one obtains

oD a(E,t) + N2E2a(E,t) = 0
oD M (€, 1) |i=o = (8).

Upon the Laplace transform, one has

¢(£)

U(ﬁas):m,

where U(E,s) is the Laplace transform for 4(&,t). Applying the inverse
Laplace transform to obtain

(ga ) (g)ta 1E0¢ Ot( >‘2£2ta),

and then the inverse Fourier transform to obtain a solution of the problem
(2.3.12)

u(z,t) = /:)o Gz — ', t)p(x')da,

where

1 oo
G(z,t) = E/ t* By 0 (—A2€%tY) cos Exd€.
0
After careful calculations, we have [179]

s
\e/2?

1 o
G(.’E,t) = ﬁt2 1W(_Zv _pvp)v
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where W(z; A, 1) is the Wright function

ok

Wz o, 8) = _
(z0,6) kz;; R (ak + B)
In particular, when o = 1, the fractional Green function reduces to

1 22
e 4x2t
2 /7t

G(z,t) =

2.4 Distributed order differential equations

In this section, we introduce some fractional differential equations of dis-
tributed order. The study of properties of distributed order differential equa-
tions and their applications has been developed extensively in recent years,
although the idea of fractional differential equations with distributed order
was first introduced by Caputo [36] and solved by him later in 1995 [37]. The
distributed order differential equations have been used to model the input-
output relationship of linear time-invariant system, to study the rheological
properties of composite materials, to model the dissipation in seismology and
in metallurgy and to model ultraslow and lateral processes. See, for exam-
ple, [14,15,42,142,171].

We still use §' D}’ to denote the Riemann-Liouville. Integrating § D} f(t)
w.r.t. pu, the order of differentiation, we obtain the distributed-order differ-
ential operator

D210 = [ " 6(u)§ DI F()dn,
A

where ¢ is a continuous function in [A,n] C [0,k] for ¥ € N and ¢ = 0
outside of [\, n]. In the definition, we can replace the Caputo derivative with
the Riemann-Liouville derivative in applications. This definition can also
be generalized to the case when ¢ is a £'(R) distribution, where &'(R) is
the space of compactly supported distributions on the space £(R) of smooth
functions. When ¢ € &'(R), supp¢ C [0, k], on f is defined as an element of
S} (R) by

< / ¢¢(u)§D?f(t)du,w(t)> — (o(w). (SDEFD.0(0)), € S(R).

Here, h € S\ (R) if h € S’(R) and supph C [0,00), where §'(R) is the
space of tempered distributions, i.e., the dual of the space S(R) of rapidly
decreasing smooth functions. For a detailed analysis, we refer the authors
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o [12]. By using the Laplace transformation for the Caputo derivative, we
have for Re s > 0,

Z1oD} (1) / B(1)s"dps — Hlt 0 / o) dps. (2.4.1)

Example 2.4.1 Let f € AC? ([0,00)), i.e., f is continuous and f' is
absolutely continuous on [0,T] for any T > 0. When k = 2 and ¢(u) =
k

Zajé(u — ;) fora; € R and pj; € [0,2], we have
j=1

oDy f(t) ZaJOCD“J t>0,

which reduces to a linear combination of Caputo derivatives of different or-
ders. In this case, we have for Res > 0,

k

b p(y] — SOl |to v
LD f(b)] = Z[f)(s)>_ a;s , > ajsti— > ays

j=1 j=1 1<p;<2

Besides the time-fractional differential equation of distributed order, one
may also consider the space-fractional differential derivatives. For example,
we may consider

/O a(e)(—A)*?u(t, z)da,

for some positively integrable function a(-), and accordingly consider the
distributed-order space-fractional differential equations

2
%u(t,x) = / a(a@)(=A)*?u(t,z)da, t> 0,z R (2.4.2)
0

A distribution G(t,x), which satisfies the equation (2.4.2) in the weak sense
with initial data

G(0,x) =d6(z), zeR? (2.4.3)

is called a fundamental solution of the Cauchy problem (2.4.2) and (2.4.3).
2

Let B(§) = —/ a(a)|€|“de, then G(¢, ) is given by
0

G(t,z) = F~HetB®), (2.4.4)
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In the particular case of a(a) = §(a—2), we have the classical heat equation,
whose fundamental solution is given by

1 _ Lz
GQ(t,IE) = We @, (245)

while in the case of a(a) = §(a — 1), the fundamental solution corresponds
to the Cauchy-Poisson probability density

I(d+1/2) 1

Gi(t,z) = n(d+1)/2 (|z]2 4 ¢2)(d+1)/2°

(2.4.6)

For a general case of a(a) = d(a—ap), 0 < ap < 2, the fundamental solution
is the Lévy ap-stable probability density

1 —t|&|70 iz
Gayo(t, ) = W/Rde HEIC giz€qe, (2.4.7)

Remark 2.4.1 One may also consider the distributed order fractional deriva-
tives when the Lebesgue measure is replaced by a general finite Borel measure.
Let v be a finite Borel measure with v(0,k) > 0, one may define

k
oDY f(t) = / S DI F(t)(dp).

2.4.1 Distributed order diffusion-wave equation

We now consider the following time-fractional differential equations of dis-
tributed order

oDfu(x,t) — Au(z,t) = f(t,z), =€ R4 te[0,00). (2.4.8)

Here, we assume that ¢(u) > 0 and is not zero everywhere. The equation
(2.4.8) is a generalization of the fractional differential equations and is impor-
tant from the viewpoint of applications. When ¢(u) = 6(u — 1), we obtain
the fractional differential equation

SDMu = Au + f.

In particular, when u; = 1 (resp. p1 = 2), we obtain the heat equation
(resp. wave equation) in R%. When ¢(u) = a16(p — 1) + aod(p — pz) with
O<pur <pe<1l,a1 >0,a2 >0, a; +az =1, we obtain

a1§ DI u 4 a5 D2 u = Au + f,

which describes a sub-diffusion process with retardation [42].
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We consider the more general equation (2.4.8) with initial data
uD(0,2) = w(z), zeR41=0,1,--- k—1. (2.4.9)

By linear superposition principle, we may divide the equation (2.4.8) and
(2.4.9) into the following several equations satisfied by u;, j = 0,1,--- ,k.
Let uj, j =0, -,k — 1 satisfy

oDlu(z,t) — Au(z,t) =0, z e R4t e0,00),
u(0,z) = uj(z); (2.4.10)
uM(0,2) =0, 1€{0,1,--- ,k—1},1# j,z € R%.

and uy satisfy

oDfu~ Au=f, (2.4.11)
u(0,2) =0, 1€{0,1,---  k—1},2 € R%
k
Then the solution of (2.4.8) and (2.4.9) is given by u = Zuj(t, x). We will
=0

use the Laplace transform method to find a solution of the equations (2.4.8)
and (2.4.9). Applying the Laplace transformation, we obtain

/ o(p)stdu l+1 / P(p)shdp = A+ f, (2.4.12)
where (s, z) = Z[u](s,z) is the Laplace transform of the u and f is the
Laplace transform of f in the variable ¢. Let Bl / o(p)stdu # 0, we
can write the equation in the new form

k—1 = ;
B 1
g = 4@ +y “llg) Bis) | F LA (2.4.13)
$ = 57 Bo(s)  Bo(s) Bo(s)

In particular,
) Bi(s) 1
T s By(s)  Bo(s)

and

= = ~—A
Bo(s) Bo(s)
By taking inverse Laplace transform, we obtain from (2.4.13)

k—1 ul(:v)

u(t,z) = uo(z) + Z T+ 1)tl *¢ by(L) #¢ bo(t) + f (L, @) x4 bo(t) + bo(t) *¢ Au,
- (2.4.16)
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where bo(t) = L1 [1/Bo(s)](t), bi(t) = £ [Bi(s)](t) and #, denotes the
convolution in the ¢ variable. Equation (2.4.13) and (2.4.14) are of the form
of an abstract Volterra equation

z(t) = w(t) + b(t) x Ax(t), te€J,

where b(t) is the scalar kernel, w € C(J,X) is a continuous function from
interval J to space X and A is an unbounded operator on a dense set of
X 4 equipped with the graph norm ||z|| 4 = ||z|| + || Az]||. Resolvents for such
problems and their applications to well-posedness are introduced in [181], for
example.

One remark should be placed here. From (2.4.13) and (2.4.14), we know
that between two consecutive integers, it does not matter how many differ-
ent fractional orders are taken in the given equation. For the initial value
problem, we need only to give the initial values of the unknown solution just
for the integer order derivatives less than k. As for the number of initial
conditions, it depends on the support of the weight function ¢. If for some
least k > 0, such that supp¢ C [0, k], then k initial conditions should be
placed on the unknown function. Indeed, if supp¢ C [0,k — 1], then the
Cauchy problem with k given initial data becomes ill-posed. In such a case,
Bk,l(s) =0, and then u_; satisfies
Uj = ;Aaj,

Bo(s)
whose solution vanishes in R

Special attention is focused on the cases when kK = 1 and k = 2. The

equation (2.4.8) is then completed by the following initial conditions

{u(x,O) = up(x), if suppg¢ C [0,1]

w(z,0) = ug(x), Bu(z,0)=uy(z), if suppé C [0,2]. (2.4.17)

Then u is a solution to the initial value problem (2.4.8) and (2.4.17) with
suitable assumptions on ug and ug, if u € ACL ([0,00); H*(RY)), i.e., u
is locally absolutely continuous in time on [0,00) with values in H?(RY)
when suppg C [0,1] and u € AC? ([0, 00); H?(R?)) when supp¢ C [0,2],
respectively, and satisfies (2.4.8) and (2.4.17). According to the support of
¢, we can divide (2.4.8) into the following three cases:

1. distributed-order diffusion-wave equation, if 0 < a <1 < b < 2;

2. distributed-order diffusion equation, if b < 1; and

3. distributed-order wave equation, if a > 1.
For more detailed studies for the cases k =1 or k£ = 2 can be found in recent
papers by Atanackovic et al [11,12].
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2.4.2 Initial boundary value problem of distributed order

In the following, we consider a initial boundary value problem of the dis-
tributed order time-fractional differential equation of the form

82

/0 6§ Db u(t)dp =

with the following initial and boundary conditions

u(0,z) = uo(2),
{U(LO) = u(t,1) = 0. (2.4.19)

Here, f(z) denotes the initial distribution of the temperature. We employ the
separation of variables method to find out a solutions (2.4.18) and (2.4.24).
Let u(t,z) = X (x)T(t), then we obtain from (2.4.18)

/¢ o DET(#)dp _%X”:—)\.

Consider the eigenvalue problem for X:

X" +AX =0,
X(0) = X(1) = 0.

By standard ODE theory, we know A has discrete eigenvalues A\, = n’m?
with eigenfunction X, (z) = sin(nnz). Fixing A, we solve the equation of T'
by Laplace transform. Let T},(s) denote the Laplace transform of T}, (t) and
T,,(0) = 1, then we have

which yields
1
[ et
To(s) =2 4—n ——.
By(s) + (nm)?
To find the inverse Laplace transform for T}, (s), we consider
gh—1

) = B T

whose inverse transform is given by T,,(u, t) and the solution 7,,(t) can thus

- / S() T (. 1)

be expressed as
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By the complex inversion formula

1

y+ico o
T, (,LL, ) 2_3'[1/ T’ﬂ(ua S)eé d57 (t > 0)7
ico

where s is taken to be complex and ~ is an arbitrary real number which lies
to the right of all poles and branch points in the integral. Due to s*~! in the
numerator and s* in the denominator, the integral has a branch point. Any
poles will be simple and are zeros of g(s) := Bo(s) + (nm)2. The function
g(s) is analytic in any region not containing the origin, so any poles will be
isolated. Since ¢(u) > 0 for all o € [0, 1] and not zero everywhere, it can be
proved that all the zeros of g(s) lie on the negative real axis. The inverse
transform T, (u,t) can be computed using residues. Due to the branch point
at the origin, the usual Bromwich contour cannot be used. In essence, a path
of integration is then chosen that excludes the branch points. This is referred
5
to as a Hankel contour. We let I'g . = Z ng,)r’ with Fgg)s ={y+in: —-R<
k=0

< R}, Fg,)g ={y+Re :7/2 <0 <}, Fg,)s ={re™: —R+~y<r < —¢},
Fg”)e = {ee” I‘gé)s ={-re™:e<r<R-~y}and
ng?,)e = {v+ Re : /2 < 0 < 3m/2}, where ¢ > 0 is sufficient small and
R > 0 is sufficiently large. By using the residue formula, we have

0. -1 <6<},

1 estsu— 1

st opu—1
— ———ds=Res (687) : (2.4.20)
27 Jrp,. Bo(s) + (nat)? Bo(s) + (nm)?

By letting R — co and € — 0, we obtain

8 ()

GStS‘U’ 1
/ / ————ds|, (2.4.21)
2m Rﬁooe%() r Jr, Bo ni)?

since the contributions along Fg)g, Fg’)g, FS’)E vanish as R — oo and ¢ — 0.
Since the only possible poles are on the negative real axis, the contribution
from the residue part also vanishes. This leaves only the contributions along

the integral path —oo — 0 and 0 — —oo, which yield

sts,u 1
Tn(u,t) = / / — s
2m Rﬂoo e=0 | Jr@. (. Bo na)?
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—rt,r,u 1 myd,,, —rt,r,,u 1 —m,ud,,,

2 / /(Z5

yrie™du 4 ( / / P(p)re dy 4 (nm)?

:l% / —rt,r,,u 1 m,ud,r
7 )
/ P(p)r*e™dp + (nm)?
(2.4.22)
The solution to (2.4.18) and (2.4.24) is given by
Zan n(t) sin(nazx), (2.4.23)

n=1

1
where {a,}52, are the Fourier coefficients of ug(z), i.e., a, = 2/ up(x) sin
0

(nmz)dz.

Remark 2.4.2 The equation (2.4.18) with the following initial and Neu-
mann boundary condition

{u(o, z) = up(x), (2.4.24)

Ozu(t,0) = Ou(t,1) =0

can be similarly handled and we finally obtain

E an By, (t) cos(nmx),

where {a,}°2, are the coefficients of ug(x).

2.5 Appendix A: the Fourier transform

The Fourier transform is a powerful tool in the analysis, one of whose advan-
tages is to transform the differentiation operation and convolution into the
product operation in phase space. In this section, the Fourier transform and
its basic properties are introduced. For further knowledge about the Fourier
transform, readers may refer to, for example, [204-206].

What follows is divided into several parts. First, we introduce the defini-
tion of the Fourier transform in L', and by applying the continuity method we
extend the Fourier transform to L?. The key point is the Plancherel identity.
Next introduce the Fourier transform in LP for 1 < p < 2 by applying the
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interpolation and Hausdorff-Young inequality. To extend the Fourier trans-
form to distributions, we first consider the Fourier transform in the Schwartz
space and then use the duality method. For the sake of convenience, some
properties of the Fourier transform are listed in Table 2.5.1 below.

Definition 2.5.1 If f(z) € L*(RY), the Fourier transform of f is defined
by
FfE) =f(&) = (x)e™ " da, (25.1)

R4

where x - € is the inner product in R?.

By this definition, as long as f € L'(R?), Ff(¢) makes sense. First of
all, we give two useful theorems, cf. [228].

Theorem 2.5.1 Let f € LYRY), then f(€) is a uniformly continuous
function on RY.

Theorem 2.5.2 (Riemann-Lebesgue Lemma) Suppose f € L'(R%), then
lim¢| 00 f(§) = 0.

In addition, there holds the following properties for f € L'(R%).
(1) F is a linear operator on L*(R?), and

IF fllpe < £l ze-

Furthermore, if f(z) > 0, then || F [~ = ||f]lz: = f(0).
(2) Let 7, as translation operator such that 7, f(-) = f(- — a), then

F(raf)(€) = e Ff(£).

(3) Let 65 be the scaling operator such that (6xf)(z) = f(z/A), then
1€ = XF(X), A>o.

(4) Let xp be the k-th coordinate of x and zf € L'(R%), then

of(&) _  ——
o (—izg f)(E).

If f, % € L'Y(RY), then
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(5) If f,g € L', then f/;ﬁ\g = fg. Indeed, when f,g € L', then f*g €
L'(R?) by Fubini Theorem and

o) = [ [ 4@ - yaly)dyas

- // e I@VE (g — y)e W Eg(y)dady
=f(©)a(e).

(6) Multiplication formula. Let f,g € L', then
f@g(@)dz = | f(z)g(x)de,
R R

In this case, since f,g € L', then f,g € L™, and the integrals of both sides
makes sense.

The above properties show that the Fourier transform maps L' into L*°.
However, not every L™ function is a Fourier transform of an L' function,
such as the constant function. However, we have the following (cf. [118])

Theorem 2.5.3 Let f € L*(RY) N CH(RY), then

N
lim (Q%d [ Feetae = ()

N—oc0
where the left hand side denotes the Cauchy principal value integral.

This theorem states that any function f € L'(R%) N C'(R?) can be
decomposed into a superposition of simple harmonic waves e*¢ while f &)
denotes the complex amplitude of harmonic waves at frequency €. Therefore,
f is also called the spectrum of f in applied sciences. This leads to the
definition of the inverse Fourier transform. Let g(¢) € L'(R), then

Flf(x) = @/R g(€)e'™ede (2.5.2)

is called the inverse Fourier transform of g.
Theorem 2.5.4 Let f € L*(RY), f € L'(R), then
FYF)(x)=F(F 1)) = f(z), ae zeRL

Under the conditions of this theorem, we know that F~1(Ff)(z) is uni-
formly continuous and tends to zero as |x| — oo according to Theorem 2.5.1

and Theorem2.5.2. Furthermore, there is always a continuous function f (x)
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in the equivalence class of f such that F~'(Ff)(z) = f(x) for any = € R
The Fourier transform and the inverse Fourier transform are generalizations
of the Fourier series. Here we draw an analogy between the Fourier trans-
form and the Fourier series of periodic function f(z) in (—I,7). In the one
dimensional case, f is expanded in Fourier series,

f(l'): i cneinnx/l’

with l
1 .
Cp = 2_l /_lf(x)efmmc/ldm

being the Fourier coefficient. The coefficients ¢,, can be viewed as a discrete
Fourier transform, and the Fourier series expansion of f can be thought of as
discrete inverse Fourier transform. In fact, letting [ — oo we can get formally
the Fourier transform in Definition 2.5.1.

We now introduce the Fourier transform of periodic functions. Let aq,
as,- - ,a, are positive integers, and T¢ be the d-dimensional periodic box
with the period in the i** direction being 27a;. Let also Z¢ = Z/a; x --- x
Z/ay be the dual lattice of T¢. For function u in T¢, it can be expressed in

u(z) = Z gels?,

£€Zg

terms of Fourier series

where 1
Qg = @ » e S Yy(y)dy, &€zl

The property (5) of the Fourier transform of functions in L! can be general-
ized as follows

(5') Let f(n) and §(n) denote the Fourier transform of f and g, respec-
tively, then .

fon) =Y f(n1)j(ns).
ni+na=n

After discussing the Fourier transform in L!(R?), we consider the Fourier
transform on L2. For f € L?(RY), the integral in the definition 2.5.1 is not
necessarily convergent. However, its Fourier transform can be defined by the
continuity method, which requires the following Plancherel identity. Since
L' L? is a dense linear subspace in L?, the Fourier transform is firstly
defined in L'( L2, and then extend to L? by the Hahn-Banach extension
theorem.
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Lemma 2.5.1 Let f € L' (L2, then f € L*(R%) and || f|| 2> = (270)7| £l 1>
Proof The proof can be found in [60, 228].

The coefficient(2m)? is caused by the definition of the Fourier transform
and appropriately modifying the definition can eliminate this coefficient. Ac-
cording to Lemma 2.5.1, F is a bounded linear operator on L'(L? — L2,
hence by Hahn-Banach theorem there exists a unique bounded extension F
on L*(R?) such that F|p12f = Ff for all f € L'(\L? and || F|| < ||F].
The extension is called the Fourier transform on L?(R%), still denoted by
F. Indeed, for f € L%(RY), there exists a sequence fj, in L?( L' such that
fr = fin L? as k — oo. It follows from Lemma 2.5.1 that || fx — fi]|2 — 0
and hence there exists a function f in L? such that fk — f as k — oo. Then
the Fourier transform on f € L2 is defined to be f . As will be shown in
the following theorem, mapping f — f is not only isometric in the sense of
Lemma 2.5.1, but also unitary. L.e., F is a invertible isometric transformation
in L2,

Theorem 2.5.5 F is a unitary transformation on L?(R?).

Proof Since F is a isometric linear operator on L? by Lemma 2.5.1, we
only need to show F is surjective. Since F is isometric and L? is closed, the

range R(F) is a closed subspace of L2. Let ¢ € L? such that / F(&)p(€)de =
Rd
0 for all f € L?. Applying product formula then yields / f(@)p(z)dz =0
RA

for all f € L2 Direct calculation shows that ¢(z) = ¢(—=z), and / f(x)
Rd

¢(—z)dz = 0 for all f € L2 In particular, taking f(x) = $(—x) yields
ll¢ll 2 = 0. This shows that F is surjective, and hence F is unitary on L2.

This theorem is called Plancherel theorem and the product formula is
called Plancherel identity. Analogously, applying polarization identity

(f,9) = % {If +9gll7e =il f +igllZ = A =DIFIZ> = (1 = DllglZ-},

one obtains the following Parseval identity

(ro) = [ s@alie = o [ fOREE = G (Fa)

After discussing the Fourier transform in L' and L?, we generalize the
Fourier transform to LP(R®).
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1 1
Theorem 2.5.6 Let 1 <p<2, f e LP(RY)NLYRY) and — + = =1, then
p q
Ff e LR and
[Fflle < Gyl fll - (2.5.3)

The inequality (2.5.3) is called the Hausdorff-Young inequality. The proof
of this theorem can be found in [131], and the proof of inequality (2.5.3)
employs the Riesz-Thorin interpolation theorem. Details can be found in
[59,189]. As a remarkable note, the necessary and sufficient condition for
the equality in (2.5.3) holds is that f is a Gauss function of the form f(x) =
Ae=(@M=) 4 By where A € C, M is an arbitrary real symmetric positive
definite matrix and B is an arbitrary vector in C".

Since LP N L' is a sublinear space of L', we can also define the Fourier
transform on LP(R%) for 1 < p < 2 by continuity method. Let f € LP(R?) for
1 < p < 2, the Fourier transform of f is denoted by f belonging to € LY(R)
and satisfies (2.5.3). However, unlike the case of p = 2, F : LP — L9 is not
surjective, so the Fourier transform F : LP — L4 is not invertible.

On the other hand, Theorem 2.5.6 shows that the index ¢ in (2.5.3) is not

1 1
arbitrary, which should be the conjugate index of p, i.e., — 4+ — = 1. This can
p q

be also seen from scaling. Let f € LP, then g(z) = (drf)(z) = f(x/\) € LP
for all A > 0 and hence [|g]|z« < C}'[|g]|z» With the same constant C}' as in
(2.5.3). This is equivalent to the inequality in terms of f

A fllpe < CEAF||fllLe, YA > 0.

d d
Since A > 0 is arbitrary, it follows that d — — = —. Otherwise, the ratio
q p
| fllea/llfllz» can be taken arbitrarily large. Similar to the property (5), we
can show

1 1 1
(5”) Let f € LP(R%), g € LY(R¥) and 1+~ = ~ + = with 1 < p,q,7 < 2,
r P g
then

—

Fra(&) = f(&)4(&).

Proof Tt follows f x g € L™ (R?) from Young’s inequality of convolution.

Hence the Fourier transform of f*g makes sense and f/;k\g eL” (R%). On the
other hand, from (2.5.3), it follows that f € L? (R%) and §j € LY (R?) and
hence f§ € L (R%) by Holder inequality. Therefore, both sides in (2.5) make
sense. When both f and g belong to L'(R?), (5”) reduces to (5). Otherwise
by an approximation process, one can also establishes (57).
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However, there are counter examples showing that inequalities similar to
(2.5.3) when p > 2 does not exist. Therefore, the continuity method fails
when p > 2. When regarded as a distribution, functions in LP(R?) can
also be defined, as discussed in what follows. We first consider the Fourier
transform of functions in Schwartz class.

Definition 2.5.2 The Schwartz class of functions S is defined as
S={¢: ¢cC®MRY), sup |2°90°¢| < oo, Va,B e N},
zeR4

Note that under the usual scalar multiplication and addition operations, S
is a vector space, which is also called the calss of rapidly decreasing functions.
It turns out to be a Hausdorff locally convex topological space under the
family of seminorms

= 9P V. N¢
Pa,p = sup |z79°¢|,  Va,f € N
z€R?

A sequence {¢,(7)} € S is said to converge to zero if 29%¢, (x) — 0 uni-
formly as v — oo for any multi-indices «, (.

Definition 2.5.3 The space S’ of tempered distributions is defined as the
space consisting of continuous linear functionals on the Schwartz space S.

In other words, F is a tempered distribution if and only if lim,_,o, F(¢,) =
0 whenever lim,_, o pa,s(¢,) = 0 for all multi-indices « and 8. F(¢) is also
denoted as (¢, F).

Example 2.5.1 1. ¢(z) = e eSisa rapidly decreasing function.
2 6( ) €S isa tempered distribution.

fRd dx = ¢(O)
Theorem 2.5.7 If¢ €S, then Fp € S.

Proof Indeed, F is a continuous linear operator from S to itself. Lin-
earity is obvious. Next we show that F¢ € S. For any multi-indices «, 3, it
follows by definition of Fourier transform that

()07 4(&) = F(0™((—ix)’9))(£),

and hence

sup |(i€)“0%p(€)| < / 0% (iz) VP o(x) )| dz < oo.

yeRJ

Finally, for any multi-indices «, 3, there holds
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(1 + [z[*)"]0* (iz)  $(x)]
(14 [a]?)?
<C sup |(1+ [2[*)*|0% (i) ¢ ()]

zeR?

dz

sup [€)"0°3(6)| < |

yeR4

<C Z sup ‘xﬁﬁé‘(é(x)‘ )
~ d
1BI<I8]+2d.|a|<]al €

This shows that for any multi-indices «, 8, £€*9° (2)(5) is bounded and hence
belongs to S. It is also shown that <Z>l, —0in S as ¢, — 0in S. Similarly, we
can show that F~! is a continuous linear mapping from S to itself. Therefore,
S is indeed an isomorphism on S(R?).

Now we turn to consider the Fourier transform on S’.

Definition 2.5.4 Let T be a tempered distribution, T is called the Fourier
transform of T and denoted as FT = T, if there exists a tempered distribution
T on 8’ such that (T, @) = (T, F¢) for all ¢ € S.

Theorem 2.5.7 shows that if ¢ € S, then F¢ € S, thus (T, ¢) = (T, F¢)
in the definition makes sense. Furthermore, if ¢, — 0 in S, then F¢, — 0.
Similarly, the inverse Fourier transform F 1T of a tempered distribution 7'
is defined as F~!T such that (F7IT,¢) = (T, F~1¢) for all ¢ € S. Let
T be an absolutely integrable function on R¢. Regarding T as a tempered
distribution, then for any ¢ € S there holds

(FT,¢) =(T, F¢)
_ /R d ( y qs(g)e—iﬂﬂfdg) T(x)dz

Thus FT = / , T(x)e *¢dz reduces to the classical Fourier transform in
LY(RY). "

If T is a tempered distribution and v is a slowly increasing infinitely
differentiable function on RY, i.e., all derivatives of ¥ grow at most as fast
as polynomials, then T is a tempered distribution and F(Ty) = FT * F).
In particular, the Fourier transform of the constant function ¢ (z) = (2m) ¢
is the delta distribution. Indeed, by Cauchy integral theorem, we have

]_—(ewa/Qm) — md/2 (2n)d/267m§2/2'

When m — oo, we have e=*°/2m — 1 and m®/2e=m¢"/2 — (27)%/25(x) in &',
hence by continuity, we have F(1)(&) = (2x)%6(€).
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Example 2.5.2 1. Fle ™| = /e ¢ /4.

2. Flo(z)] = 1(8).

3. F(1)(€) = (2m)?8(¢).

We end the introduction of Fourier transform by the following table, which
lists some Fourier transforms of some functions or distributions and the re-
lated properties.

Table 2.5.1 Fourier transform and the related properties

Primitive functionf(z) | The Fourier transform f(¢)| Function(f, g) | Transform(f(€), §(£))
5(x) 1 af(x) +bg(z)|  af(§)+b3(€)
_ 2a df o
alz| = =5
¢ a? + &2 dx 1£f(§)
H(z) Q)+ = #f(2) %
H(a — |z[) ¢ sinat flz—a) e 19E f(€)
1 2m5(¢) o' f(x) fe—a)
e—o?/2 Dme—t/2 f(ax) lf (ﬁ)
a” \a

2.6 Appendix B: Laplace transform

As we have already shown, when f € L'(R) then its Fourier transform
exists in the classical sense. However, many simple functions cannot sat-
isfy this strict requirement to be integrable. To remedy this drawback, the
Laplace transform is proposed, which can be regarded as a generalization of
the Fourier transform.

Definition 2.6.1 Let f be a function defined in RT. If

+o00
F(s):.i”[f](s):/o fe=tdt, seC (2.6.1)

is convergent in a certain region of C, then F is called the Laplace transform
of f and f is called the inverse Laplace transform of F, denoted as f =
L7F).

It can be seen from the definition that the requirement of the function
in the Laplace transform is much weaker that in the Fourier transform. For
example, the Fourier transform of a Heaviside function H does not exist in
the classic sense, but its Laplace transform does and

+o0 1
Z[H](s) = e *'dt=—, Res>0,
0 S
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where H(t) = 0for ¢t > 0 and H(t) = 0 otherwise. A function f grows at most
exponentially, if there exist M > 0 and o > 0 such that |f(¢)| < Me?" for any
t > 0. It can be shown that if f grows at most exponentially and is piecewise
continuous on any finite interval of [0, 00), then the Laplace transform of f
exists for ¥ = {Res
uniformly in 3 and F(s) is an analytical function.

> 01 > o}, the integral (2.6.1) converges absolutely and

In practical problems, we usually need to find f when its Laplace trans-
form F' is given. In general, this is not an easy task. It generally reduces
to the following complex integral, This integral is also called the Bromwich
integral, Fourier-Mellin integral or the Mellin’s inverse integral,

10 =5 [ o

F(s)e*d
ot ) (s)e**ds,

t>0,
where the path of integration is a vertical line parallel to the imaginary axis
such that 7 is greater than the real part of all singularities of F(s). This
ensures that the path is in the region of convergence. In particular, when all
the singularities are in the left half plane, we can take v = 0, and the integral
reduces to the inverse Fourier transform of F. In practice, when F'(s) satisfies
certain conditions, the inverse Laplace function can be obtained by Cauchy
residue theorem in the complex integration theory and the residue formula
is useful in computing such a integral.

The table lists some Laplace transforms of some frequently used functions
and some properties of the Laplace transform.

Table 2.6.1 Laplace transform and the related properties

Function f(t) Transform F(s) Function Transform
tm—leat (SF_( )) (m > 0) af(t) + bg(t) aF(s) + bG(s)
S —n
coswt 22 / dr- / f(r s (s)
norders 1
. w n ne1—i i
sinwt P12 £ (@) - jz:;)s 19 17(0)
t"™(m > —1) F(LJ:D,Res>O f(ct) 1F(s/c)
s c
5(t—a) e s tf(t) ,%
L s f(®) &
H(t—a) e t e ‘/s F(s")ds
(t) b oma®/4t %e*“ﬁ /O'g(t — ) f(r)dr F(s)G(s)
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2.7 Appendix C: Mittag-Leffler function

2.7.1 Gamma function and Beta function

Let z be a complex number with Re z > 0, then the integral

F(z):/ e t*ldt
0

converges absolutely and is known as the Gamma function or the Euler in-
tegral of the second kind. It is obvious that I'(1) = 1. Using integration by
parts, one obtains

/ e itPdt = —e ' |IE + z/ et lde,
0 0
yielding a fundamental property of the Gamma function
[(z+1) =zI(2). (2.7.1)

By employing this property, the I' function can be generalize into the case
Rez < 0. When —m < Rez < —m + 1, we define

I'(z+m)

Pz) = 2(z+1)--(z+m—1)

Proposition 2.7.1 T'(n+1)=n!l, VneN.

Proposition 2.7.2 There holds the Euler’s reflection formula T'(2)['(1—z) =
for any z with Rez ¢ Z.

sin(mz)
Corollary 2.7.1 T'(1/2) = /=.

Definition 2.7.1 The Beta function, also called the Fuler integral of the
first kind, is a special function defined by

I'(z)(w)
B(z,w) = F((z)—i—(w)

By definition, it is obvious that B(z,w) = B(w, z). The Beta function is
related to the Gamma function by the formula B(z,w) = T'(2)I'(w)/T'(z +w)
for Rez, Rew > 0.

, Rez>0,Rew > 0.

Proposition 2.7.3 The Gamma function satisfies the Legendre formula

I'(z) <z + %) = VW2 7?70 (22).
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Proof Indeed, consider the identity for Re z > 0 that
1
B(z,2) = / (t(1 —t))*tdt.
0

Let s = 4t(1 —t), then

1/2
B(z, ) :2/0 (t(1 — )=t

1 1

= / 7711 —s)72ds = 2172 B(2,1/2),
0

yielding the Legendre formula.

Employing the Beta function, the classical binomial coefficient

n! B I'(1+4n)
"kln—k)! TA+KT(1+n—k)

can be generalized into

o I'(l—-v)
R T Y (27.2)

where the u,v are complex numbers. Specially, when p = k is a positive
integer, Proposition 2.7.2 then implies

I1l-v) 'k+v)

o, = KD —v—k) (=1) KD(w) (-

D Cyps-

2.7.2 Mittag-Leffler function

The Mittag-Leffler function with two parameters is a special function defined
by

R 0.
;FkaqLﬁ eq >

This function is named after Magnus Gustaf (Gosta) Mittag-Leffler, a Swedish
mathematician. When 8 = 1, we usually denote E,(z) = E,1(2) to be the
Mittag-Lefler function with one parameter . When «, 8 are real and pos-
itive, this series converges for all z and hence the Mittag-Leffler function is
an entire function.

Consider the fractional linear differential equation { DYy = oy, v € (0, 1],
with initial data y|;=o = yo. Denote Y(s) = .Z[y|(s). Taking the Laplace
transform of the above equation yields

'Y (s) — 8" lyg = oY (s).
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Therefore, one obtains

svV— 1
Y(s) =

=Y Z Sltvk’

Then taking the inverse Laplace transform, we get the solution in terms of
the Mittag-Leffler function

ktuk

Z R = yoE, (ot").

When o in this example is replaced with ¢i”, then the solution is given
by y(t) = yoE,(0i"t"). When o = 1, § D} reduces to the classical derivative
d/dt, and the solution is given by y(t) = yoet = yoE1(ot).



Chapter 3

Fractional Partial Differential
Equations

3.1 Fractional diffusion equation

This section mainly discusses the estimates of fractional dissipative equa-
tion with Fractional Laplacian. Consider the following fractional diffusion

equation

{ EJ;(_ () u=0,  (tx)€(0,00) xR, (3.1.1)

), z € RY.
The solution of this equation can be obtained by the semigroup method
u(t) = 8% (t)p = e 12",

Next, we will prove the kernel function derived from S*(¢) is a bounded linear
operator on L”(Rd) for1<p< o0

Applying the Fourier transform, the solution of equation (3.1.1) can be
written as

u(t,x) = .7-"71(67”5'2@@(5)) = fﬁl(eftlglza) x p(x) = K * @, (3.1.2)
where

1 ot el
Kt(ﬂ?): W/P{de 5e tlel d§

1
Clearly, when a = 1, K¢(x) is the Gaussian kernel function and when a = 3’
Ki(x) is the Poisson kernel function.

According to (3.1.2) and using Young’s convolution inequality, one obtains
1f*gllee <N flleilgller,  VF € LHRY), g € LP(RY), Vp € [1,00].

It is clear that to obtain the (p, p) type estimate, we need only the L! estimate
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of the kernel function K¢(x). To this end, we first notice that by scaling

Ki(x) =gt~ /R !/ e dy

_d X
=:t 2QK(24:1/—20¢>

Hence, we need only to consider the property of the kernel function K (z)

K(z) = (2m)~¢ / elrtemlE* qe.
RA

Noticing emlE ¢ L'(R%) and taking advantage of the properties of
Fourier transform, we know K € L>(R%)NC(R?). According to the Riemann-
Lebesgue lemma, limj,|_,o K(z) = 0, ie., K € L>*(R4) N Co(RY). Here
Co(R?) is the continuous function that tends to zero at infinity. Similarly,
since |§|”e_|5|2a € L'(RY), then for any v > 0 one has (—A)"/2K € L= (R4)N
Co(R%). Since ice~ 1€ € (L1(R))4, one has VK € L®(R%) N Cy(RY). In-
deed, the function el es (R%), the Schwartz space of rapidly decreasing
functions, hence K € S(R?) from the properties of Fourier transform.

Lemma 3.1.1 The kernel function K(x) satisfies the pointwise estimate
K(2) < C(L+J2) =42, zeRY, a >0,
thus K € LP(R?) for all p € [1,00].

Proof Introducing the invariant derivative L(x, D) = z - D/|z|*> = x - V¢/i|z|?,
then L(z,D)e'*¢ = !¢, Its conjugate operator is defined by L*(x, D) =
—x - V¢/i|z[?. Introducing the truncation of C*°(R%) function x(¢) such
that x(§) = 1 when [£| < 1 and x(£) = 0 when |¢] > 2, the kernel function
can be written as

K(z) =(27)~" /R oL (el g

—(2m)~ / e (£/6) L7 (7167 )
R4
+ (2m) ¢ / (1 — x(¢/6) L (e Yae = 1 + 11,
Rd

where § > 0 is to be determined. Obviously

C

1] < —
|| Jie1<20

|£|20¢71d£ < C|x|7152a+d71.
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For sufficiently large N (e.g., N > [2a]+d), by integration by parts, we know

(LN TH(L = x(€/) L ()| dg

II7] <(27) ¢ /

<Cla|™ / Zmlzﬂa Nelel* qe

et
+ClzTVN S ¢ 5—’f/ Cy|¢[2io—N+ke=Is** q¢
||~ I; k <‘ﬂ<26; €l

_ a— N —|€]2e _ a— a(N—1) — ]2
<Claf™ /|€| 5'5'2 NI g 4 Ola™ /| €2 N e PaN-D € e
>

=

<|g|<25

For arbitrary ¥ = 1,2,---,N — 1, one has |£|20‘(N_1)e_‘5‘2a < C and
|¢2e(N=k=De-IE** < O yielding

T < Clel ( /5 y

|>

epe-Nag+ [

|€|2a—Nd§> < C|x|_N(52a_N+d.
5<[€]<6

Therefore, we obtain the estimate
|K(£C)| < C|x|7152a+d71 + C|x|fN52afN+d.
Choosing § = |z|~! then completes the proof.

The above technique is frequently used in the analysis of the theory of
harmonic analysis and partial differential equations. Similarly, this technique
can also be used to prove the following.

Lemma 3.1.2 For arbitrary v > 0, there exists C' > 0 such that for any
z € RY,
(=A)"K (2)] < C(1+ J2)~*

Thus (—=A)YK € LP(RY) for arbitrary 1 < p < oo

Remark 3.1.1 1. Similarly, there holds the estimate |VK(z)| < C(1 +
|z])~471, and hence VK € LP(R?)(1 < p < 00).

2. According to the above lemma, for arbitrary p € [1,00], 0 < t < o0,
the kernel function Ki(x) satisfies

K; e IP(RY), (-A)"?K; e LP(RY), VK;e LP(RY).
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Proposition 3.1.1 Let a > 0, and the initial value p € L*(R?), then there
hold the following estimates

. d_
Jim 25 Ju(, )72 < A(d, o)lll|7; (3.1.3)
. a+2 2 2
lim ¢2 | Vu(:,)[|7. < B(d, a)ll¢l71, (3.1.4)
t—o0

d d
where constants A(d, «) :/ e*2|7’|2ad77 and B(d, «) :/ |n|2e*2‘"‘2adn,
R

R

Proof Using the Plancherel theorem and changing of variables, we have

(-, t)12

. 4 2 9 %
Tim 135 (- 1) |2 = lim ¢3
4 d lel2oy) - 9 d 2n[2% | 19
= lim % / I o) 2de = tim [ o2 e )Py,
R

t—o0 t—o00 R

For arbitrary t € [0, c0), since

d d
_olp|2a, . _1 o —2|n|?«
/ e M | (nt =22 dn < IISOIIioo/ e 2™ dn < A(d, o) @ll71,

using the dominated convergence theorem then leads to (3.1.3).
Similarly, using the Plancherel theorem, we have

d
. d+2 . d+2 — 2004
i ¢ Va0l = tim o5 [ ePe2e g0 g
d
= tm / Inf2e= 2 |G (nt =25 ) [2dn < B(d, )| |3
R

We complete the proof.

Proposition 3.1.2 Let a € (0,1] and the initial data ¢ € L*(R?), then the
solution u of (3.1.1) satisfies the estimate

_dt2
IVu®)lZ~ < Ot~ 5.

Proof From (3.1.2) and K,(¢) = e~ €*"t one has

IVallie < [ illalds = [ 1ele™ pe)las

2a 1/2 oo e rin
<ol 22 (/ |€|2e2¢l tdg) <C (/ P12 tdr) e
R o
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3.2 Fractional nonlinear Schrodinger equation

This section mainly considers fractional nonlinear Schrédinger equation, which
is divided into two parts. The first one considers the space fractional nonlin-
ear schrodinger equation, while the second one concerns the time fractional
nonlinear Schrédinger equation.

3.2.1 Space fractional nonlinear Schrédinger equation

Now we consider the following fractional nonlinear Schrédinger equation with
periodic boundary conditions

iug + (—A)*u + BlulPu = 0, r e R t>0,

u(z,0) = uo(x), xz €R", (3.2.1)
u(x + 2me;, t) = u(z, t), zeR™t>0,
where, ¢; = (0,---,0,1,0,---,0),4=1,--- ,n is an orthonormal basis in R,

i = y/—1 is the imaginary unit, a € (0,1),3 € R, 3 # 0 and p > 0 is a real
number. For convenience, we denote © = (0,2x) x ---(0,27w) C R™.

When « = 1, equation (3.2.1) is the classical nonlinear Schrédinger equa-
tion, and has been extensively studied in recent decades. The existence and
uniqueness of weak solutions for the initial-boundary value problems can be
referred to [135]. The global existence of smooth solutions can be found
in [101]. In this section, we mainly take advantage of the energy method
to study the existence and uniqueness of smooth solution of the fractional
nonlinear Schrédinger equation. Specifically, we will prove the following
thereom [103]

Theorem 3.2.1 Let a > g If p is an even number, suppose that p > 0
4

when 8 >0 and 0 < p < i when B < 0. If p is not a even number, suppose
n

4
that p > 2[a] +1 when 8> 0 and 2[a] +1 < p < Za when B < 0. Then, for

arbitrary ug € H*®, there exists a unique global smooth solution u of (3.2.1)
such that

u € L®(0,T; H**(Q)), us € L>=(0,T; H**(Q)).
Theorem 3.2.2 Let a > 0 and ug € H*(Q). When § > 0, suppose that

4
a if a < ® . When B < 0, suppose that
n—2a 2

p>0ifa>gcmd0<p<

4
0<p< iy Then, there exists a global solution u of the equation (3.2.1)
n
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such that
u € L=(0,T; H**(Q) N LPT2(Q)), wu; € L0, T; H™%(Q)). (3.2.2)

Below we introduce some notations. Since w is spatial periodic, it can be
expanded by using Fourier series u = E ape’<F*> where ay, is the Fourier

kezn
coefficient of u. Thus 0,,u = E ik; ape'<F*> Here the fractional Laplacian
kezZn
(—A)® can be expressed as (—A)%u = E |k|2“ape<F*> . Let
keZn
4= {U|U= > " are' < NP agl?, ) Jak]? <OO}
kezZn keZn keZn

and H% denote the completion of A under the norm

1/2 1/2
lull g = (Z |k|2“ak|> + (Z ak|2> :

keZr keZnr

Clearly, H* is a Banach space. It is easy to prove H® is a Hilbert space
under the inner product

(w,0) e = (=) Pu, (=2)20) = 3 [k**arby.
keZn

Hereinafter, the norm of function space H = L?({) is usually denoted as
| - ||, its inner product is expressed as (-, ); the norm of LP(Q?) is denoted by
|-l Lr(q). Obviously [|-[|z2¢qy = || -||. H~ denotes the dual space of H®. In
order to study the problem (3.2.1), we introduce the following Banach space
V = H*(Q) N LP*2(Q), whose norm is given by

[vllv = o]l ge () + V]l Ler2()-

Definition 3.2.1 The space LP(0,T; X) consists of all the measurable func-
tions f:[0,T] — X with

T P
| fllzeo,;x) = (/ ||f||§<dt> <0
0

for 1 < p < oo, and when p = oo,

Il fllzeo,7:x) = sup [ fllx < oo.
0<t<T

Let C([0,T]; X) denote the space of all the continuous functions f : [0,T] —
X whose norm is given by || fllc(o,r);x) = maxo<i<r || fllx-
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What follow are some a priori estimates and the proofs of the theorems.

Lemma 3.2.1 Suppose a > 0, p > 0, if u is a solution of equation (3.2.1),
then
sup [lu(t)| = [luol|- (3.2.3)

0<t<oo

This lemma is obvious. Multiplying the equation by u, integrating with
respect to the space variable x over (2, and taking the imaginary part, one

d
has — ||u(t)]|? = 0.
as — u(t)]

In what follows, T" denotes an arbitrary positive constant, and C' a con-
stant depending only on initial value and T'.

4
Lemma 3.2.2 Let o > 0. Suppose p > 0 when >0 and 0 < p < 22 when
n

B < 0. Then the solution u satisfies the estimate

sup ([[(=2)*2ul| + [[ullLo+2) < C|luollae [[uol|Lo+2)-
0<t<oo

Proof Multiplying the equation by u; and integrating over €2, then
(g, ue) + ((=A)%u, ug) + (Blul’u, ug) = 0.

Taking the real part yields

d 2
el _Aoz/Q 2 e p+2d =0
O T T

and hence
23 253

2112 +2 2. 12 +2

||(_A)a/ ull +p+ 2”“”’2»%(9) = ||(_A)a/ uo| +p+ 2||U0||/2p+2(9) = E(uo).
(3.2.4)
If B > 0, then
1(=A)*"?u)|* < E(uo) < C(lluoll (e, luollLo+2(0)),

and

[ullLo+2q) < C(lluollma (), luollLo+2(a))-

np

Wh 0, let 0§ = ————
en B < 0, le 2alp+2)

inequality

< 1, then by the Gagliardo-Nirenberg

lull 22 0y < Ol (=) 2u] P02 u] =00+ < O (~2)>/2ul 3,
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1 1 1 4
where i 0(2 — Z) +(1 —9)5. Since p < %, ie., % < 2, then
2|ﬁ| 2 1 e
2L a2y < -2 2l + . (3.2.5)

Therefore, using equation (3.2.4) and inequality (3.2.5), we know
(= 2)*"2ul|® < C(J|uoll e q), l1woll Lo+2(a)),
lull Lo+2() < Cllluoll e () luollo+2(a)),
completing the proof.

Lemma 3.2.3 Let o > g and p satisfies the conditions of lemma 3.2.2,

then u satisfies

sup ([luel| + [|(=A)%ull) < C([Juoll 2o e))- (3.2.6)

0<t<oo

Proof Differentiate the equation with respect to time ¢, multiply the resulting
equation by uy, and then integrate with respect to = over €2 to obtain

(i, ug) + ((—A)%ug, ug) + (%(6|u|pu),ut) =0.

Taking the imaginary part yields

1d

d
3 gyl + 3Bl ) =0 (3:2.7)

Moreover, since
R i(ﬂ|u|pu) Uy :S/i(ﬂ|u|pu)ﬂtdx
dt ’ o dt
:%/B|u|p|ut|2dx+%/ %|u|p*2(|ut|2\u|2+u2ut2)dx
Q
—\s/ pﬁ|u|” 2(v?u?)dz,
Q

(3.2.8)

by (3.2.7) and (3.2.8), we have

1d

2dt||’U,tH2+(\/ §|u|”_2(u2utz)dx:0.

Integrating the above equation with respect to time from 0 to ¢ yields

i
Jlue||* = _/ %/ pBlul’~?(u*af)dzds + [ur(z,0)|
0 e (3.2.9)

t
<c/ /|u|2|ut|2dxds+||ut(x,0)|\2.
0 Q
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Using (3.2.1) as well as Sobolev embedding inequality ||u L~ < C||u| g (o) <
n .
C for a > 5 gives
[[ur (2, 0)[| < ClI(=A)%uol| + Cl|Bluol uoll < C(|luoll 20 (0))-

Thus it follows from (3.2.9) that

t t
P < €l oy Pl O < € [ Pt CC ol )
Taking advantage of Gronwall inequality, we have

ue]|* < Clluoll ),
and hence

(=) %ull < el + || BlulPu]|
<Clluollmze(0)) + Cllull] o lull < Clluollm2e (),

completing the proof.

Lemma 3.2.4 Let o > g Suppose that p satisfies the conditions of Lemma
3.2.2 if p is an even number. If p is not an even number, suppose that p > [a]

4
when B> 0 and [a] < p < =2 when B < 0. Then the solution u satisfies the
n

estimate
sup [[(—A)* 2wy < C(|Juol| e (@)
0<t<oo

Proof Differentiating the equation (3.2.1) with respect to time variable, mul-
tiplying by i, and then integrating with respect to the spatial variable x
over €2, we have

. o d
(e, uge) + ((—A) g, uge) + (&(ﬂlul"u), Utt)-
By integration by parts, we have
d d
3 lI(-2)*%u > + 2Re (Wiuv’u» W) -
Since

2Re (%(BMLI utt) = 0

4 1) Alup

PB p—2f 2d o 7d2
/Q4|“| (dtt+ a4
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one has

d
=AY 2|12 p
IR 20l 4 [ (54 0) s e

PB o d 5 od
—|—/Qz|u|p 2(uzautz+u2aut2>dx.

This implies that

d d
d—n(fA)a/%tnz G L (54 1)stupiuas

+& p5|u\” *(wPaf + wui)da
d o8 [ d
__(r Ll s 2de — PP P=2,2)7;2 3.2.10
(2+1)5/th<|u| e = 27 [ S tyidar (32,10
pﬁ
[Pyt

— -1
<0/Q ul*HuPde < Cllullf< g lluell 2oy < Clluelzs)

1 1
Let 6 = 6_ < 3 then 3= 0(— — %) +(1—0)§. By the Gagliardo-Nirenberg
inequality and (3.2.6), we have

luell 2oy <Cllue >~ (=A) ]|

, (3.2.11)
<C|(=2)*2ue|** < Ol (=2)*us* + C.

Then from (3.2.10) and (3.2.11), we have
A2, 112 p Pl 12 ﬁ p—2 2.2
I(=2)*ue|”+ [ (5 + DBl |us["dz + Jul?~? (u?@ + @uf)dx
o 2 o 4
< 8) u(,0)+ [ <§ N 1) 1Bl o s (,0)
Q
+/ luo|P~ 2 (ud iy (x,0)? + adu(x, 0))dx+0/ [(=A)% 2u,2ds 4+ C

<c+c/ (= A)*/ 2y, |2ds.
(3.2.12)
Indeed, from (3.2.1), we have

1(=2)*"2ue(a, 0)| (=) 2u(z, 0)]l + [[(=2)*/2(Bluo|*uo)|

<C|luol| 3 () + Cllluo| uol| grrer+1(qy < Clluol| a3 (q),
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where p > [a] if p is not an even number. On the other hand,
/Q 18| (g + 1) luo|?|uy(z, 0)]*dz + /Q %|u0|p72(u§at(x,o)2 + tgue(x,0)%)da

<Clluol| s g e, 0)I* < Clluol 120,

and from (3.2.11), we have

/|B|< +1)|u|”|ut| dx—i—/ p6|u|” 2(w?u? + wu?)dx

1/3 2/3
<OlulugPda < C’(/ |u3pdx) (/ |ut|3dx>
Q Q

1
<ON2)PulP < I (=A)wl? + .

Then using (3.2.12) and Gronwall inequality, we have

I(=2)*"2u* < C + C/Ot [(=2)*"?uy|[*ds < C(|Juo| s« (@)
completing the proof.
Lemma 3.2.5 Let o > g If p is an even number, suppose p obeys the
hypothesis of lemma 3.2.2; if p is not an even number, suppose p > 2[a] + 1

4
when B > 0, and suppose 2[a] +1 < p < % when B < 0. Then, there holds

for the solution u of equation (3.2.1) that
sup ([Jurel| + [[(=A)%uel]) < C([Juoll oo (2))-
0<t<oo

Proof Differentiating twice the equation with respect to time variable, mul-
tiplying the resulting equation by %y, and integrating with respect to x over
Q, we have

(e, wee) + ((—A) " uge, wre) + (dt2 (Blulfu), Utt) =0.

Taking the imaginary part, we have

1d 2
g sl + (320l ) = (3213

By direct computation
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+S%(|u|p72u2ﬁtt, utt)~

The first term of the right hand side can be estimated as

2
%(% +P)5(|UI”_2|Ut|2U7utt) <C/ |7 g |* e | dae
Q

—1
SOl 7 g lluel 7oy e
<Cllutl|Taeq) + Clluw .

In a similar way, the second and the third term of the right side can be
estimated as

2 2
S 2+ 2)B(lulr~2u2a, u) + S 2 = 2) B(lulr~4u2ud, us)
4 2 4 2
<Cllutllzagq) + Clluw|.
The last term can be estimated as

B PP
S7p(|u|p 2u2utt7utt) < CHuttHQ. (3214)

According to (3.2.13) and (3.2.14), we have

t t
eI <C/ |\Ut||i4(9)d5+c/ luze|*ds + [Jue (2, 0)%. (3.2.15)
0 0

n 1 1 1 « 1 .
Let 0 = 30 < T then 1= 9(5 — E) +(1- 9)5 Taking advantage of

Gagliardo-Nirenberg inequality, Lemma 3.2.3 and 3.2.4, we have
lutll ey < Cllugl* (= 2)*"2us||” < C(l|uoll se(e)-

From the equation (3.2.1) and Lemma 3.2.3, we know
a o d
l[uee(, O] S[(=A)*((=A)%uo + Bluo|*uo)ll + || 7 (Blul*w)l|
<C[(=A)**uo|| + ClI(=2)* (Bluo|*uo)|| + Cll[uol”ue(z, 0)]]

SC([luol e () + Cll(=A)* (Juo|"uo) | + Cllus(x, 0)]]
<SC([[uoll s () + ClI(=A) (Juo| uo) |-

(3.2.16)
n
If @ > max {5, 1}, then

1(=2)% (Juol"uo) |l < CI(=A) T (Juo|uo) || < C(lluollrrse (s,
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where p > 2[a] + 1 when p is not an even number.

When n=1 and % <a<l,
1(=A)*(luoPuo) | < CllA(Juol uo) | < C([luoll g2-)-
Thus, from (3.2.16), we know
[[use (2, 0)[| < C([luoll mrae)-

Furthermore, according to (3.2.15), we know
t
Juel < € [ JualPds + Clluol o),
0

which implies by Gronwall inequality that

uel* < C(lluoll gae(a))-

But

|5t

SCONullf oo (g luell < Clluol 2o (),

then there holds
o d
1(=2)%w || < Clluwll + Cll 7 (lulPw)ll < C(lluoll e ())-

Therefore

sup [[(=A)%ue|| < C(lluol grea (),
0<t<oo

completing the proof.

Lemma 3.2.6 Supposing o and p satisfy the conditions of Lemma 3.2.5,
the solution u of equation (3.2.1) satisfies the following a priori estimate

sup [|(—2)**ul| < O(||uol mse).
0<t<oo

Proof Let a > max{g, 1}. Applying equation (3.2.1), Lemma 3.2.3 and
Lemma 3.2.5, we obtain

(=)l <CI(=A)ue|| + Cll(=2)*(lul )|

. a1 (3.2.17)
SON(=A)%ue|| + CI (=AY (Jul"w)[| < C([|uollmae)-
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1
When n =1 and 5 <ac< 1, by (3.2.1) and Lemma 3.2.5, we know

[(=2)%u|] <C||(=A) us]| + Cll(=2)*(Jul?u)]|

(lluoll zrae e)) + C(IA(ul u)])

Clluoll rse (0y) + Cllull e gy 1 A0l + Cllull§ = 170
C(l[uoll maa(a)) + Cl|Aull + OHVUH%‘I(Q)'

NN N
Q

(3.2.18)

2
Let 0 = o < 1, then by Gagliardo-Nirenberg inequality and Lemma 3.2.1,
!

we know
(6% — 1 o
Cllaul < Cl(=A)*ul®||ull'~* < T2+ C.
1
Let § = < —, then by the Gagliardo-Nirenberg inequality, we can

160 — 4 4
similarly obtain

ClIVulfaq) SCI(=2)%u|*|[Vul 242

s 1 o
<C[(=A)*u*[|(=2) u]?1 =0 < A=A ]+ C
(3.2.19)

Thus we conclude that when n =1 and 1 <a<l,

I(=A)**ul| < C([luo]l e (a))-
Therefore, taking advantage of (3.2.17) and the above inequality, we complete
the proof.

Before the theorem 3.2.1 is proved, we take advantage of the Faedo-
Galerkin method to prove the existence of the weak solution of equation
(3.2.1). In doing this, three lemmas are given below.

Lemma 3.2.7 Let By, B and By be three Banach spaces. Assume that
By C B C By and By and By are reflexive. Suppose also that By is compactly
embedded in B. Denote

d
W = {olo € L™(0,73 Bo), v/ = 2 € L (0,73 By)},

where T' < o0 and 1 < p; < oo, © = 0,1, then W is a Banach space when
equipped with the norm

”UHLPO(O,T;BO) + ||’U/HLP1((),T;BI),

and W is compactly embeded to LP°(0,T; B).
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Lemma 3.2.8 Suppose Q is a bounded domain in T, xRy, g,,9 € LYQ)(1 <
q < 00) and ||gullpeq) < C. Furthermore, suppose that g, — g a.e. in Q,
then g, — g weakly in L(Q).

Lemma 3.2.9 Supposing X is a Banach space, if g € LP(0,T;X) and

3
a% € LP(0,T; X)(1 < p < ), then g € C([0,T]; X) after possibly being

redefined on a set of measure zero.
In what follows, we prove Theorem 3.2.2.

Proof of theorem 3.2.2. We prove this theorem in steps.
In the first step, we fix a positive integer m and seek a function u,, =
um(t) of the form

m
um(t) = Z gjm(t)w]7 w; = ei<j,$>aj c Zn7
l7]=1

where g, (t)(|7] = 0,1,--- ,m) satisfy the following approximating equations
(1t wj) + (=A) YU, w5) + (Bltm [ um, w;) =0, 0<[j] <m, (3.2.20)
with the initial conditions

U (0) = uom € Span{w;,0 < |j] < m}, uom — uo(m — 00) in HY(Q).
(3.2.21)
Then (3.2.20) and (3.2.21) are a system of nonlinear ordinary differential
equations. According to standard existence theory for nonlinear ODEs, there
exists a unique solution uy, (t) for 0 < ¢ < t,,. By the a priori estimates given
above, we obtain that t,, = T.
In the second step, we make several a priori estimates. Taking into con-
sideration Lemma 3.2.2 and Lemma 3.2.1, we obtain

Uy € L°°(0,T; H*(Q) N LPT2(Q)). (3.2.22)
For arbitrary ¢ € H*(2), one has
(ittm,¢, ) + (=) tm, ) + (Bltim | um, @) = 0. (3.2.23)
Thus

|, e, )| <[(=2) s @) + [(Blum| tm, ©)]
<ON(=2)*Pumlll(=2)*¢ + Cllumll 7z oy 1l o2

<C(=2)2p| + Cligll Lo+2(0)-
(3.2.24)
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By Sobolev embedding theorem, one has ¢ r,+2(q) < C||(—A)*/?¢||, and

from (3.2.23) and (3.2.24), we know |(um.¢, p)| < C||[(=A)*/?¢]| for all p €
H*(Q). Therefore,
Ut € L=(0,T; H-()). (3.2.25)

In the third step, we pass to the limit m — co. By (3.2.22) and (3.2.25),
there exists a subsequence {u,} of {u,,} such that

u, —wu, weaklyin L*(0,T; H*(Q)); (3.2.26)
Upt — ug, weaklyin L%(0,T; H™*(Q)). o

Using (3.2.22), we know {u,,} is bounded in L?(0,T; H*(f)), and from
(3.2.25), we obtain {u,,} is bounded in L?(0,7; H=*(f2)). Let

W = {v|v € L*(0,T; H*(Q)),v; € L*(0,T; H*(Q))},
equipped with the norm

lvllw = Hv||L2(0,T;Ha(Q)) + Hvt”L2(O,T;H*f¥(Q))'

Since H*(f2) is compactly embedded to L?(Q2), Lemma 3.2.7 shows that W
is compactly embedded into L2(0,T; L?(Q2)). But u,, € W, then there exists
a subsequence u,, such that u, — u strongly and a.e. in L*(0,7; L*(2)). By
(3.2.22) and Lemma 3.2.6, we know

Py — |ulPu weakly in L°°(0, T; L+t (2)). (3.2.27)
Fixing j and using (3.2.20), we obtain
(it 107) + (=)t 05) + (Blual P, w5) = 0. (3.2.28)
By (3.2.26) and (3.2.27), there exists a subsequence u, such that
((=A)Yuy, wj) = ((—A)%u,w;)  weakly in L*°(0,T);
(U, wy) = (g, wy) weakly in L*°(0,T);
(BluplPup, w;) = (BlulPu, wy) weakly in L>°(0,T).
From (3.2.28), we know that for any fixed j
(g, wi) + ((=A)%u, w;) + (Blulu, w;) = 0,

then

(iug, v) + ((=A)%u, v) + (Blulfu,v) =0, Yo e H*(Q).
Therefore, u satisfies equations (3.2.1) and (3.2.2). By (3.2.22), (3.2.25) and
Lemma 3.2.9, we have u, € C([0,T]; H~%(2)) and hence u,(0) — u(0)
weakly in H~%(£2). Finally, by (3.2.21), we know u,(0) — wuo weakly in
H*(Q). Therefore, u(0) = ug.
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Proof of Theorem 3.2.1 By the a priori estimates from Lemma 3.2.1 to
Lemma 3.2.6 and theorem 3.2.2, there exists a global smooth solution u for
(3.2.1) such that

u € L0, T; H**(Q)), wu € L*(0,T; H**()).

We now prove the uniqueness. Let u and v be two solutions of equation
(3.2.1) with the same initial data. Let w = u — v, then

iwe + (=A)%w + B(Jul’u — |v|Pv) = 0.
Taking inner product of this equation with w, we obtain
i(w, w) + ((=A)%w, w) + B((Jul’v — [v|v), w) = 0.

Taking the imaginary part, we have

5 <l + S8l — Jol?v),u—v) = .
Since
SB((Jul?u = [v|*v), u —v) <C|(Jul”(u —v) + (lul’u — [v]"v)v,u — v)]
<C|lull ooy llu = vl + Clfv]| oo oyl [ul”
= [l Hu = vl < Cllwl?,
the Gronwall inequality implies |wl||? = 0, yielding w = 0. The proof of the
Theorem 3.2.1 is then complete.

3.2.2 Time fractional nonlinear Schrédinger equation

The main purpose of this section is to consider the time fractional nonlinear
Schrodinger equations (1.4.2) and (1.4.3) with time fractional derivative,

L2
(iT,)" Dy = =537~ 07¢ + Nv, (3.2.29)
m
and
L2
i(Tp)" Dyt = =505 + Ny, (3.2.30)

where D} denotes the v-order Caputo fractional derivative. Setting o =
Ny /TY and 8 = L2/2N,(T;,)", then the equation (3.2.29) can be rewritten
as

v B o
Dy = —i—yaiilj + i—ulﬁo
On the other hand for 0 < v < 1,
d [DYy(t)]i=o

D;7"Dyy(t) = —y(t) —

o7 (3.2.31)

ti=vT(v) -~
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We obtain

B o2 (D) + & (DY) +

_iT’ 1”7

[DY9(t)]t=0

K = 151*”1“(1/)= '

(3.2.32)
In this equation, since the Hamiltonian depends on time, we cannot expect
the probability conservation. Meanwhile, the Hamiltonian is nonlocal in time,
we cannot expect the inversion invariance with time. Finally, since 0 < v < 1,
the last term on the RHS will tend to infinity as time tends to zero. Consider
the nonlocal term in (3.2.32)

1-v _ 1 b d dr
Dy Vip(t, x) = m/o Ew(ﬂﬂ?)m-

To give a possible physical interpretation for this term, we first recall the

interpretation of the first-order time derivative in the classical quantum me-

0 E
chanics Tl where E is the energy operator (Hamiltonian). So the inner

ih
product / Y(t,z)* D}~ ap(t, x)dz can be interpreted as the weighted time

average of the energy of the wave function, the weighting function being
t—m)"".

Denote 1; = Dtlf”z/i. For the classical free particle Schrodinger equation,
the probability current density and corresponding equation are respectively

P=yy*, 0P = 0" + 0.

Similarly, we can obtain the probability current density equation of fractional
Schrodinger equation as

= (- osi+ PR v~ e+ PSR,

Rearrange above equation to obtain

0eP + 30, (azw* + a;/g“”) =B (aw.aw* + 8”6-3”)
v (—1)~ it (—1)¥

Y [DYY(t, x)]i—o0 + Y[DYY* (L, x)]i=0
AT () :

+
(3.2.33)

In this equation, the right hand side term can be regarded as a source of the
probability current equation. If the Hamiltonian does not depend on time,
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ie., if v — 1, the right hand side of (3.2.33) would be zero. The probability
current of fractional equation (the left second term) is

B B

iv (—i)

Since the right hand of (3.2.33) does not equal to zero, the probability is not

J = (0,000 + (Dut*).

conserved for the time fractional Schrédinger equation. Denoting the right
hand items (3.2.33) as S(x,t), we then obtain

P +0,J=5.

Integrating this equation with respect to space variable, and letting the wave
function and its first derivative equal to zero at infinity, we obtain

8,5/ de:/ Sdx.

1. Free particle fractional Schrédinger equation.

The time fractional Schrédinger equation for a free particle is given by

. L2
(iTp)" D{ = *2]\;;85770-

Performing the Fourier transform and letting ¥(&,t) = F(¢(x,t)), we can

L 2
pro— 9" g
ON (i)
Letting w = (Ly€)?/2N,,, T} and using the Mittag-Leffler function, the solu-

tion can be expressed as

obtain

_ %
_I/

1/vy

U =V,E, (w(—it)"), or ¥ {e "t —uF, (w(—i)",1)},

where the function F), is defined as

_ psin(vm) /OO e "trv=ldy
N 7 o T —2pcos(vm)r’ + p?

Fy(p,t)

Taking advantage of the inverse Fourier transform, we obtain

vlont) = Fro(e 0 =z [ @ L -0} dg

R v
= ¢s(z,t) +¢p(d, 1),

where the first term

1 : s 1/w
t) = — 1x§\IJ —iw td
sl t) = 5o | et g
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is oscillating and the second term

TT

Yp(z,t) = ;—1/Reix5\IIOF,,(w(fi)”,t)d§

decays to zero as time goes to infinity. When v — 1, we have ¢p — 0, and
then the solution reduces to the classic integer order Schrodinger equation.
1o can be normalized such that

/ (2, 0)* (2, 0)d =
R

As to the total probability as time evolves, we have the probability limit
when time goes to infinity

tle /Rw(:v,t)w*(w,t)dx
v L1/
= lim ]:1(0 Wy (w(—i)Y, )
i - {e vE, (w(-1) t)}

t—o0 v
Uy (s -

—1 _0 —iw t Y4
F (V {e VE, (w(—i) ,t)})
2n —iw!/" v
ﬁtlim Tp{e ' —vF, (w(=1)", 1)}
(Tofe ™ et VE, (w(—i)",t)})*d¢
2n

1w L 1/w
== lim [ Wge @ Wi fd¢
V4 t—oo R

2m *
=37t [ wowiae
2t | vt

Therefore, using the normalization condition, we obtain

1
lim/th *(x,t)dz =—>1

t—o0

2. Potential well situation.

Finally, let us consider the following ideal situation in which the particles
are in a infinitely deep potential well V(z) =1 for 1 < x < a and V(z) = o
otherwise. In this case, the equation can be written as

. L
(1) D = 5202,

P(0,8) =0, (a,t)=0.
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This can be solved by separation of variables. Let 1 (x,t) = X (z)T'(t), then

we obtain 12 o
o DIT » 02X
(iTy) T - AN, X A
Under the boundary conditions X (0) = X (a) = 0, we have

nnl2\?% 1
X,, = ¢, sin nrw , Ap = Py ——.
a a 2N,,

Normalizing to obtain the eigenfunction

Un(z) = \/2/asin(naz/a), /0 [t |?da = 1.

n
(iT,)¥
1 and using the Mittag-Leffler function, the solution can be written as

Now, the equation of T' can be written as Dy T = T. Letting T'(0) =

T.(t) = E,(wn(—it)"),

or
1 s 1w
To(t) = - {e_“"l/ t_ VFV((—iw)”,t)} L wn = ATV

v

1
It is easy to know lim;_, . |T(t)| = —. Then the solution is given by
v

Yn(x,t) = \/gsin(nﬂ:m/a)% {e*i“’l/ut — VFV((fiw)”,t)} .

Similar to the free particle situation,

lim / (s ) (1) o =
0

t—o00 1/2

3.2.3 Global well-posedness of the one-dimensional fractional
nonlinear Schrodinger equation

This section considers the following one-dimensional fractional nonlinear
Schrédinger equation [107],

1
iug + (=A)u+ [uPu=0, (tz)eRx R,§ <a<l
u(z,0) = uo(z) € H*(R).

(3.2.34)

We will obtain the global well-posedness of equation in L?. We have shown
the global well-posedness of periodic problem (3.2.34) in H**. In what fol-
lows, we will prove the posedness of Cauchy problem (3.2.34) in L? with
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% < a < 1. Unlike the nonlinear Schrédinger equation, Strichartz estimates
are not enough for solving the fractional nonlinear Schréinger equation in
L2, we also need the local smoothing effect and maximal function estimates.
Thus, we will use the Bourgain’s space to consider the well-posedness for
(3.2.34).

To this end, we introduce some notations. We usually use its integral
equivalent formulation to study the problem

u(t) = S(tyug — i /O St — ) |ul2u(t)t’,

where S(t) = F;1eitlé”" F, is the semigroup of equation (3.2.34). First we

define
1Lz = ( / ( / If(x,t)|‘1dt)§dx>p ,

1oz = (/Z(/Z If(x,t)|pdx)zdt>q |

For s,b € R, spaces X, and )_(571, are defined to be the complete of the
Schwartz function space in R? under the norms [29,122,124]

lullx, , = IS(=t)ull e = 146)* (= $(E)) (€, )| 22
lullx,, = IS@)ull ey = 106)° (7 + $E) UE T 12124
where ¢(¢) = [¢

Denote by 4(7,£) = Fu the Fourier transform of u with respect to vari-

**. We easily obtain [|ul|x, , = [lull, ,-

ables t and z, and by F(yu the Fourier transform only in the variable (-),

respectively. Denote by / dé the convolution integral

*

/ dTldTQdngfldfgfg.
§=81+&2+E3;7=T1+T2+T3

Let
o=1 — [€**, o1 =11 — |&1]*Y, Go = o+ |E|?Y, o3 =3 — €37, Ga = Tu +|E4|*,
== +6+E3, Tu=T=T1+ T2+ T3,

then
0 — 01— 02 — 03 = —[{** + 612 — &[> + &7,

or
014 02 + 03 + 54 = — |G 2 + &7 — 62 + |&a]*
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Let ¢ € C°(R) with ¢ = 1 on [-1/2,1/2] and suppy C [—1,1]. Denote
s(+) = (671(+)) for some 6 € R\ {0}. Below we often use A ~ B to denote
the statement that there exists a constant C; > 0 such that A < C1B and
B < C1A, A < B the statement that there exists a large enough constant

1
C5 > 0 such that A < C_B and A < B the statement that there exists
2

C3 > 0 such that A < C3B. In what follows, a+ and a— denote a + ¢ and
a — ¢, respectively, for some 0 < ¢ < 1.
We will prove the following

Theorem 3.2.3 For 1/2 < a < 1, the Cauchy problem (3.2.34) is globally
wee-posed in L?.

In order to establish the local well-posedness of the equation, we need to
establish some linear and trilinear estimates. For this, we need to employ
the [k; Z] multiplier method (refer to [216]). Let Z be arbitrary Abelian
additivity group with an invariant measure d¢. For arbitrary integer k > 2
I'x(Z) denotes the following “hyperplane”

Th(Z2) = {(&1, .. &) € ZF 1 & + ... + & = 0},

which is endowed with
/ f= / J(€1y s &1, =61 — oo — §p—1)dEy..dp1.
I'n(2) Zk—1

Define [k; Z] multiplier as the function m: T'y(Z) — C. If m is a [k; Z]
multiplier, we define |[m||(,z to be the best constant such that

k

’/m o] £

j=1

<l m gz H 115 a2y

for all test function f; defined on Z. In this way, ||ml,z determines a
norm of m. When m is defined on all of Z*, by restricting to ['y(Z) we
can similarly define the norm ||m/||j,z;. We have the following property of
Imlljk;z) (see [216]).

Lemma 3.2.10 (Composition and TT*) If k1,ks > 1, my and mg are
functions on Z* and Z** respectively, then

||m1(§1a ce )Ekl )m2(€k1+1’ v 7§k1+k2)||[k1+k2;2]

<[ma&as- s Skl kg llme(€as o Skl k1. 2)-

As a special case, for all functions m : Z¥ — R, the following TT* holds

Hm(glv cee 7€k)m(_€k+17 ey _€2k)“[2k;Z] = Hm(gla cee agk)|‘[2k+1;z]~
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Lemma 3.2.11 The group {S(t)}T% of the fractional Schrédinger equation
satisfies

1
| D 2S(t Juol|Lse 2 Slluollrz,  the local smoothing effect

|Dz S( JuollLarse Slluollzz,  the mazimal function estimate

||S( Juollzars Slluollzz,  the Strichartz estimate

||D S(t )UOHLgLf Slluollzz-
f(&7)
L 3.2.12 Let FF,(6,7) = — 2970y
emma e »(&,T) 05— e en
a1

1Dz 2 Fpllpeer2 S ||f||L§L37 p>1/2

||D_ZF lLacee SN Fllzzez, p>1/2

1D Fyllians < 1 flizre. p>1/2

|D: T F lracs S fllezezs p>3/8

[ FpllLars S ||f||Lng7 p>1/2

1D Fyllus s < 1 fllizees 0> 172
2q —

Follsens S Ifllizsz. o> 2522 <a <

_a=2_ -2
D ** Fpllpars < [fllr2z2, P> 2—q 2< g <.

Lemma 3.2.13 (Linear estimates [123,124]] Let s € R, - < b < 1, and
0<d<1, then

[45(£)S ()uol|x.., <CO=°[|uo| -,

Vs (t /St—t t")dt’

‘ ’L/J(s(t)/o St —t)f(t)at

195 11x.0- KO8 f]1x
1
Lemma 3.2.14 If <b < , then there exists C > 0 such that

<O8: 7 fllx

s‘b

s,b—17

1_
<062 b||f||Xs,b—17

Hs

s,b/—1"

dz C
/R (x — a)?b(z — )2 < (a — Bys—1"
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Lemma 3.2.15 If f, f1, fo and f3 belong to the Schwartz space on R2, then

/ﬂ&ﬁ&mﬁﬁ&mﬁﬁmmz/ﬁmhmMMt

Lemma 3.2.16 For arbitrary Schwartz functions uy; and ug with Fourier
support in |&1| ~ Ry and || ~ Ra, respectively. If & - & < 0 or Ry <
RQ(RQ < Rl), then

lustiz]lrzrz S lurllx, y  lluzllx, ,
Remark 3.2.1 By multilinear expression, we have
‘ 1

(01) /2 (54)1/2~
Proof Define 7o = 7 — 71, & = £ — & and o = 7 — |¢|>*. By symmetry, we

can assume |&1| = |€2].

~Y
[3,RxR]

Case 1). When |o1| 2 |£1]2@ or |52| = |&]**.

By symmetry we assume |o1| 2> |£1]2%, then using Lemma 3.2.12, we have
Jroll gz < lhnllgee g Nl g <l , uellx, |

Case 2). When |o1| < [£]2% and |72| < |&]?.

Then from o — o; — G2 = —[&]2Y + [& 2> — € — &2 < &), it fol-
lows that |o] < |€&1]%*. Let fi(m1,&) = (01)Y/?Ta1(m1, &) and fa(r2, &) =
(& >1/2 tia(72,&2), then

lurtiallpzrz =[1F (uatiz)llr2re = [1(tix * t2)(€)] 212

H//hmﬁﬁﬂsﬁfm@@a
(/) mmee)
(//(fl(ﬁ’51)f2(727€2>)2d£1d71)2
(// deydn 1_>;

o )
</ Ju 1“1’51”2(%£2>>2dgld71)2
(] iy

212
L3L2

L2L2

N

LELy

272
L2L2

N

Ifillzzzllf2llzzre-
LELy
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It suffices to show that

A& dr :
I <// 51 1 ) ||Lg°L$°§1'

Using Lemma 3.2.14, when Z < b<1/2, we have

// dTldfl
Rz (11— [61]29)20(7 — 71 4 [§ — &1 [?2)?0

dé;
<C/R T e Gt

To integrate with respect to &, we change variable p = 7 — |&; 2% + € — &;]°.
From &,( — &) < 0 or [§ = &| < [&], it follows that du ~ |&[**~1dé;.
Moreover,

po=1— 6P+ 6P — & + 16 - &P S fel*

Taking b = 1/2 — ¢ for small enough € > 0, we have when « > 1/2 that

dfl -~ 1 d,u 1-2a—ae <
/R T P Ty T T P /R T ~ [l .

This completes the proof of Lemma 3.2.16.

Below we consider trilinear estimates and prove the following

Theorem 3.2.4 Assume Fuy = 11(71,&1), Fug = uz(72,&2) and Fusz =

u3(73,&3) are supported in {(&1,71) : [&1] < 2HU{ (&2, 72) « [&2] < 2HU{(&3,73)
&3] < 2HU{(&1 + &+ &, + 12 +73) ¢ €1 + &o + &3] < 6}, then

lurtizusllxg 1oy < Clluallxg o l[w2llxo 1o llusll X 1 oy

Proof By duality and Plancherel identity, it suffices to show

/f — b}—ul(ﬁ,fl)}—uz(Tz’52)}_%63(73,53)

f 7,8) f1 Tl,51)f2(72752)f3(737§3)d5

1/2 1/2+< >1/2+<0_3>1/2+

< COlfllL. H 1/l

j=1
for all f S LQ fT , where f1 = < > /2+U/\1, fQ = <5’2>1/2+@, f3 =
(o3 >1/ *T%3. By multiple linear expressions, (3.2.3) is established only when
’ 1

<
(01)1/2H (55) 12+ (g3) 1/2+ (34)1/2- S L

[4,RxR]
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Let
f](f,T) _ 2 f2(§> )
(57 ) (1+|7_ £2a|)p’ 1 3 ]:F (§5 ) (1+|T+§2a|)
f& )
FF, (5, ) (1+|T €20{|)p'

By symmetry, we need only to consider the following two cases.
Case 1). When [¢] < 6.

Using Lemma 3.2.12 and 3.2.15, the integral I' restricted to this domain is
estimated by

f 7,&)f1 71751)f2(72 §2) f3(73,&3)d0

1/2 1/2+< >1/2+<0_3>1/2+

(o1
:C/Fl/zf ) F11/2+ ) F12/2+ ) Ff’/2+(x,t)dxdt

SCIFijalpapalFLyop sl FE o lLa pall By s oo
SOl 2zl fillzzee 2l 2z fsll L2 re-

Case 2). When [§;]| S 2.

Using Lemma 3.2.12 and 3.2.15, the integral I' restricted to this area is
bounded by

f 7,&) f1 71751)f2(72 §2) f3(73,&3)d0

1/2 1/2+< >1/2+<0_3>1/2+

:C/Fl/zf ’ F11/2+ ’ F12/2+ ’ F13/2+(x,t)dxdt
<OIFya-NaacpVEa Do g F o sl o s
<Clfllezrelfillzzezllfollpzrz | fsllzre -

Thus we complete the proof of Lemma 3.2.16.

Theorem 3.2.5 (Trilinear estimates) If1/2 <« <1, then
Hu1a2u3”Xo,71/2+ < CHU1||X0,1/2+ ||u2||X0,1/2+ ||U3HX0,1/2+‘
Proof By duality and the Plancherel identity, it suffices to show that

Hm((flﬂ'l)y ey (€4, 7'4))H

1
H (1) /2 (G) L2+ (03)1/2+ () 12— H[4,Rm] ~ b

[4,RxR]
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where
S +&L+E8+4=0, m+nt+m+nu=0,E§=-87m=—mn,

Go = Tu+ €], |01 + T2 + 03+ Ga] = [E* — |62 + €] — [&a]*.
Define N; := |§;|, and adopt the notation that

1 < soprano, alto, tenor, baritone < 4
as the distinct indices such that
Nsoprano = Nalto = Ntenor = Nbaritone

are the highest, second highest, third highest and fourth highest values of
the frequencies Ny, ..., Ny, respectively. Since & + &2 + &3 + &4 = 0, we have
Nsoprano ~ Naito. Without loss of generality, we can assume that Nsoprano =
N7 and 51 > 0.

Case 1). Assume Ny = Nyjo.

This means that £;&; < 0.
Subcase 1-a). When ¢3¢ < 0. From Lemma 3.2.10 and Lemma 3.2.16,
we know

e m), (o))

[4,RxR]
s 1 |
M) 1/2H(59) 12+ (03)1/2+ (G4) /2~ lja, RxR]
Senrmemr ol mrragr=]
~ <01>1/2+<52>1/2+ [3,RxR] <03>1/2+<54>1/27 3, RxR]

<1.

Subcase 1-b). When £3¢4 > 0. Then it implies that & < 0, &4 < 0 and

€1 + ol = [€5 + &a| = max{[&3], €4}
(1) If N3 = Ntenor, then |€4|2a — |£3|2a < 0 and _‘§1|2a + |£2|2a < 0.
Using Taylor formula, we have

3% — [&a>* 2 2aNF* T N,

&% = [&** ~ 2aNT* TN,

and
€117 — |&a? — &P + &7 Z 1&g

If |&4] < |€3], similarly to Subcase 1-a), we can obtain the result.
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If |&4] ~ |&3], then it implies that || ~ |€5]. By symmetry, we assume
64| = |o] 2 |&]?*7 & = €)%, Similar to the proof of Theorem 3.2.4,
using Lemma 3.2.12 and Lemma 3.2.15, we bound the integral I by

f 7,8) f1 7'1,51)f2(72a§2)f3(737§3)d5

1/2 O' 1/2+< >1/2+< >1/2+
f T, f J1(11,61) fa(72, &2) f3(73, €3)dd
|§3|a 1/2+< >1/2+<03>1/2+

:C/FO'F1/2+ ’ F12/2+ 'D:;aJrFlg/2+(xat)dxdt

<ClFollz el P o a1 FY ol paca I DZF FYpo g
<Clfllczrzl fillzzezll follzre  fall oz e
(2) Suppose Ny = Nienor- Let f(z) = (z + a)®** — a®* — 2** with a,z >

0,2a > 1. Then we have f'(x) > 0 for z > 0 and f(z) ~ (x 4+ a) min{z, a}.
Thus we have

€12 — €)%Y — |&2]2* + &2 = €2 + &3 + Ea|®* — |€a?* — |&2** + (&2
2 &P gs).

Similarly, we can obtain the result.
Case 2). Assume N3 = Nyjo.

It implies that &1&3 < 0.

Subcase 2-a). If & < 0, & > 0, then similar to Subcase 1-a), we can
obtain the result.

Subcase 2-b). If & > 0, & < 0, then by Lemma 3.2.10 and Lemma
3.2.16, we have

m((£1’71)7m<€47T4))H[4,R><R]
< 1
SlH{on) 2 (2) 2 (o5) /2 (0) 2 ||y mxry
< 1 ’ 1
o) 2 @) 2 g mcry ll {03) /2 (@202 || 5 mycry
<1

Subcase 2-c¢). If & < 0, {4 < 0, then it implies that [& +&2| = |E3+&4| >
max{|€3], €]} Moreover, we have [€1 2% — [£5]2% > 0 and |&3]2% — |£4]2% > 0,

€017 = €4 — |&** + 1617 2 1&g,

Similar to the Subcase 1-b), we can obtain the result. This completes the
proof.
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Moreover, we have the following energy inequality.

Lemma 3.2.17 Let u(t) be smooth solution of the Cauchy problem (3.2.34).
Then

lu(®)llz2 < lluoll2-

Therefore, similar to [122,124], using Lemma 3.2.13, Theorem 3.2.5 and
Lemma 3.2.17, we can show that the Cauchy problem (3.2.34) is globally
well-posed in L? with 1/2 < a < 1. Theorem 3.2.3 is hence established.

3.3 Fractional Ginzburg-Landau equation

In this section, we will focus on the fractional complex Ginzburg-Landau
(FCGL) equation [184,211]

g = Ru — (14 iv)(=A)%u — (1 + ip)|u|*7u, (3.3.1)

for a € (0,1), where u(x,t) is a complex-valued function of ¢ and =, R, u,v
and o are all real coefficients. If @ = 1, then (3.3.1) reduces to the classical
Ginzburg-Landau equation [76,105]. The main purpose of this section is to
discuss the existence and uniqueness of solutions for (3.3.1) and its infinite-
dimensional dynamical behaviors. For the sake of simplicity, we will discuss
the periodic case on T? = [0, 2n]?. What follows consists of three parts: the
global existence of weak solutions, the global existence of strong solutions
and the asymptotic behaviors of the infinite-dimensional dynamical systems.

3.3.1 Existence of weak solutions
In this section, we will discuss the existence of weak solutions of (3.3.1).

Theorem 3.3.1 For any ¢ € L*(T?), there exists a function
u € C([0, T w-L*(T) N L*(0, T); H*(T4)) n L*([0, T); L**(T))
satisfying the FCGL equation in the weak sense

<u(t>> ¢*> - <(pa ¢*> =R <u7 ¢*>d7- - (1 + iy)<Ao‘u7 Aa¢*>d7
! s

— / (1 +ip)(|ul*u, ¢*)dr, V¢ e C=(T).
0

Moreover, there holds the following energy inequality

t

1 K. ! 1
Sl + [ 1auledr + [ fulsdr < Glelte+ & [ fulfar
0 0 0
(3.3.3)
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By u € C([0,T]); w-L*(T%)), we mean (u(t),¢) € C([0,T]) for arbitrary
¢ € L3(TY).
First, we will establish the following a priori estimates.

Lemma 3.3.1 Let u be a smooth solution of FCGL equation with initial
data ¢, then
lu)llz < e ellze, (3.3.4)

and
t t
[u®IF+2 [ [Aculfadr+2 [ ulfsdr < @¥lplie (335)
0 0
Proof Multiply FCGL equation by «*, and integrate over T¢ to get

/ wu* =R uu*dx—(l—i—iu)/ (—A)O‘uu*dx—(l—i—iu)/
Td Td Td

|u|?7 uu*de.
Td

Adding this to its conjugate, and using the integration by parts formula, we
have

d
—/ |u|2dx+2/ |Aau\2dx+2/ lul? < 2R/ |ul?. (3.3.6)
dt Jpa Td Td Td

In particular,
d
— lu|*dx < 2R/ |ul?,
dt Jopa Td
yielding by the Gronwall inequality that
lullfe < lloll72e*".
Substituting this into (3.3.6) yields the estimate (3.3.5).

Lemma 3.3.2 Let u be a smooth solution of the FCGL equation, then

Proof Multiplying the function by ¢*(x) and integrating over T x [0, ¢] yield

/Ot <i_7:,¢*> _ /Otmu,¢*>—/Ot(1+iu><(—A>au,¢*>—/Ot(1+iu><|ul2"u7¢*>~

Integrating by parts and applying the Holder inequality, we have

‘ / (Ru, o)

du
a

<C, [ >max {a, Z—?} (3.3.7)

2
L% (0,t;H-P)

< R|ull peerax o, 19l L2 (e x[0.4))»
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\ / (W ) (-A) )

< Cllullz20,6m1) |01 L2 (0,617

and .
/0 (1 -+ i) (Juu, 6*)

Therefore, we know that for § > max{«a, od/(20 + 2)},

< C||u||2;2:(1rpd><[0,t]) ||¢HL2<(Td>< [0,t])-

t/du N a
’/ <§’¢ >’ < C||@ll 250,110y, Vo € L*(0,t; H).
0

du 2¢ _ . .
It shows that T € L2-1(0,t; H™®), and the inequality (3.3.7) holds.

Further estimation can also be obtained. Let I(t) = (u(t), ¢*).
Lemma 3.3.3 1,(t) is a continuous function of t for arbitrary ¢ € L*(T?).

Proof We first consider the case ¢ € C*°(T?) and then use a density argu-
ment to extend to the general case for ¢ € L2(T?). Let 0 <t; <t—2< T,
by Holder inequality,

to

Ly(ts) — Iy(tr)| =IR / w7y — / (1+ i) (A%, A%*)dr

t1 t1

ta
- / (1 + i) (jul?u, & )]

ty
<(IR[N6]l 2o + 11+ W [[|A**¢" || oo ull 20,7 2) b2 — 2]/
. * 20—1 L
L4 6 o 2250 ey 12 — 2]
261 1
<Coe™ ol Lalts — 012 + Co (™ pll72) 5 [t — ta ]2
(3.3.8)

thanks to Lemma 3.3.1. The continuity of I4(¢) then follows. Let € > 0, and
for arbitrary ¢ € L*(T), choose ¢. € C*(T?) such that [¢. — || p2(Ta) < €.
Use Holder inequality and triangle inequality to obtain

[1s(t2) = Io(t1)| < e(fJu(t2)llz2 + [ult)llz2) + Ho. (t2) — Lo (t1)[.  (3.3.9)

Since I, (t) is continuous in ¢, the second item on the right approaches to 0
as t1 — ta. Noting that ||u(tz)||r2 + ||u(t1)]/r2 is independent of € and ¢ is
arbitrary, the continuity of I,(¢) for ¢ € L?(T¢) then follows.

The existence of weak solutions is proved by using the Fourier-Galerkin
approximation method. Let {e1, ez, - ,en, -} be an orthonormal basis for
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L? and ZyL? be the orthogonal projection of L? into span{ey,--- ,en}.
Consider the following approximation problem

(un (1), %) = (pn, ") :R/o (un,¢*)dr —A (1 +iv){(A%uy, A%¢")dr

t
- / 1+ i) un [P, 3)dr,
0
(3.3.10)

where ¢ € C°(T?) and ¢y = Py¢. When N — oo, Pn¢ strongly con-
verges to ¢ in L2(T%), and ||¢n] 2 < ||¢]/z2 by the Parseval inequality.
Fix T > 0. First, Lemma 3.3.1-3.3.3 still hold for uy, yielding

t t
HuN(t)H2+2/ ||AauN||2deT+2/ un |32 dr
0 0
t
—Jlon (D) + 2R / lun|Zadr. (3.3.11)
0

From above, we see {uy} is bounded in L2([0,T]; H*) and L?<([0,T]; L*).
Therefore, there exists a subsequence (still denoted by {un}) such that uy —
u weakly in L%([0,T]; H*) and L* ([0, T]; L*). Moreover, (3.3.4) shows that
for arbitrary ¢t > 0, {un(t)} is weakly compact in L?(T%) and Lemma 3.3.2
shows that duy /dt is bounded in Lz1 (0,T; H=#). Therefore, it follows that
{un} is compact in L2(0,T; L?).

According to the interpolation inequality

75t < pllnllZec + Co)lInlzz, Vo >0,

it can be shown that {uy} is compact in the strong topology of L2<~1([0,T7;
L?*71). Let e > 0 and 1y = uy — u, then using the inequality above yields

] ZL%:}l(TdX[07T]) < pHnN”Qngg(de[mT]) + C(/’)HWN||2L2(T¢><[O,T])'
Since ny — 0 weakly in L2(T< x [0,77), and strongly in L?(T% x [0,T]), we
have

hm Sup ||nN||i§2:}1(TdX[O7T]) < hm Supp||nN||i§2<(Td><[o7T]) g pC <e.
N —o00 N —o00

As & > 0 is arbitrary, it shows that uy — u strongly in L2~*(T¢ x [0,T]),
and hence |uy|>**un — |u|?>*u weakly in L*([0,T]; L*(T%)).

Similar to Lemma 3.3.3, {{un, ¢*)}~ is a continuous function of ¢. Ac-
tually, as (3.3.8) and (3.3.9) are independent of N, then for arbitrary ¢ €
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L3(TY), {{un,¢*)} N is equicontinuous in C([0,77]). On the other hand, ac-
cording to Lemma 3.3.1, {(un, ¢*) } v is uniformly bounded in C([0,7T]). Ac-
cording to Arzela-Ascoli theorem, {(un, $*)}n is compact in C([0,T)), i.e.,
{un} is compact in C([0, T]); w-L?(T9)).

Proof of 8.3.1 The starting point of the proof is the approximation problem
(3.3.10). Let ¢ € C>°(T?). Similar to Lemma 3.3.3, (ux(t), #) is a continuous
function of ¢, which converges to (u(t), ) as N — oo for arbitrary ¢ > 0. As
un — u weakly in L?([0,T]; H*(T9)), then

t t
[ tun,enar = [ woryar,
0 0
and
t t
/ (Aupn, A%p*)dT — / (A%u, A% ¢™)dr.
0 0
As |un|?un — u|*?u weakly in L'([0,T]; L'(T?)), and ¢ — ¢ uniformly
in T¢, then
t t
/ (lun un, d)dr — / (>, ¢%)dr.
0 0

Hence, the limit function u satisfies the fractional complex Ginzburg-Landau
equation in the sense of (3.3.2). At last, (3.3.3) is obvious from (3.3.11) and
Fatou Lemma.

Generally speaking, weak solution is not unique. However, the following
uniquenes criterion holds.

1
Theorem 3.3.2 Let o € <§, 1}, T >0, and d < 4a. Then there is at most

one solution for the FCGL equation such that

u € L°°(0,T; L*) N L*(0,T; H®) (3.3.12)
and p
we LT5(0,T; L), 6= o € (0.1). (3.3.13)

Proof Let ug and up be two solutions of the FCGL equation, then w =
ug — up satisfies
w; = Rw — (1 4+ iv)(=A)%w — (1 +ip)(Jual* ua — Jug|* ugp).

Multiply the formula by w* and integrate over T¢ and take the real part to
obtain

d o g
Sl + 2180wt =Rl —2 [ fualluf
T (3.3.14)
= [ (uaP = s e + ).
T
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For the second item on the right, using the following interpolation inequality

d
lwllze <l ol 6=,

yields

el ([ (fo)

- )
<o [ uat'?) Rl =l

<ClluallBe lwll3e + Cllual 32 ]2 + [A%w]3.

But since there is a constant e € (0,1) such that

llual® = [up|*| <20 |efual + (1= e)|up|[*" ™

<Cyllua| + lup|* " |wl,

[lual = lusll

the last item on the right can be bounded by

wo((fu) () ) ()

20
<CIUNIZ lwlZz + CINU 37 lwllZz + [A%w]Z..

Here |U| = |ua| + |up|. By using (3.3.14), we get
20
lele = 2R|w||72 + CU| 75 [lwll72 + CIUIl 7 lwll7--
Tt follows that w = 0 by (3.3.12), completing the proof.

3.3.2 Global existence of strong solutions

This section considers the global existence of fractional complex Ginzburg-
Landau equation. Let S¥(t) = e t(1+)(=A)"+Ft then the operator family
S*(t) generates bounded linear operators in L? for p € [1, o0] (see [164]). We
first consider the following linear equation

uy = Ru— (1 +iv)(—A)%u, u(0) = p(x). (3.3.15)

By taking the Fourier transform, we obtain

d

Sa(t,€) = Ri— (1 + w)[€|a(t, €),
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which yields by inverse Fourier transform
u(t) — Sa(t)w _ }—71 (eft(lJriu)\g‘?aJrRt) *p = G? * Q.

For this, it suffices to study éta := G%e ', By a change of variable

~ 1 . . 20 d ~ x
o _ iz-&  —t(1+iv)|€] e N AL
G} () = oy /Rde ¢ d§ = 75 Y (753 )
which reduces to study the kernel function
~ 1 . : 2a
ol iz-€ o —(1+iv) €]
G“(x) ) /Rde e .

Since e~ (1HMIE** ¢ LY(RY), from the Riemann-Lebesgue Lemma, we know

G* € L*(RY)NC(RY), and G*(z) — 0 when |z| — co. Then G* € Co(RY),
the space of continuous functions which tend to zero at infinite. Moreover,
since for arbitrary 8 > 0, [¢[2Pe~(1+IE™" ¢ LR, then (—A)SG* €
Co(R%).
The following two lemmas will be useful (see [164]).
Lemma 3.3.4 Let a > 0, then G* € LP(R?) for all p € [1,00] and
|Go(z)| < C(1 + |z)~%7 2, vzeRY
Lemma 3.3.5 Let a > 0, then (—A)*G® € LP(R%) for all p € [1,00] and
[(—A)*G¥(z)| < C(1 + |z])~ 4%, Vs > 0,Vz € R%.
In particular, VG € LP(RY) for arbitrary p € [1,00].

In the following, the semigroup method is used to establish the local and
global existence of solutions for the equation. One may refer to [177] for the
semigroup method. Consider an abstract evolution equation in Banach space
X

ug = Au+ f(u), u(0)=¢e€X, (3.3.16)
where A is the infinitesimal generator of a strong continuous semigroup S(t)

in Banach space X, while f(u) can be viewed as a nonlinear perturbation in
X.

Proposition 3.3.1 Let f : X — X be a Lipshitz continuous function,
then for arbitrary p > 0 there exists a time T'(p) > 0 such that for arbitrary
ingtial data w(0) = ¢ € X with ||¢||x < p, there exists a unique solution
u € C([0,T]; X) for (3.3.16) in the sense

u(t) = S(t)p + /0 St —7)f(u(r))dr.

Moreover, u is a locally Lipshitz continuous function of ¢.
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For FCGL equation, let Au = Ru — (1 + iv)A**u and f(u) = —(1 +
ip)|u)|??u. The semigroup S%,.(t) corresponding to the periodic FCGL equa-

per

(o3 [
tion can be written as Sy,,.(t) = Gy, ; * ¢, where

(6%
Geri(T E G (z+n).
nezd

Next, we consider the integral form of the FCGL equation

t
u(t) = Gy o+ / G2y f(u(r))dr. (3.3.17)
0

By Lemma 3.3.4 and 3.3.5, applying the decay estimates gives |Gy, [l <
Ce® and by Young’s inequality, we have

|| per( )SDHLP ||Gpert||L1||(p||Lp < CeRt”Sa”LPv Vp € [].,OO]

It follows that Sy, (t) is a strong continuous semigroup in C (T) and LP(T9)
for p € [1,00).
We now prove the following local existence of strong solutions in X =

C(T9).

Theorem 3.3.3 Let o € (1/2,1) and p > 0 be arbitrary. Then there is
some T = T(p) > 0 such that there exists a unique solution for the FCGL
equation

w e C(0,T]C) N C((0,T]; €2) N CH((0,T]: ©),

for every initial data ¢ € C(T?) with ||¢|z~ < p. Moreover, if the initial
data ¢ € C%(T?), then

u € C([0,T];C*) N C*([0,T); C).

Proof Obviously, the nonlinear term f(u) is locally Lipshitz function mapping
C(T?) into itself. By standard local existence theory, there exists a local mild
solution for the FCGL equation on [0, 7] with T" depending on ||¢|| L, which
is the limit of the sequence {u(™} defined successively by

u®(t) = Gf =,

u D (t) = w+/ G ") (7))dr. (3:3.18)

Using the standard bootstrapping argument, additional regularity can be
obtained. The main ingredient is by observing the estimate

IVGS,, |l < Ot~ 2a el (3.3.19)
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Indeed, applying the Gradient operator V to (3.3.18), we obtain
t
VU(7L+1)(t) = VGger,t * @ +/ VGger,tf'r * f(u(n) (T))dT
0

Computing directly, we have

Va0 (#)| o
t
<IVGL, el + / IV G|l (@ (7)) e dr
t
<Ct mel||p| = + C / (t —7) "2 D £ (M (7)) || pedr.

Since a € (1/2,1), this shows that V(™) is bounded in C([0,T]; C(T)). On
the other hand, since f is Lipshitz continuous, similar argument shows that
Vu(™ is Cauchy in C([0,T); C(T?)). Therefore u € C([0,T];C*(T%)) and
the singularity at ¢ = 0 disappears. In this case, Vu is a solution for the
equation

per,t—T1

Vu(t) = G;‘er’t * Vo +/0 GS * [f (uw(7))Vu(r)]dr (3.3.20)
where
P () Va(r) = = +im)l(o + Dlu2Vu + ou[" =22 V).

A repetition of the above procedure then shows that u(t) € C((0, T]; C%(T%)).
Moreover, because the FGL equation trades the first time derivative to the
2a-order space derivative, the solution obtained must also be in C1((0,77;
C(T%)). Therefore, the solution is indeed a classical one, completing the
proof.

Generally, the above discussion cannot be repeated to show u € C((0,T7;
C3(T?)), since further differentiation of the nonlinear term will introduce
singularities at the zeros of u, yielding divergence of (3.3.20). But when o is a
positive integer, arbitrary differentiation of nonlinear term will not introduce
singularities, thus one can show u € C((0,7]; C°°(T%)). Similarity, one can
also show that u € C°°((0,T]; C>=(T%)) also holds.

When o is not an integer, as long as the differentiation of nonlinear term
does not introduce unbounded singularities at the zeros, we can still bootstrap
to obtain higher regularity of the solution.

n
Theorem 3.3.4 (Local C* solution) Let o > 5 for some positive integer

n. Then for every p > 0, there exists T(p) > 0 such that for every initial
data ¢ € C(T?) with ||¢|le < p, there exists a unique
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¢ € C(TY) with ||¢]|e < p, there exists a unique
u € C([0, T C(T9) NC((0, T]; C™+2(T)) N CH((0, T); C*(T?))

satisfying the FCGL equation. Moreover, if ¢ € C"t2(T?), then there holds
u € C([0,T]; C"+*(T?) N C*((0, T); C™(T?)).

In the following, we consider the local existence of solutions in X =
LP(T?). Assume that ¢ € LP(T?) for 1 < p < oo. First, we have the
L™ estimates

u@)llr < (|G LqH@HLP+|1+1/~L|/ G per,t—rllLsl[u(T)lZ
(3.3.21)
where p, q, 7, s satisfy
1 1 1 1 1 2 1
l4-=242 and 142=-4+22%1 (3.3.22)
r o p q r s r
Let
[[u(@)lzr
lu@zra = 770" 7>
L ||Gpert||Lq

and define the space 277 ([0, T]; T%) to be the completion of C([0, T]; L"(T%))

under the norm

Erat-

[ullzr.r == sup {|lu(t)]
t€(0,T

From (3.3.21), it is easy to get

o 2o+1d7_

Lma

T lu(n)

Ls

1+ wl
lu@®)lzra < llellze + e IIGpm -

per, t

If the kernel satisfies the condition

o [ G e[ 3 0 0, as 10, 3329
per,t |l L4

then there is a sufficiently small 7" > 0 such that iterative sequence (3.3.18)
converges in the space E. But by the definition of G%
that

perts 16 18 easy to see

—d A X _d d
|Goerel <D et 2&|G“<t1/2a>|<emt 3 (a+ bte),

nezd
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where a, b are constants depending only on v. By using interpolation inequal-
ity, there holds

1 1 CeRt d *
Gy illzn < NG I G, 1A < (a+bt35)Y97 . (3.3.24)

L S td/(2aq*)
In particular, |G}, ;|Le = O(tﬁ) when ¢ — 0.
So, if
Al. d(20 +1) < 2aq*, and

d od
+
2as*  ag*

A2,

<1,

then the condition (3.3.23) holds. The condition Al is equivalent to

1 2c 1

- < - 3.3.25

p  (20+1)d <7 ( )
By using (3.3.22), the condition A2 is equivalent to od < ap.

Now we only assume
A. od < ap,

and choose r = (20 + 1)p, then (3.3.25) and (3.3.23) hold. Using contraction
mapping principle in EP"([0,T]; T¢) for r = (20 + 1)p, then it is easy to
know that FCGL equation has a unique local solution.

Let us consider the regularity of u. It is easy to show that u € C([0,T7;
LP(T4)) N C((0,T); L™(T)). Indeed, from the definition of EP:", it is easy
to know ZEP7([0,T]; T¢) c C((0,T]; L™ (T%)), thus to show that u € C([0,T7;
LP(T%)) it suffices to prove the continuity of u at t = 0. Notice that

H’LL( ) @”LP <||C71pezrt*(10_(10HL’"

1+ in) / 1GSer el 1G e 25 () 21

where r = (20 4+ 1)p and ¢ is defined in (3.3.22). By the strong continuity
of the operator semigroup in L?, we have known that when ¢ — 0 , the first
item in the right approaches to 0. On the other side, according to od < ap, it
is known that d(20 + 1) < 2ag*. Thus ||GS,, . ||35™!
Using the boundedness of u in EP" and (3.3.19), it’s easy to see that when

oer| is integrable near 7 = 0.

t — 0, the second item in the right approaches to 0. Then w is continuous at
t =0, ie. u € C([0,T]; LP(T?)).
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Theorem 3.3.5 If p satisfies ¢ < p and od < ap, then for arbitrary p >
0, there is T(p) > 0 such that for arbitrary initial value ¢ € LP(T?) with
llellrr < p, there is a unique solution

uw e BP7([0, T ) N C([0, T]; LP(T7),
in the sense of (3.3.17).

The mild solution here actually is the strong solution u € C((0,T];
C?(T%) N CY((0,T); C(T%)). According to Theorem 3.3.3, we only need
to prove u € C((0,T]; L>°). Therefore it suffices to prove that the solu-
tion with the LP initial data belongs to C((0,77]; L"(T%)) for r > p satis-

1
fying (A1-A2) and (3.3.25). Indeed, if p > (0‘ + §)d’ then for arbitrary
r € [(20 4+ 1)p, 00], the conditions are all satisfied, then w € C((0,T]; L)

1
holds. On the other side, if od < p < (0 + E)d’ then u € C((0,T]; LP*) for

p1 = (20 +1)p. When p > <cr + %) d, by repeating the above reasoning, we
can show u € C((0,T]; L*). Otherwise, more generally, repeating the above
reasoning we know that when p,, = (20 +1)"p > (0 + %) dforn=1,2,---,
then u € C((0,T]; LP»(T%)), hence u € C((0,T]; L*).

In particular, we have the following

Theorem 3.3.6 Let1 < p < oo and od < ap, then for arbitrary p > 0, there
is T'(p) > 0 such that for arbitrary initial value ¢ € LP(T%) with |¢|r» < p,
there exists a unique solution for the FCGL equation satisfying

w € C(0,T); LP(Th) N C((0, T]; (1) 1 € (0, 7]; C(T)).

A special situation is when p = 20 + 2. Once 0 < oo when d = 1 or
2c

d— 2«
above theorem.

when d > 2, then there is a local strong solution according to the

In the following, we extend the local solution to a global one by some
a priori estimates. The purpose is to get the H'-estimates of the solution,
then using the Sobolev embedding theorem to get the LP-estimates of the
solution. Therefore it suffices to get the L? estimates of V.

1
Theorem 3.3.7 (Global strong solution) Leto > 3 andd < 2+2/0.

If
VITiE+1
a<$, (3.3.26)
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then the FCGL equation with C? initial data has a unique global strong solu-
tion.

Proof Multiply the equation by —Au* and integrate over T¢ to get
Ou(—A)u —R/ 1+11/)/( A)*u(—A)u*

(1 +in) / w7 u(- A",

Td

which yields

d lia 1 o—
3 lIVul®* =2R[[Vul* = 2)|(-=4) u||2—§/\U|2 *[(1+20) [ V]ul??

— 2ipoV|u)? (u*Vu — uVu*) + [u*Vu — uVu*|*]de
(3.3.27)

If the matrix

1+20 —ou
<—0/~L 1 ) (3.3.28)

is non-negative definite, then the last item above in non-positive and hence
d 2 2
SVl < 2RVl

yielding
IVu@)ll < ™|V e

The theorem is found to establish by the local existence. By the H! estimates
of the solution, its LP estimation can be obtained for

0, d
1<p<{ 2 } (3.3.29)

d—2’

\\/

In this case, besides (3.3.26) and (3.3.29), if moreover od < ap, then the
FCGL equation has a unique strong solution according to Theorem 3.3.5.

But when d < 2+ g, we can select p such that all the above conditions hold,
o
completing the proof.

3.3.3 Existence of attractors

This section will discuss the existence of attractor of fractional Ginzburg-
Landau in L2. For simplicity, we only consider the case when d = 1 and
1/2<a < 1. Welet T = T! and prove the following
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1
Theorem 3.3.8 Suppose that o € (2,1} and d = 1. Then the solution

operator S : S(t)p = u(t) for allt > 0 of the FGL equation well defines a
semigroup in the space H = L?. Moreover, the following statements hold:

1. For any t > 0, S(t) is continuous in H;

2. For any ¢ € H, S is continuous from [0,T] to H;

3. For any t >0, S(t) is compact in H;

4. The semigroup {S(t)}t>0 possesses a global attractor A in H. Fur-
thermore, A is compact and connected in H, and is the mazimal bounded
absorbing set and the minimal invariant set in H in the sense of set inclu-
sion relation.

First of all, we state the following theorem [120,213].

Theorem 3.3.9 Suppose that H is a metric space and the semigroup
{S(t) }+>0 is a family of operators from H to itself such that

1. for any fized t > 0, S(t) : H — H is continuous;

2. there is tg > 0 such that S(to) is compact from H to itself;

3. there exists a bounded subset By C H and an open subset U C H
such that By C U C H, and for arbitrary bounded subset B C U, there is a
to = to(B) such that S(t)B C By for all t > to(B).

Then A = w(B) is a compact attractor which attracts all the bounded set
of U, i.e.,

lim dist(S(t)xz, A) =0, VrelU.

t——+o0

A is the maximal bounded absorbing set and minimal invariant set, in the
sense that S(t)A = A for all t > 0.

Suppose in addition that H is a Banach space, U is convezr and

4. For allz € H, S(t)x: Rt — H is continuous.

Then A := w(B) is also connected.

IfU = H, A is called the global attractor of the semigroup {S(t)}i>0 in
H.

1
Based on the preceding discussions, for d = 1 and a € <§, 1], then for

arbitrary ¢ € L?(T), FCGL possesses a unique global solution u such that
u € C([0,T); L) N L%(0,T; H®) for all T < oo, and S(t) : ¢ — u(t) is a
continuous mapping from L? to itself. To prove Theorem 3.3.8, it suffices to
check the conditions in Theorem 3.3.9

1. Absorbing set in H = L.
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Taking the L? inner product of equation (3.3.1) with u* over T. Integrating
by parts and taking the real part, we have

1d
2dt

When R < 0, this leads to trivial dynamical systems. Indeed, when R < 0,

< llull? + [1A%)® + [[ul 753 — Rljull® = 0. (3.3.30)

we have
lu()l|z> < |l 2e™

from which it follows that for any initial data ¢ € L2, we have

lu()[[72 =0, ¢ — occ. (3.3.31)
When R = 0, using Holder inequality

el 22 < [T [l oo,

we have from (3.3.30) that

d 2 20—',—2
which yields
1 1 20 ;
Ju()]7- Z ol " e

Therefore, (3.3.31) still holds.
When R > 0, using Young’s inequality we have Ry? <

—_

~y? 2 4 OR

DO |

we have
o+1

1
Slul 352 = Rljul® > —2nCR*

where C' is a constant depending only on R and o. One obtains from (3.3.30)
that

d ot
el + 20 A%l? + [l 352 + Rljulf. < 4nCR (3.3.32)
and hence by Gronwall inequality

lu®ll3= e~ [|lgl3: + 4nCR ]
<lgl2207F 4 4nCR7 (1 — e B, vt > 0.

(3.3.33)

Therefore,
limsup [lu(t)|32 < p3,  p} = 4nCR7.
t—o00
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From (3.3.33), we can infer the existence of an absorbing ball in LZ.
Indeed, the balls By (0, p) with p > py are positively invariants for the semi-
group S(t) associated with the FCGL equation, and these balls are absorbing
for any p > po. Fix any pf, > po and denote %, the ball By (0, p). Since any

bounded set Z can be included in a ball By (0, p) of H centered at 0 of radius
1 2
p, it follows that S(t)# C A for t > to = to(B, pj,) with tg = = log p,2p 2
0 — Po
Furthermore, by integrating (3.3.32) from ¢ to ¢t + 1, we have

t4+1 41
fu(t+1))17> + 2/ A7 -ds +/ l[ul|7ads < lu(t)]|7- + 4nCR>.
¢ ¢
(3.3.34)
The inequalities (3.3.33) and (3.3.34) show that
t4+1 t4+1
2/ ||Aau|\%2ds+/ lull* ds < pi2 + AnCR2.
t t
Therefore, when t > ¢y (o as above),
t+1 t+1
/ IA%u|22ds < ar and / ul4.ds < as (3.3.35)
¢ ¢

are uniformly bounded independent of .
2. Absorbing set in H®.

First of all, we state the uniform Gronwall Lemma [213].

Lemma 3.3.6 Let g,h and y be three positive locally integrable functions
on (tg,00) such that y' is locally integrable on (to,00) and satisfy

d
d—i{égwah Jor t>to,

t+r t4r t+r
/ g(s)ds < ay, / h(s)ds < az, / y(s)ds < agz, for t=to,
t t t
where r,ay,as, a3 are positive constants, then
as a
y(t+r) < (— + ag)e 1Vt >t.
r

The following will focus on the attractor set in H®. Taking inner prod-
uct of (3.3.1) with (—A)®u*, integrating by parts and then using Holder



154 Chapter 3  Fractional Partial Differential Equations

inequality, we obtain

d
S IATu 3 + 2 A% w2 — 2RI AU =~ [(1 +ip) / 7 uA 2 e
Td

<\/1+M2/ (271 A2% | da
Td

1 1+ ,Uf2 2(20+1
<5 8% ul|fe + Y flul 75
2 2
(3.3.36)
By using interpolation inequality, we have
20
1—
ooy < Cullull 2" (lul 72 + 1A% ul|22)?2, p = 4a(20 +1)

which follows from (3.3.36) that

d 3 VIFp? o o001
A ullEe + 1A%l —2R]Au] e < Yl 15

<2p(20+1)ciCM[HUH2(20+1) + ||A2au||2p(20+1)]

1
<2ENCIC, ulPCTHY + A3 + O,

o 20(2 1 P(20+1)2p(2(r+1)0/0 q
e =2, €, = T2, = (2020 PP D i)
1

—— . Therefore,
1—p20+1)

and g =

d
Al + A% 2e < 2RIAU| 3z + 2D CLC, ul P + G
Let
y=[A%ll72, g=2R, h=2C"VCIC,[u?7H) + Cs,
it follows that from the uniform Gronwall inequality that
[A“ul]? < (a3 +az)e™, t>=to+ 1, (3.3.37)

where a1, a2, as are constants. A careful inspection can assure us the exis-
tence of an absorbing ball of the solutions in the space H®, which is similar
to the L? case.

Let ¢ € A, a bounded set of H. Since %; is bounded in H*, and the
embedding H* — L? is compact, we infer that

U S(t)B is relatively compact in L.
t>to+1

This observation proves 3 of Theorem 3.3.8.
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Proof of Theorem 3.3.8 Theorem 3.3.8 is a direct consequence of Theorem
3.3.9. It suffices to check conditions 1 and 4 in Theorem 3.3.9, which are
standard and obvious.

3.4 Fractional Landau-Lifshitz equation

In this section, we discuss the fractional Landau-Lifshitz equation. Classical
Landau-Lifshitz equation has the following form

%—_ X X5£ +ﬁ Xé_E
ar T\ s RO

where u : 2 — R3 is a three-dimensional vector in R3, o > 0,8 > 0 are
constants and ‘;—5 is the variation of the functional E with respect to u,

E(u):/Q|Vu|2d:c+/g¢>(u)dx+/m|V<I>|2dx,

where the three items in the right hand side are exchange energy, anisotropy
energy and magnetostatic energy, respectively. When the magnetostatic en-
ergy cannot be neglected, the equation is nonlocal and complex. So, it’s very
important to consider some simplified models of the equation with magneto-
static energy. Therefore, we consider the following fractional Landau-Lifshitz
equation,

{ut = ux (—A)%, (z,t) € R% x (0,7), (3.4.1)

u(z,0) = uy, r € RY,

where a € (0, 1), Q is a smooth domain of R%, k; € Z? and e; is an orthonomal
basis in R?.

3.4.1 Vanishing viscosity method

In this section, we consider the periodic case and employ the vanishing vis-
cosity method to prove the following theorem.

Theorem 3.4.1 Let 0 < a < 1, ug € Hg,, () and [up(x)| = 1 for a.e.
x € R Then for any T > 0, there exists u € L>(0,T; H*(Q)) such that
lu(z,t)| = 1 for a.e. (x,t) € R x [0,T] and satisfies (3.4.1) in the weak

sense

/ uq)tdxdt—i—/ up®(-,0)dx :/ (—=A)2u x & - (—A)2 udxdt,
Qx(0,7) Q Qx(0,T)

for any ® € C°(R4 x [0,T)) with ®(z,T) = 0.
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We first introduce the discrete Young’s inequality. If f € L?(12), then f
can be represented by Fourier series as f = »_ f(n)e2mne for f(n) =

/ f(z)e™ 2" and n = (ny,n9,--- ,ng) € Z¢ being a d-dimensional vector.
Q

For arbitrary non-negative multi-index m = (my, ma,--- ,mq) € Z%(m; > 0),
one has at least formally

() f = 2m)* 3 e fn)e? e,

neZd
Define
H22.(Q) = fIf € L2 (Qor Y [n[**|f(n)] < o0 ¢,
neZ
with norm

1f |z, ) = I fll2 + [1(=2)"F2-

per
If f,g € H22.(Q), by using the Parseval identity and integrating by parts,

per

one has

[ earsgde= [~y (-a)yg.

for arbitrary non-negative ar; and s such that a; + as = a.

Lemma 3.4.1 If{f,} €? and {gn} € I}, then the “convolution” { Z

ni1+n2=n

fnlgnz} € P and

n=1

Z fn1gn2

ni+ne=n

< | fnllpllgnllr-

p

Assume temporarily ug € Hp,,.(Q2) and consider the Ginzburg-Landau

approximation

u a u
= m X (—A) U_Bimax{l’h”} XAU+€AU
(z,t) € 2 x (0,T), (3.4.2)

u(z,0) =ug, x €K,
where § and € are viscosity coefficients. Taking inner product of the approx-

imation equation (3.4.2) with u, one has

1d 9 2,
2dt/ﬂ|u| da:—l—s/Q|Vu| dz =0,
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which yields by integrating with respect to time over [0,¢] that
Ju(- )2 <C,  VOLtLT.

Take inner product of the approximation equation (3.4.2) with SAu to obtain

u

BAu-uy =0 x (—A)*u - Au + f]Aul?,

wmac( L, o}
and then with (—A)%u to obtain

(=A)%u-up =eAu- (—A)%u— 3 x Au - (A)"Yu.

max{1, |u|}

Taking the difference of the two equations and then integrating over ), one
has

_ = 2 - a/2 2 _ 2
2dt/|v|d 2dt/| ul*dz 55/|Au|dx

— / Au - )*udx,

yielding

t t
a5 B
e [ Naulfar+= [ 1(-8)"5 ul+ Va3

(3.4.3)
1 7AO¢/2 2_§V 2 1 7Aa/2 2
+ 51 -A)"2ul = T Vuoll3 + 5 (~A)"2uoll3.
Next we seek the approximation solution of (3.4.2) in the form
uN(x,t) _ Z wn@)e?ninw,
In|<N
such that for any |n| < NV, there holds
8uN _ UN % (—A)au +ﬁ UN
ot max{l,|un|} N max{1, lun|} X Auy
5AuN,e2”i"'z> =0, (3.4.4)

where ¢, is a vector in R3 and (-, -) represents the inner product in the space

L?(Q). The initial value can be accordingly approximated in H},, () by

Z (,OZ el —) Uup-

pw
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We hence have obtained a system of ODEs for {¢,(t)} for 1 < |n| <
N. By the classical theory of ODEs, there exists a unique local solution
{gn(t)} satisfying (3.4.4). In what follows, we will obtain some useful a
priori estimates to take the limit N — oo, and C will always denote some
constant independent of 8, and N. Multiplying the equation (3.4.4) by ¢,
and then summing over 1 < |n| < N, we have

2dt/|uN| dm+5/|VuN| dz =0,

which yields by integrating over [0,¢] that [|un(t)]]2 < C for all ¢ € [0,T].
Similar to (3.4.3), we have

BlIIVun )3 + 1(=2)*2un (®)I3 < C, ¥t € [0,T],

T
8e / | Auy2dt < ©
0

The estimates of ||un¢||2 can also be obtained from (3.4.4). Let € and
be fixed, and denote Q7 = Q x (0,7), then in view of the above bounded
estimates, we have in the sense of a subsequence that

and

Auy — AuPe weakly in LQ(QT)

uy — u’e weakly * in L*°(0, T H;er(ﬂ))
un — u?® weakly and strongly in L?(Qr) and a.e.

une — u?®  weakly in L*(Qr).

Letting N — oo, then for any Fourier series ¢ and smooth function ¢ €
C*°[0,T], there holds

B.e
Be ddt:/ w —A)® B, .
/Tut Vede or Lmax{l,ufe[} x (=A)%u vy

B.e
u
-B

e ¢ AgyPoE AuPF o |dadt.
max{1, [uf <[} X Au Yo+ eAu z/up] x

It follows from density argument that for any ¢ € L*(Qr),

B,
B.e _ U a, B,
u -qﬁdxdt—/ [x(—A uPc . b
/T ! Qr Lmax{l, [uf[} )

B.e
w
-B

——— x AuP*. AuPe - p|dadt.
a1 [P x Au ¢+ eAu 4 T

(3.4.5)
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Lemma 3.4.2 If u?* satisfies (3.4.5), then [u®¢| < 1 for a.e. (z,t) €
Q% (0,7).

uPe
B

|
1d 1 1 Bie . 9,ube
il P |2 (1 _ T)dx — _/ %dx
2dt |ube|>1 |U ’€| 2 [uBe|>1 "LL ’€|

B, . \v4 B.e|2 1
*6/ legdx—e/ |Vu’8’5|2<1 5e >dx.
[ufe| 21 |ufe] |ube|>1 |uf=]

B,e
Choose X
ufe|

1 uPe - gube € |uPe - Vube|?
5 —Ee =3 S
2 Sz e 2 sz P

€ Vube|? ouPe
——/ %daﬂr/ -ufeds,
2 |ub-e|>1 |u ’ | [ufe|=1 on

Proof We choose ¢ = u”¢ — min{1, [u®¢|} in (3.4.5) to get

|u?

as the test function, then

B.e
U
where y is the characteristic function of the set {|u®*°| > 1}. Since 3
n
uh® = 3 3 < 0 on the boundary {|u”¢| =1}, then it follows that
n

lg Bej2( 1 — 1
tJjuse|>1 [uf<|

)da: <0,

which implies that [u?¢| < 1 for a.e. x € Q x (0, 7).

Let 8 be fixed and € — 0, then (3.4.3) allows us to choose a subsequence
from {u”¢} such that u”¢ — u® weakly * in L>(0,T; H'()). We will show
that

WPl =1, ae inQx(0,T). (3.4.6)

In fact, for any ¢ > 0, it is easy to know

t
/Iuﬁ’a(t)Ide—/Iuﬁ’E(O)IQdHe/ /'Vuﬁ’sﬁdxdt:o.
Q Q 0 Q

Letting ¢ — 0, then u?* — u” strongly in L?*(Q). Furthermore, since

| VuP||2 is uniformly bounded and |u®¢(0)| = 1 always holds, letting ¢ — 0

yields / |u? (t)]? — 1dz = 0, from which it follows (3.4.6) thanks to Lemma
Q

3.4.2
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We now consider the limit of (3.4.5) as ¢ — 0. Let 8 be fixed, then for
any ¢ € C®(Qr), ¢ with ¢(-,T) = 0, then

/ uf’€~¢dxdt=/ [P € x (= A)*uP e - p—Bul e x AuP e -p+eAuP e - ¢ldadt.
T T

(3.4.7)
The term on the left hand side can be written as
—/ uPe - ppdadt — / u?€(0) - ¢(-,0)dx,
T Q
which converges to
— / u? - ppdadt — / uo - ¢(-,0)de, (3.4.8)
T Q
as € — 0. For the second term on the right of (3.4.7), we have
- BuPe x AuPe - pdadt = BuPe x Vul e - Vodadt
Qr @r (3.4.9)
— [ Bu’ x VP - Vedadt,
Qr

as € — 0. Similarly, the last term in (3.4.7) converges to 0.
Next we consider the limit when 8 — 0. According to the a priori esti-
mates (3.4.3), there is a subsequence {u?} such that

u’ —u weakly * in L>°(0,T; H.,.(Q));

per

u? —u  strongly in L*(Qr),

and B||Vu?||2 < C. Then if 3 — 0, (3.4.8) converges to

—/ u-¢tdxdt—/§2uo~¢(~70)dx.

For (3.4.9), using Cauchy inequality, we have
‘ Bu’ x Vul . V¢dxdt‘ < VB / VBV uP||V¢|dadt,
Qr Qr

which converges to 0 as 5 — 0.

Next we consider the convergence of the first term on the right of (3.4.7).
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First of all, change this term into the form
/uB’E x (—A)*u?e - pda
Q
=— / u?e x ¢ (—A)*uPeda
Q
—— [ x 0) (A
Q
= [ [yl x o) = (~8) 2t o] - (-a) e = TP
Q

Define Lu := (—A)*/2(u¢p) — (—A)*/?u¢p, then by the following Proposition
3.4.1 £: H2, — L*(Q) is compact. Therefore, we have from (3.4.3) that

per

B—0e—0

lim lim 7%° :/ [(—2)°72(ux 6) = (~A)°/2u x 9| - (~A)**uda
Q

= [ (-8)2ux 0) - (~8)* ud.
Q

Then the proof of Theorem 3.4.1 is complete.

Proposition 3.4.1 Operator L : H,,.(Q) — L*(Q) is compact.

Proof Tt suffices to prove that £ : Hp,, () — Hp.,.(2) is a bounded linear

operator, since Hy,. () is compactly embedded frel;o L?(Q). Obviously, by
definition,
I(=2)°72(ue) |72 = (2m)* " [n**|ug(n)
neZd
and

1(=2)*2ug| 12 < Cllull g, -

per

Since ug(n) = Y i(n1)d(n2) and [ny +na|* < C(Ina|* + |na|®), then

ni+ne=n

[n|*[ug(n)| <Inl* Y~ fa(m)l|d(ns)]

nit+ne=n
<C< Y Imlam)lgn)+ Y Iﬁ(m)lnzlo‘lé(nz)o-
ni+nz=n ni+nz=n

Applying the discrete Young’s inequality, we have

I(=2)*"2(ug) 172 < CU=2)*2ull 1 lIT + [[ull 3l (=2)*2]13).

We need also to estimate ||(—A)*/2(Lu)| 2. By definition, it suffices to prove
that {|n|*Lu(n)} € 1%, As u ~ Zﬁ(n)e%i”'“" and ¢ ~ Zgzg(n)e%i”'m, then

n
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uQp ~ Z Z @(n1)d(ng)e?™ ™. By definition of Lu, we have

n nit+nz=n

Lum)= > [lun)ém) — Y |mli(na)d(na),

nit+nz=n ni+na=n
yielding .
[Lu()| <Y Ine|*fa(m)Id(n2),
ni+ngo=n
and
n|*Lu(n) < Y mal®faln)lne|*[é(n2)| + Y la(n)lnal**|(n2)].

nitnz=n ni+nz=n

Applying the discrete Young’s inequality again, we obtain
I(=2)*"2Lull72 < [(=2)*2ul3lI(=2)*"2|1F + [[ull3] (—=2)* |17,
completing the proof.

3.4.2 Ginzburg-Landau approximation and asymptotic limit

In this section, we consider the Ginzburg-Landau approximation of the frac-
tional Landau-Lifshitz equation and the limits when the coefficients tend to
zZero,

{atu =vu x A**u+ pu x (u x A?%u), (3.4.10)

u(0) = up and |ug(z)| =1,a.e. x € Q,
where o € (1/2,1) and v = (u1, u2,u3) is the magnetization vector, A =
(—A)l/ 2 represents fractional Laplace operator. For convenience, we let ) =
[0, 27t] be the one dimensional periodic domain, v € R and p > 0 are physical
parameters. Let Qr = (0,T) x Q.

When a =1, (3.4.10) reduces to the classical Landau-Lifshitz equation

0w = —vu X Au — pu X (u X Au).

The equation was first proposed by Landau and Lifshitz [128], which was used
to study the dispersion theory of permeability for ferromagnetic materials,
then it was widely studied [102]. When v = 0, = 1, equation (3.4.10)
reduces to the heat flow of harmonic maps [133]

up = pAu + p|Vul*u.

When oo =1, v = —1 and g = 0, (3.4.10) reduces to the Schrodinger flow on
the unit sphere, and was extensively studied [41,173]. For this reason, when



3.4 Fractional Landau-Lifshitz equation 163

v = 0, equation (3.4.10) is also called the fractional heat flow for harmonic
maps. If 4 =0, equation (3.4.10) reduces to the fractional Heisenberg equa-
tion [210]. It is easy to see, if |ug(z)| = 1, then |u(t,x)] = 1 for any ¢ > 0
and hence (3.4.10) is equivalent to the following Gilbert equation [91]

2,2
up = uu x A2y 4 By U (3.4.11)
v v

The weak solution of this equation can be defined as follows.

Definition 3.4.1 Let up € H?, |ug| = 1 a.e., u = (uy,us,u3) is called a
weak solution of (3.4.11) if
(i) for any T >0, u € L>=(0,T; H¥()), us € L*(Qr) and |u| =1 a.e.;
(ii) for any three-dimensional vector ¢ € L*(0,T; H*(Q)), there holds

’ u _ [
V/QT (ux 6t> wdadt o, o - pdzdt

(3.4.12)
2, 2
:u/ A%u - A%(u x p)dadt;

v

(111) u(0,z) = ug(x) in the trace sense;
(iv) for any T > 0, there holds

/|NJZ )|?dx + 1_’_#2/62 |=— | dzdt < /|A°’u0| dz. (3.4.13)

One of the main results in this section states that there exists at least

one weak solution to the fractional Landau-Lifshitz equation, see Theorem
3.4.2. Since (3.4.10) is similar to the harmonic map heat flow equation but
with one more nonlinear term u X A%u, we generalize Chen’s idea in [44] to
the fractional case, where she proved the existence of weak solutions to the
heat flow of harmonic maps by Ginzburg-Landau approximation. But since
A% is a nonlocal operator, more is involved in the fractional case and the
fractional calculus inequalities in Theorem 2.2.14 will play a critical role in
the convergence of approximate solutions.

The fractional calculus inequality itself is not sufficient for the conver-
gence, since the equation does not have any commutator structure or the
divergence free condition as in the quasi-geostrophic equation in the sub-
sequent sections. However, noting that cross product a x b of two three
dimensional vectors is vertical to each of its components, we can introduce a
commutator structure to get the convergence. The details are presented in
the following and the commutator is defined as

[A%, plu := A%(p x u) — ¢ X A%u.
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Another aspect of this paper concerns the limiting behaviors as the Gilbert
parameter yp varies. Formally, as p — 0, (3.4.10) tends to the fractional
Heisenberg equation and as v — oo, the solution of (3.4.10) tends to the
weak solution of the fractional heat flow of harmonic maps after a scale
transform. These observations will be justifies in this section, see Theorem
3.4.3 and Theorem 3.4.4 for detailed statements. All these results can be
generalized to the case « = 1, which is established in Guo-Ding [102] and
Alougest-Soyeur [10].

If not specified, H® (Q) denotes the homogeneous fractional Sobolev space
and H*(Q) denotes the inhomogeneous one. The product functional spaces
(X)?3 are all simplified to X. For example, (L°(0,T; H*(Q)))? is simplified
to L>(0,T; H*(R)).

Now we prove the existence of global weak solutions to the 1D periodic
fractional Landau-Lifshitz equation (3.4.10). For simplicity we let v = 1,
which will not affect the result essentially. We will prove the following.

Theorem 3.4.2 Let o € (1/2,1) and up € H® such that |ug| = 1, a.e..
Then there exists at least a weak solution for the fractional Landau-Lifshitz
equation in the sense of Definition 3.4.1.

What follows focuses on the proof of this theorem. Before we doing so,
we introduce a compact lemma due to Simon [201].

Lemma 3.4.3 Assume By, B, By are three Banach spaces and satisfy By C
B C B; with compact embedding By — B. Let W be bounded in L>(0,T; By)
and Wy := {wy; w € W} be bounded in L9(0,T; By) where ¢ > 1. Then W is
relatively compact in C([0,T]; B).

The proof can be found in Simon [201, Corollary 4, P.85]. Note that this
lemma is an extension of the Aubin’s compactness result, see [13,135] for
details. One may see also Theorem 3.2.7.

Inspired by Chen’s work on the heat flow of harmonic maps, we consider
the following Ginzburg-Landau approximation problem for u.

Oue Y x Oue
e %™ o

+ (1 + p?) (AZ%E - ;2(1 - |u62)u6) =0. (3.4.14)

Let {w;}ien be a complete orthonormal basis of L?(f2) consisting of eigen-
vectors of A2

A = kjw;,  §=1,2,- (3.4.15)
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under periodic boundary conditions. The existence of such a basis can be
proved as in Temam [213, §.2,Ch.II]. For fixed € > 0, we seek approximate
solutions {uy (¢, )} for equation (3.4.14) of the form

N
T) = Z pi(t)wi(z)

where ¢; are R3-valued vectors, such that for 1 <4 < n there holds

ou ou
7 aévwﬂr/ Uy X 6—ng +(1 +u2)/ A unw;
Q Q
L (3.4.16)
-—— /(|uN|2—1)uNwi=O, 1<i<n
Q

/UN(O)wi:/Uowi
Q Q
hold.

Since the coefficient matrix “u+uy x” before

€

with initial conditions

N . . .
is anti-symmetric and

hence invertible, from the standard ODE theory, there exists a local solution
to the system (3.4.16) for {¢;}2,. In the following, we make some a priori
estimates to show these solutions exist at least on a common interval [0, 7).
Multiplying the equality (3.4.16) by % and summing over 1 < i < n lead
to

1d 1

8UN2 a 2 d/ 2 2 .
1+u/| ™ +2dt/|Au vt ga g f el —Dhde =0

Then integrating the resulting equality over [0, 7] leads to

1 @ 2 1 2 2 H un
_/ [A“un (T)] dx+—2/(|uN| —1)*(T)dz + 11,2 QT‘ 5 |“dxdt

/ |A®upo|?dz + — (|uNO|2 — 1)%dz, vt € [0,T].

4e2

(3.4.17)
Since a € (1/2,1) and H*(Q) < L*(Q), the right hand side is uniformly
bounded. Furthermore, by Young’s inequality

/|uN| dr < C+ = /(|uN|2—1)2d:E, (3.4.18)
Q Q

therefore for fixed € > 0, there holds
{un} is bounded inL>°(0,T; H*(2));

{a“—N} is bounded in L2(0,T; L%(Q));

{lun|* =1} is bounded in L>(0,T; L*(Q)).
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These estimates imply that the solution can be extended to all time, and
we can extract a subsequence (still denoted as {upn(t)}) such that for any
l<p<oo
UN —F Ue weakly in  LP(0,T; H*(Q));
UN — Ue strongly in  C([0,T]; H*(Q)) and a.e. for 0 < B < a;
oun . O,
ot ot
lun? =1 = ¢ weakly in LP(0,T; L*(Q)).

weakly in  L*(0,T; L*(Q));

The second convergence is due to Lemma 3.4.3. On the other hand, since
UN — U a.e., it can be shown from [135, Lem1.3, Chap.1] that ¢ = |u.|? — 1.
Taking N — oo in (3.4.16), we find a weak solution wu. for the approximate
problem (3.4.14), i.e., there holds

du, du,
u “¢+/ ue X “¢>+(1+u2)/ A%u A%
or Ot Qr ot -
Ly (3.4.19)
2
- /<|ue| ~ Luch =0,

for any ¢ € L?(0,T; H*). Furthermore, passing N — oo in (3.4.17), by Fatou
lemma we have

€

2

Oue|” L rar

1 1 "
= [ |A%uc(T)Pda+— J? = 1)*(T)d / =
5 | AP g [ -0 s ||

1
g—/ |A“ug|?dz, WVt €[0,T).
2 Ja
(3.4.20)

In the following, we let € — 0. From (3.4.20) and a similar inequality that
leads to (3.4.18), we have

{ue} is bounded in L*(0,T; H*(Q));

{85:;} is bounded in L?(0,T; L*(Q));

{|ue)> =1} is bounded in L>(0,T; L*(Q)).
Therefore, we can select a subsequence (still denoted as u.) such that for any

1 <p<ooandforany 0<f<a
Ue — U weakly in  LP(0,T; H*(Q));

Ue = U strongly in  C([0,T]; H*(R)) and a.c.,
381;6 — % weakly in  L*(0,T; L*(Q));
luc* =1 -0 strongly in  LP(0,T; L*()) and a.e..
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It can be shown from the last convergence that |u| = 1, a.e.. On the other
hand, since H*(§2) — L*°(), by Sobolev embedding inequality we have

ue 18 bounded in L*°(Qr), i.e. |u < C (3.4.21)

for some constant C' depending only on the initial data and the Sobolev
constant. In order to pass to the limit, we let ¢ € C°°([0,T] x ) and
¢ =ue X ¢ in (3.4.19). Applying the multiplicative estimates to u. and ¢

[A% (ue X )|z < ClJucllpoe [l oz + luell gacz llellL),

it can be shown ¢ € L2(0,T; H*(Q)) (where L?(0,T; L*())-norm is obvi-
ous), and hence

_/ u 8U5 . +/ |u|26u6.
Hlo \" " e ) 2T ), 1 o T

—/ (u Ouc )u o+ (1+p°) A%uc - A%(ue x @) = 0.
T ot Qr

(3.4.22)

Taking € — 0, it can be shown that

ou ou ou
227¢ o= 2 _1)=<. €.
/Tluel 5 7 /QT(IueI )815 ¢+ o, Ot ©

ou
Qr Ot

)

thanks to the strong convergence of |uc|? — 1 to zero. For the third term, we

have

Oue ou Oue
Jo (oG Yoo [ G = [ (o G om0
Oou. Ou
+/Tcw(at_&)w¢

ou
e Gy

—0.

Finally, we consider the convergence of the last term in (3.4.22). This is by no
means obvious since we encounter the fractional order derivatives and for this

reason, the commutator estimate will be resorted to. Let Z, = — / A%u, -
T

A%(ue X @) and accordingly 7 = — A%u - A%(u x ). Since / A%y, -
Qr T
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Ao‘uﬁxgo:/ A%u - A%u x @ = 0, we have
T

and
I= / A%u - [AY @lu.
T
Now, using commutator estimate, it is shown

1A%, @l (ue —w)llL2) < CUIVelle llue =l a-1ps + 11l grams lue = ul[rs)-

Taking p; =

, P2 = and for any ps,p4 € (2,00), we have
o

1-— 2a -1

1A, l(ue — u)llL2(@r) SCUIV@llLo 0,101 () Ue — ullL2(Qr)

+ ||<)O||L°°(0,T;HQ=P3(Q))||u€ — ul|L2(0,7;15 ()
—0,

by the strong convergence of u. to u in L*(Qr) and in L2(0,T; H?(Q)),
1 1

where 8 = 3 o < 3 < a. On the other hand, following exactly the same
2

commutator estimate, one can show that [A%, p|u € L?(Qr). Therefore,

IZ.— 1= / A%uc - [A% o] (ue — ) Jr/ A%(ue —u) - [A%, plu — 0,
T T
since u, is bounded in L?(0,T; H¥(Q)) and converges to u weakly in L?(0, T
H*(2)). This verifies the convergence of the last term in (3.4.22). Taking
€ — 0, we have

Ju ou
,u/T (ux E) - pdadt — QTE-godxdt

=1+ u2)/ A%y - A%(u x p)dzdt,

and this relation holds for ¢ € L?(0,T; H*(f2)) by a standard density argu-
ment. Furthermore, the inequality (3.4.13) holds from estimates (3.4.20) and
we finish the proof of Theorem 3.4.2.

Remark 3.4.1 For technical reasons, the above analysis is confined to the
1-D case due to Sobolev embedding inequality in (3.4.21). Similar result is 0b-
tained through an auxiliary function g for the classical Landau-Lifshitz equa-
tion. See [10, pp.1079], but whose analysis breaks down in the fractional
case.
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Remark 3.4.2 When o = 1, it can be shown that |u.| < 1, see [10]. We
would also like to mention that the advantage of the Ginzburg-Landau approz-
imation lies in the fact that it can be shown |u| = 1 through the approzimating
process, which is difficulty to be accomplished by the usual Galerkin method.

Remark 3.4.3 When u = 0, by means of the Galerkin approximation, we
can show that there exists at least a global weak solution for the fractional
Heisenberg equation such that for all o € L?(0,T; HY(Q)) there holds

/ % - pdadt + v 0 A%y - A%(u x p)dzdt = 0. (3.4.23)

On the other hand, it can be shown following the same steps as above that
when v = 0, there exists a global weak solution for the fractional harmonic
map heat flow such that for all ¢ € L*(0,T; H*(Q)), the following equality
holds

/ (u X %) ~dxdt — p A%u - A%(u x p)dzdt = 0. (3.4.24)
T Qr

In what follows, we discuss the relationships between the fractional Landau-
Lifshitz equation and the fractional Heisenberg equation or the generalized
fractional heat flow of harmonic maps. We will prove the following two the-

orems.

Theorem 3.4.3 Let yp — 0, the weak solution obtained in Sect. 3 weakly
converges, up to a subsequence, to a solution of the fractional Heisenburg
equation in the sense of (3.4.23).

Proof From the inequality (3.4.13), we know that u* is uniformly bounded in
Aut
Lr(0,T; H®) for any 1 < p < 00, and \/ﬁ% is bounded in L2(0,T; L?(2)).
By the calculus inequalities, we have
[A%(u# x )| SC([[A%el + [[A%u# ([l ¢l L (0))
SCA+ [[A" Dol e

Therefore from (3.4.10)

out
= #| SCVallelran
Qr
+ C(1+ ) (1 + [ A%uol DA u"| L2 1ol 200, 7510 (02))
<C(+ i)l 20,7507 (2))»

14

and hence { 85;

1.
We can then extract a subsequence (if necessary) such that for any —a <

} is bounded uniformly in L?(0,T; H=%(£2)) as far as u <
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B < a and for any 1 < p < oo there hold
ut —u  weakly in LP(0,T; H*(Q));
ut = u  strongly in C([0,T]; H?(Q)).
Passing to the limit ¢ — 0 and taking advantage of the commutator estimate,

we then find a weak solution of the fractional Heisenberg equation as a limit
of u* in the sense of (3.4.23) and Theorem 3.4.3 is proved.

Theorem 3.4.4 Let u* be weak solutions for the fractional Landau-Lifshitz
equation and a*(t,x) = u(t/p,x). Then as p — 0o, U weakly converges,
up to a subsequence, to a solution of the fractional heat flow of harmonic map
equation in the sense of (3.4.24).

Proof Taking the scale transform @# (¢, ) = u*(t/u, z), we have from (3.4.12)

that
. out > 1 out
" X — | - pdxdt — —/ — - dadt
/ - ( ot KJor Ot

. (3.4.25)
= 2” / AT? - AY(aH x p)dadt.
H T
Furthermore, we have the energy inequality
2 2
/ A% (T)2da + —F— / g dxdt / |A%uo|2dz.
0 1+p ot
out ) . . . . 1o
Therefore, o is uniformly bounded in g in L*(Qr) as soon as u > 1.

We can then extract a subsequence if necessary such that for any 1 < p < oo
and for any 0 < 8 < « there hold

= weakly in  LP(0,T; H(Q));
at =1 strongly in  C([0,T]; H?(Q)) and a.e.;
out on
o o )
Taking ;1 — oo in (3.4.25) and taking advantage of the commutator estimate,
we find that up to a subsequence, weak solutions for the fractional Landau-

weakly in  L*(0,T; L*(Q)).

Lifshitz equation weakly converge as 1 — oo to a weak solution for the
fractional heat flow of harmonic map equation in the sense of (3.4.24).

3.4.3 Higher dimensional case—Galerkin approximation

Now, we consider the fractional Landau-Lifshitz equation in higher dimen-

sions

{ut( = yu x A2+ Au X (ux A2) (3.4.26)
u

0) =ug € H,
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where u(z,t) is still a three-dimensional vector, representing the magnetiza-
tion vector of ferromagnetic materials, v, A > 0 and « € (0,1) are real num-
bers. In the section, we still discuss the spatial periodic case as 2 = [0, 2x]¢
and d = 2,3. Let Qr = (0,7) x Q. When v = 0, equation (3.4.26) is the
fractional heat flow of harmonic maps

up = Au x (u x A*u). (3.4.27)

In what follows, we discuss the existence of global weak solutions of
(3.4.26) and (3.4.27). We first make clear what we mean by a weak solu-
tion.

Definition 3.4.2 Let ug € H?, |ug| = 1 a.e., we say that u is a weak
solution of equation (3.4.26) if

(i) for all T >0, u € L*>(0,T; H*());

(i1) for all o € C>*(Qr), there holds when A =0

% o= —'y/ A% - A% (u x p)dzdt (3.4.28)
Qr T

where Qr = (0,T) X Q; or when A >0
—~90:'y/ (uxA2au)~gad:Edt7/ Mux A?*u)-(ux@)dzdt. (3.4.29)
Qr ot T T
When A > 0, we will show below that u x A?*u makes sense in L?(Qr),

and for this reason, it will be clear that (3.4.29) makes sense.

Definition 3.4.3 Let ug € H?, |ug| = 1 a.e., we say that u is a weak
solution of equation (3.4.27) if

(i) for all T > 0, u € L>®(0,T; H*(2)), dru € L?(0,+00; L*(Q)) and
lul =1 a.e;

(i) for all p € C>(Qr), there holds

/ (u X %) cp = )\/ A%y - A% (u x p)dadt; (3.4.30)

(111) u(0, ) = ugp(z) in the trace sense;
(iv) for all T > 0, there holds

2
/ AS(T)[2dz + 2 /
Q A Qr

This definition fully utilize the condition that u stays on the unit sphere

ou

2
Ey dxdt§/ﬂ\A°‘u0|2dx.

as time evolves, and the readers are referred to Lemma 3.4.8 to see why we
define a weak solution by the identity (3.4.30).
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Consider the eigenvalue problem

A2y = puy,
. . . (3.4.31)
with periodic boundary conditions.

Since A~2“ is a compact self-adjoint operator in L?(Q), there exists a com-
plete orthonormal family of L2(€2), {w;}jen, made of eigenvectors of A~2*

A_Qawj' = pjw;, VjEN,

where the sequence p; is decreasing and tends to 0. It is clear that w; €
D(A%®) for all j € N, and setting v; = M;1 we obtain

A2awj = vjwy, j=12---
O<wvi<ve<- -+, v; — o0 (asj— 00).

The family {w;} satisfies

(wj, wy) = 0%, the Kronecker symbol,
<A2awj,wk> = Vj5jk, Vj, k.

What follows is dedicated to constructing the global weak solutions for
(3.4.26) via the Galerkin method. In particular, the following global existence
theorem for the fractional Landau-Lifshitz-Gilbert equation (3.4.26) will be
proved. We set 7 =1 in the following.

Theorem 3.4.5 Let o € (0,1). Then for all ugp € H*(2), |ug| = 1 a.e.,
there exists at least a weak solution for the fractional Landau-Lifshitz- Gilbert
equation (3.4.26) such that

(i) when A =0,

u(z,t) € L*(0,T; H*(Q)NC*=% (0,7 L* ()
where s > a + >

(11) when A > 0,

r—1

= (0,75 L7(2),

u(z,t) € L*(0,T; H*(Q))NC"
d
where r < 2 andlgrgr*:d—, orr=2,d=1, and a > 1/2.
-«
The proof of this theorem is divided into two major parts. First, we show

some a priori estimates, and then some compactness arguments which insure
the existence of global weak solutions.
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Let {wp(x)}22, be the normalized eigenfunctions of (3.4.31), and let
A1, A2, -+ be the corresponding eigenvalues. Then {w,} are smooth over
Q and form a basis of H*(Q2). Define the orthogonal projection

PN HY(Q) = Sy = span{wy, we, -+ ,wy} C H¥(Q).

We look for approximate solutions {uy (¢, z)} for equation (3.4.26) under the
form

un(ta) = 3 puv (s (@),

where @y are three dimensional vector valued functions and are chosen such
that
aU’N 2c 2c
——ws— | unxXAuy-ws—A | unX(unxA*uy)ws =0, 1<s< N
o Ot Q Q
(3.4.32)
with the initial conditions
/ un(z,0) - ws(x) = / up(z) - ws(x), 1< s<N. (3.4.33)
Q Q

The local in time existence of solutions

(@;Nv(piNﬂDgN)ﬂ 1<s<N

to problem (3.4.32)-(3.4.33) follows from the standard Picard’s theorem,
which can be found in a standard ODE textbook. In order to take the
limit N — oo, we need to make sure that all the functions ¢, are defined at
least in a common interval [0, 7], and this is a consequence of the following
lemmas.

Lemma 3.4.4 Letug € H*(2). Then for any 0 < T < oo, for the solutions
un to the approxzimating system (3.4.32)-(3.4.33), there holds the estimate

T
sup |lun||3a + /\/ lun x A uy]|?.dt < K. (3.4.34)
0<t<T 0
2d 1
Ifp<ocoand2<p<p'= 71— 20’ orp=o00,d=1 and o > 3 then there
-2«
holds
sup |Jun||?, < CK;.
1
Furthermore, forr <2 and1 <r <r* = ] ,orr=2d=1 and a > 5
-«

there holds
||UN X AauNHLr(Q) < CKQ.

In particular, the constants C, K1 and Ko are independent of N.
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Proof Multiplying the equation (3.4.32) with ¢,y and summing up the re-
sulting product for s =1,2,--- , N, we have

%/ﬂ|u1\;(x7t)|2dx =0.

||UN||2L2(Q ||yu0||/:2 @) < Ko, (3.4.35)

Then we have

where Ko depends only on the initial data |lug|/z2(o) and is independent of
N. Multiplying the equation (3.4.32) with vspsy and summing up to N, we

have
8UN

-A2"uN — )\/ un X (uN X A2(X’LLN) -AQauN = O,
o Ot Q

th/ |A“uN|2+/\/ iy x A2y |? =

Integrating over [0, T], we have

sup ||AQUN(t>H%2(Q) + Aun % A2a“N||2L2(0,T;L2(Q)) < K, (3.4.36)

St

where the constant K depends only on the initial data [[A%ugl[z2(q). By
2d

Sobolev embedding, we have for any p < oo such that 2 < p < p* =

d—2a’
there holds
sup_||un(t)|[zr() < CKn.
In particular, when d = 1, there holds for any a > 1/2 that
sup |Jun(t)[|L~() < CK;. (3.4.37)

Itx

Finally, by Holder inequality, for < 2 such that 1 < r < r* there holds

1/r 2-r
</ lun x Ao‘uN|de> < </ |AauN|2dx> (/ ‘UN|2 G do:) ,
Q Q

(3.4.38)

d . .
where r* = T In this case, since 5 < p* for r < r*, we have

{uny x A%un}n>1 are uniformly bounded in L™ (). (3.4.39)

On the other hand, when r = 2, from the Hélder inequality and inequality
(3.4.37) there holds

1/2

1/2
(/ |’U,N X Ao‘uN|2dx> < |UN|LOO(Q) (/ |A°‘uN|2dx) ,
Q Q

for d =1 and a > 1/2. In particular, all these constants are independent of
N.
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Lemma 3.4.5 Let un be solutions for (3.4.32). Then under the conditions
of Lemma 8.4.4, there hold the following estimates
(i) when A =0,

d
<K, Vs>a+ (3.4.40)

sup >

0<t<T

o,

()

(i) when X\ > 0, for r as in Lemma 3.4.4,

< K, (3.4.41)

%
L(Qr)

where the constants Ko, K3 are independent of N.

Proof Consider the case A = 0. For any three dimensional vector ¢ € H*(2),
¢ can be represented as

Y =¢N + &N,

where

N o)
:IZ) - Zﬂsws(x)v @N(x) = Z ﬂsws(s)

s=N+1

Then by Lemma 3.4.4, we have

8uN 8uN / 20
—¢=| —e~n= [ u~vn x A™%un-pon

/Ao‘uN uN X(pN)

1 1 1
Using the calculus inequality in Theorem 2.2.14, for 5= + —,q < 0 we
P q

have

[ | <Iaunlzalla ey x omlzzy
<IA%un | 2@ {llun [ zellon | o + unll go.zllonloo}-
Taking 2 < p < p*, using Sobolev embedding, we have
lunllzr < [lunl e
Therefore

8UN
[ 20| < sl

for any s > o + 5 and (3.4.40) is proved.
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Consider the case A > 0. We have from (3.4.26) that

L el oo

+ A / [UN X (UN X AQQUN)] 80‘

<llun x A**un |l 2@ llell L2 (Qr)
+ Mun x A**unl 2l e @)llell Le@r)
<Ks|lellLaoqr)

1 11
for 5= —+—. Let pand r be as in Lemma 3.4.4, then we have [|0un/0t| 1rQ.)
p g

< K3, completing the proof.

Lemma 3.4.6 Under the conditions in Lemma 3.4.4, for the solution upn (t, x)
for (3.4.32) the following estimates hold:

d
(i) when)\:O,fors>a+§

lun(t1) = un(t2)ll L2(@) < Kalts — to]a+5;
(i1) when A > 0, for r as in Lemma 3.4.4 and r > 1
lun(t1) —un(t2)lr o) < Kalt1 — to| 7,
where the constant Ky is independent of N.

Proof When A\ = 0, by Sobolev embedding theorem and the interpolation
inequalities, we have from Lemma 3.4.5

lun(t1) = un(t2)llz2(0) <Cllun(t) — un ()]l 5775 o) lun(t) —u (t2)||1(}ﬁs(g
ats
<C‘ " Oun
no Ot g
0 o
<C swp [N |te — t1]ots
o<t<T || Ot ||g-s(0

<Clta — |5+,

where in the last inequality we have used the estimate (3.4.40).
Consider A > 0. Let r > 1 be as in Lemma 3.4.4, then from Young’s
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inequality and Holder inequality, we have

2 9u
) = utta) ey = | [ St

t1 L(Q)
</t2 un dt
I TR (s

r\ 1/7
r—1 8u
e (L Pl
T

r—1

<Clta —ta]

where in the last inequality we have used the estimate (3.4.41). The proof is
complete.

Based on the above a priori estimates, we have the following.

Lemma 3.4.7 Let N and T be arbitrarily fixed. Then under the conditions
of Lemma 3.4.4, the initial value problem for the ordinary differential equa-
tions (3.4.32)-(3.4.33) has at least one continuous differentiable and global
solution {psy(t)} for s =1,2,--- /N and t € [0,T].

In the following, we will take N — oo to get a global weak solutions
for the fractional Landau-Lifshitz-Gilbert equation. We first consider the
convergence for the case of A = 0.

It follows from these a priori estimates that {un(¢,x)}n>1 is uniformly
bounded in the space

Go = L*(0,T; H*(Q))\W (0, T; H*(9)).

Applying the compactness lemma, there exists some u € L>®(0,T; H*(Q)))
such that up to a subsequence

une — ug,  weakly in LP(0,T; H*(Q2)),

UN — U, strongly in LP(0,T; H?(Q)),

where 1 < p < oo and —s < 8 < «. In particular, uy — u strongly in
L2(0,T; H?(Q)).
Then the convergence of the first term is obvious

8uN

ou oo
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However the convergence for the nonlinear nonlocal term is not obvious
at all, since we only have compactness in H? for < a. In the following, we

show

/ Aupn - A%(uy X @)dzdt — A%u - A%(u x p)dadt. (3.4.43)
T Qr

As a first check, we show that the r.h.s. of (3.4.43) makes sense. Indeed,
for any u € H%, we have

<[A%ul|[A%(u < @)

/ A% - A%(u x p)dz
Q

a a . 3.4.44
<OlAul (A% [ llo + ful el A%llze) G444

<ClIAulll]l e,

1 1 1 o 1 d d
for—-+-=-+—-=-and s >maxJa+—, - .
p q p d 2 p 2

Now the special structure of this equation plays an important role in the
convergence. Indeed, let Cy(u) = A%(u X ¢) — A%u x ¢. Since

A%u - (A%u x ) =0,
it suffices to prove

Ao‘uN~C@(uN7u)+/ A%(un —u) - Cy(u) = 0.
Qr T

Applying the commutator estimate and Sobolev embedding, we have
1Co(un —u)lL2(0)
<e (9@l (@ lluy = ullgo-s.ra(ey + Il e iy = ullrace))
<c (19l lluw = ullzoy + 16 frona g lun = ull s )
<Cllollas @ llun — ullms @)

where ps,p3 € (1, +00) are such that

1 1+1 d a—1+1 1
- = — — 1 5
2 p1 p2 d D2
1 1 1 1
— = — 4+ — and *+*:*,O<ﬁ<av
Ps pa pa 2
d
an >d+1
S — .
2
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d d
Note that in this case, s > a + 5 o holds automatically.
b3
Again by Holder inequality,

’ Aun - Cy(uny — u)dadt
Qr

<C||<P||HS(Q)||AQUN||L2(QT)||UN - U||L2(0,T;Hﬂ(9))
—0 as N — oo.

On the other hand, since Cy(u) € L*(Qr) and uy — u in L*(0,T; H*(2))
weakly, the convergence

/ A%(uny —u) - Cy(u) =0

T

is obvious and (3.4.43) is proved. Therefore, letting N — oo, we have from
(3.4.42) and (3.4.44) that

du., pdadt = — A% A%(u x @)dadt,
Qr ot Qr
and the global existence of weak solutions for the fractional Heisenberg equa-
tion (A =0 in (3.4.26)) is proved.
Next we consider the convergence for the case of A > 0. From the esti-
mates established before, we have that {ux}n>1 is uniformly bounded in

Ga = L=(0,T; H*(Q))W" (0, T; L"(9)),

for r > 1 as in Lemma 3.4.4. Therefore, from the compactness lemma, there
exists some u € L>(0,T; H*(Q2)) such that

uy —u  weakly in LP(0,T; H*(Q)) for 1 < p < oo;
uy —u  strongly in LP(0,T; H?(Q)) for 1 < p < 00, 0 < f < a;

uy —=u  weakly in LP(Qr) for 1 < p < oo as in Lemma 3.4.4;
8uN ou

50 Aa weakly in L"(Qr) for r > 1 as in Lemma 3.4.4.

(3.4.45)
The handling of the case A > 0 is much trickier since it involves one more
nonlinear nonlocal term of the highest order derivative and the usual (integral
order) Leibniz formula does not hold anymore. Even worse, in this case, the
former commutator estimates method cannot be applied to get the desired
global existence result directly. Observing the fact that from (3.4.36)

Ky
)\ )

N

lun x A**un||Z2(0 7120y <
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there exists some element ¢ in L?(0,T; L*(Q2)) such that
un X A*uy — ¢ weakly in  L%(0,T; L*(Q)). (3.4.46)
In the following, we show

u x A**u = ¢ € L*(0,T; L*(Q)). (3.4.47)

d
In fact, let ¢ € H*(Q) for s > a + 3

/ un X A*uy - = — A%upn - A%(un X @)
T Qr

:—/ Ao‘uN-C@(uN).

On the other hand, using commutator estimate together with the same rea-
sonings that lead to (3.4.43), we have

/ Aun - Cy(uy) — A%u - Cyp(u)
T Qr

:/ A%u - A%(u x )

:—/ u x A%y - o,
T

and therefore (3.4.47) is proved. In particular, we have
un X A®®uy — u x A%y weakly in  L%(0,T; L*(Q)).
From (3.4.46) and (3.4.47), we know that for any ¢ € C*°(Qr)

/ (uny x A**uy) - pdxdt — (u x A%*u) - pdadt.
T Qr

Furthermore, since uy — u strongly in L?(Q7), the following convergence
also holds for any ¢ € C*(Qr)

/ (uy x A**uy) - (uy x @)dzdt — (u x A**u) - (u x p)dzdt,
T Qr
and the r.h.s. term makes sense. Then the global existence of weak solutions
for the fractional Landau-Lifshitz equation (3.4.26) is proved in the sense of
(3.4.29) in Definition 3.4.2.

Theorem 3.4.5 is now completely proved.

Next we prove the global existence of weak solutions for equation (3.4.27).

We will prove
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d
Theorem 3.4.6 Let o € (0,1) be such that o > 1 Then for any up € H*,

lug| =1 a.e., there exists at least one weak solution for (3.4.27) in the sense
of Definition 3.4.5.

First we prove the following

Lemma 3.4.8 A map u:Q x Rt — S?, with A% € L>=(R*; L?(Q2)) and
Owu € L3(Q x RY), is a weak solution of (3.4.27) if and only if

u X up = —Au x A2, (3.4.48)

holds in the sense of Definition 3.4.3.

Proof 1If u weakly solves (3.4.27), then for any three dimensional vector ¢ €
C*(9), multiplying (3.4.27) with (u X ¢) and then integrating give

/Qut-(uX(b):)\/Q(U-Aza)u-(ux¢)—A/§1A2°‘u~(ux¢)
:—)\/QAzaw(uxqb),

since u - (u X ¢) = 0. Note also that

/Qur(uqu):f/Q(uxut)w.

Hence u weakly solves (3.4.48) in the sense of (3.4.30) in Definition 3.4.3.
Conversely, if u weakly solves equation (3.4.48), then we have

(Opu + AA**u) x u = 0.
Hence there exists a multiplier m : @ x Rt — R such that
Ou + MYy = mu.

Multiplying it by u¢ and using O;u - u = 0, we obtain that for any three
dimensional vector ¢ € C*(Q),

/ meo = A / A**u - ug. (3.4.49)
Q Q
Therefore u weakly solves

Opu + M2 u = A - A**u)u,

i.e. u weakly solves (3.4.27).
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Remark 3.4.4 Strictly speaking, one needs to show that the integral on the
right hand side of (3.4.49) makes sense for any v € H*(QY). Indeed, this is
the case. For any ¢ € C*°(R2), and for any u such that u(-,t) € H*(Q),

o=

/Ao‘u AX( u¢)’
< [[A%ul[[A%(ue)ll,
while
[A%(ug)|| < C(IIAYu] L2]d]oc + |u|ool[AY@]|L2),

thanks to the calculus inequality in Lemma 3.4.4. On the other hand, this
lemma explains why we define a weak solutions for (3.4.27) as in Definition
8.4.3. This observation is crucial for us to get the convergence in the following

proofs.

In the following, we consider the Ginzburg-Landau approximation. For
k > 1 integer, consider the problem for maps u° :  x Rt — R3:

A
Opuf 4 A2y = §(1 — Juf ). (3.4.50)
We seek approximate solutions {u,(t,x)} for equation (3.4.50) under the

= Z pi(t)wi(r)

where ¢; are R3-valued vectors, such that for 1 < i < n there holds

form

Oun,
u wl—l—)\/Azaunwz—F—/ tun|* — Dupw; =0, (3.4.51)
Q

with the initial conditions

/un(O)wi:/uowi.
Q Q

This is a system of ODEs for ¢;’s and from standard ODEs theory, one
can easily show the existence of local solutions. Now, we show some a priori

depi
estimates. Multiplying the equality (3.4.51) by o and summing over 1 <
7 < n lead to

dun |y

Ad
-~ Aa 2_12 _
ot 2dt/| tn| dx+42dt/(‘ tn )z =0,
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from which, after integration in time, we have

1 1 1 O,
—/ |A%u, (t)[Pdx + 12 (Jun|? = 1)%(t)dz + < / Y d dt

Q ot

/ |A %o |2 da + — 12 (|unol® — 1)%dz,  for all t € [0,T).
Q
(3.4.52)

d
Since the initial data ug € H* which is embedded into L*(Q2) for o > —, the
right hand side is uniformly bounded. Furthermore by Young’s inequality

1
[unP <5 [ uaf -1,
Q Q

we know that {u,} is bounded in L>(0,7; L?(€2)). Then we deduce that

{un} is bounded in L%(0, T; H*(Q));
{%} is bounded in L?(0,T; L*(Q));
{|un|? — 1} is bounded in L?(0, T; L*(%2)).

These estimates imply that the solution can be extended to all time, and we
can extract a subsequence (still denoted as {u,(¢)}) such that

Uy — us weakly in L?(0,T; H*(Q)),
ou,  Ou® :
% N ;t weakly in L*(Qr),
Up — u° strongly in L(0,T; H?(2)) for 0 < 8 < o and a.e.,
lunl? =1 = y weakly in L*(Qr).

From [135, Lemma 1.3, Chl], it is easy to show that x = |u|? — 1. Passing
to the limit (n — o0), we find a global weak solution u® to the approximate
equation (3.4.50), i.e. for any ¢ € L%(0,T; H*(2)), there holds

85; pdadt + A [ A% - A%Gdadt
or \ er (3.4.53)

+3 (Juf)? — 1)uf - gdadt = 0.
Qr

Furthermore, applying Fatou lemma to (3.4.52) we have the estimates for u

1 1
- A%uE 2 _ 52_12
5 | AP+ 2 [ (0P = 120

X a o (3.4.54)
+—/ C 1 dedt < /|Aauo| da.
AJor
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From (3.4.54), we have
{uf} is bounded in L*(0,T; H*()),
€
{8u } is bounded in L?(Qr),

ot
and |uf|* =1 —0in L*(Qr) as € — 0,

and therefore, up to a subsequence, we have

u® —u weakly in L?(0,T; H*(Q2)),
85; — % weakly in L?(Qr),
u® —u strongly in L%(0,T; H?(Q)) for 0 < § < a and a.e.,
[u]? =1 -0 strongly in L?*(Qr) and a.e..
(3.4.55)
Let ¢ = (u® X ) in (3.4.53), we have
ou® o o
- (u® x p)dadt +)\/ A%u® - A% (uf x p)dadt
Qr ot T
A
+—= (|uf)* = 1)uf - (uf x p)dzdt = 0. (3.4.56)
& Jaor

The third term on the left is zero since a - (a x b) = 0 and by (3.4.55),

o, 8(,;; - (u® x p)dadt — o, % (u x p)dxdt.

Finally, following exactly the same steps that lead to (3.4.43), we have
A%u® - A% (u® x p)dzdt — A%u - A%(u x p)dzdt,
Qr Qr

as € — 0, where the r.h.s. makes sense following the same remarks after
Lemma 3.4.8.
Taking ¢ — 0 in (3.4.56), we have

Ou, (u X @)dzdt + X A% - A%(u x p)dzdt = 0.
Qr ot Qr

This is exactly the expression in (3.4.30), and we finish the proof of Theorem
3.4.6.
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3.4.4 Local well-posedness

In what follows, we consider the local smooth solutions for the fractional
Landau-Lifshitz equation (3.4.10) for » = 1 and pu = 0 on the d-dimensional
torus with d < 3:

Opu = u x A**u (3.4.57)

with initial data
u(-,0) = uo(+). (3.4.58)

The approach is based on the vanishing viscosity method and Kato’s
method on local in time existence for quasi-linear equations [121]. We first
consider the approximate system

up = eAu + u x A%y, (3.4.59)

with smooth initial data u(x,0) = ug. We will show that the viscous equation
(3.4.59) has a unique global classical solution. We first show [185]

Theorem 3.4.7 Letd < 3, e > 0 be fired and 0 < o < 1/2. Assume that
wy € H¥*®. Then there exists a T > 0 depending only on the initial data ug,
such that (3.4.59) possesses a unique solution

u € C([0,T]; H* ) n ([0, T); HY).

Proof The proof is based on Kato’s method for evolutionary equations, see
[121, Sect. 7]. For that purpose, let X = H* Y = H*"® and S = (I — A)2.
We choose W as the ball in Y with center 0 and radius R and define the
operator

A(y) = —eA - —y x A**., fory e W.

It is known that X and Y are both reflexive Banach spaces with ¥ — X
continuously and densely and S = (I — A)? is an isomorphism of Y onto
X. Finally, we denote by G(X, M, ) the set of all linear operators £ in
X such that —L generates a Cj semigroup {e~**} with |e7*¢| < Me®* for
0<t<oo.

We check the following properties one by one.

(A1) A(:) is a function of W into G(X,1,3), where W is an open ball in' Y
and 3 is a real number.

For y € Y, we will check that if u is a solution of

up = eAu+y x A*“u, (3.4.60)
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then there exists some constants 5 > 0 such that

[l e < & [luol| pre- (3.4.61)

Multiplying (3.4.60) with v and integration by parts, we have

1d o e
s llelie + el Vulze = (A%, A%y x )

<A ulZe + 1A% (y x w17

<[[A%ullfe + CUAullZ2 [yl T~ + 1Ay 10 ulZ0)

<ClullFe,

(3.4.62)

1 1 1 2d
where—+—:—,andq§d ford >2a and 1 < g < oo for d =1 and

p q 2 — 2«
a = 1/2. Similarly, multiplying the equation with A?*u and integration by

parts, we have

1d

Adding together (3.4.62) and (3.4.63), we have

 ulie + 22Nl < Cllulye
from which we know that
[u@®)ll e < e“lluollma, te[0,00), yeW.
Let g = C, (3.4.61) is proved and
||e_tA(y)HHa <ePt te [0,00), y € W.
Therefore, A(-) maps W into G(X, 1, 5).
(A2) For each y € W, we have
SAS™ = A(y) + B(y),
and B(y) € L(X, X) with ||B(y)||x < K for some constant K > 0.

Indeed, by direct computation, we have for y € Y and w € X,

B(y)w =[S,y x A**]S™ w

—2Ay x A5y — 4V x A2V ST + A?y x A**S
+4V3y x A22VS tw 4+ 6Ay x A22°AS 1w +4Vy x A22V3S 1w
=14+ 1T+ 1IT+1V+V+VI
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For I, we have since A* and S commutes,
[T L2 <C(|T* Ayl o [A**S ™ w] 14
+ Ayl | T*A*STI A W] 12)
<Oyl mavalwl e,
1 1

1
for any 2 < p < oo with — 4+ — = —.
P oq 2

The treatment for 17 is similar, and we have
||| 2 <C(|T*Vyl Lo |A* ST VA w] Lo
+ VYl L= | T*A*STI VA w]|2)
<Oyl gata llw] ge.
For 111, we have by Sobolev embedding
[T <C(|T* A%yl 2 [A*S T A%w]|
+ A%y 1o [| T¥A*ST AW a)
<Cllyllmasellwl se,

2d 1 1 1
for any p € | 2,——— | and ¢ with — + - = =.
d— 2« p q 2

For IV, we have
|TIV | <CUIAV2y||Lm | T*V ST Aw| an
+ IV3y| o2 | T*AV ST A%w]| a2 )

<Cllyllaavellw] e,

1 1 1
where we choose p; € (2, —— ) and ¢ with — + — = - and py €
d—2 P1oqi 2
2d 1 1 1
2,——— | and g2 with — 4+ — = —.
( d—2(1+a)) e oo 2

For V, we have
|7V <C(|T* Ayl Lo [|A*AS T A W] s
+ Ay Lo | YA AS T A W] 12)
<Oyl gava |w] e,

2
The term VI can be handled in the following way,

1 1
for all p,q € (2,00) such that — + — = —.
p g

|7V <C(|T*Vy| Lo [[A*V2 ST AW s
+ | Vyl| o2 | TEAV3S T AW a2

<Oyl ase wl ze,
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2d 1 1 1 1
for any ¢1 € (Zm) for a < 37 and p—l—&—q—l =3 and for ps €
1 1-2 1 1 1 1
(2,00] and g2 € [2,00) such that — — ® <~ and — + — = . Note
2 d P P2 g2 2

1
here ¢2 > 2, we require o < <3 in the last inequality.

Therefore, we have shown that
17 B(y)w|l < Cllyll ga+e|[wll e

In other words, that B(y) is a bounded operator form X to X. In particular,
there exists some positive constant K = C||y|| ga+o such that ||B(y)|| < K

(A3) For each y € W, we have A(y) € L(Y,X) and the function y — A(y)
is Lipshitz continuous.

Indeed, since y € H*+*, we have for w € H*t®

I(A(y) = A(2))wllge <Ol 7y — 2) x A**w}]
<C(.7(y _Z)”L?HAQawHL"C’
+lly = 2l el 7 A W] La)
<Clly = 2|l e lwl gave,

2d 1 1 1
for p = ———, and — + — = —=. This implies that
d—2a p q 2

1A(Y) = Al evx) < Clly = zllx, Yy, ze W,

(A4) Let yg be the center of W, then A(y)yo € Y for ally € W with

lA@W)yolly < K2, yeW.

This is obvious since yo = 0 and A(y) is linear.

Applying Kato’s local existence theorem [121, Theorem 6], (A1)-(A4) im-
ply the local existence of classical solutions for the viscous problem (3.4.59)
with initial data Zj, and we complete the proof of this theorem.

Remark 3.4.5 In the proof, the choice of the fractional space X = H® as
our working space is vital. It seems difficulty to get the well-posedness for any
other choice of working space such as H® (s # k + a, k nonnegative integers)
as we have tried.

In the following two lemmas, we give some a priori estimates, which will
lead to the global existence of smooth solutions for the approximate equation
(3.4.59).
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Lemma 3.4.9 Suppose that ug € S? is smooth and u is a smooth solution
to (3.4.59) on [0,T] with initial data ug, then

[u()llzr < l[uollze, Yt €[0,T] and p € [2,00].

Proof Multiplying the equation with plu[P~2u for p > 2, integrating over
and integrating by parts, we have

d P -2

—lullpe =ep | ufP""u- Audz

dt Q

=—ep(p— 1)/ |u|P~2|Vul*dz < 0.
Q
Therefore, one easily obtains that
lu(®)llzr < [luollLe, Vp € [2,00).

Letting p — oo then completes the proof.

Lemma 3.4.10 Letd < 3, a € (0,1/2] and ¢ > 0 be fized. Let ug € S? be
smooth and u be a smooth solution to (3.4.59) on [0, T] with initial data uo,
then there exists constant C > 0 such that

sup ||ul| gm+e < Cllugl| gmtea, (3.4.64)

0t
for all nonnegative integers m =0,1,2,---.
Proof When m = 0, by multiplying the equation (3.4.67) by A?®u and in-

tegrating over 2, we can show that for any T' > 0, there exists a constant
C > 0 independent of T" such that

T
sup ||l me +5/ wl|31+a < C. (3.4.65)
0

0<t<T

When m = 1, multiplying the equation (3.4.59) with AA?*y and integra-
tion by parts, we have

d
&HVA%H?LQ + 2¢[| AN |32 = 2(u x A% u, AA**u). (3.4.66)

For the right hand side term, we have

(uxA%%u, AN**u) = (A%(u x A**u), ANu)
<O AA™T + CIA%(u x A% u)| 2
<O AN T + C (A ullTos |A* Ul Zor + [lullZoe A w702 )

<Ol AN T + Cllullfpeallulliiee + lull e lullfnee),

(3.4.67)
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where we have used the calculus inequality in Theorem 2.2.14 and Sobolev
embedding H'T® «— L for d = 1,2 for o > 0. The constants here p1, ¢
satisfy

1 . 1
oo 2
p1 =00, q1 =2, for d = 1;
< < 2d ford=2,3
X 57 o/1 T = 4,9,
T T o
and the constants ps, g2 satsify
1 1 1
P2 @@ 2
Py =00, @2 =2, ford=1,2; (3.4.68)
6
P2 < ——, q2 < 00, ford=3,0<a<1/2.
1 -2«

From (3.4.66)-(3.4.67), and choosing § sufficiently small such that 26 < e,
then we have

d
VA ulze + e AAullZe < CllullGvallullFee,

which implies

T
sup |[ul[ gr1+a +s/ [ul[}24a < C, (3.4.69)
0

0<t<T

thanks to the Gronwall inequality and the integrability of ||u/|%;1;. in (3.4.65).

The only case that fails here is when d = 3 and o = 1/2 because of the
failure of embedding H3/2 < L> when d = 3. Indeed, in this case, since
a = 1/2, the index g2 can be only chosen to be g2 = 2 in (3.4.68), but py
can not be ps = co when applying Theorem 2.2.14, hence contradicting the

- 1 1 1
condition — + — = —.
P2 G2 2
When d = 3 and o = 1/2, we start by bounding the term ||u||%,, || A3“u||% 4,

in (3.4.67) using the result in Lemma 3.4.9. We choose ps = co and g2 = 2
lull Zoe A2l 22 < fluolF < l[ulls -

Repeating the Gronwall inequality and using the fact ug € S?, we obtain the
estimate (3.4.69) for d = 3 and o = 1/2 and we complete the case m = 1.

Repeating the above arguments will lead to estimates (3.4.64) for m =
2,- -+, and therefore complete the proof of Lemma 3.4.10.

Combining the local existence result and the global a priori estimates,
we indeed show that the solution is globally smooth when ug is smooth. We
state this fact in the following theorem.
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Theorem 3.4.8 Letd < 3, a € (0,1/2] and e > 0 be fivzed. Then there exists
a unique global smooth solution u¢ € C([0,T); H™**) of the approzimate
equation (3.4.59) for any initial data ug € H™ 1.

Now, we consider the local existence of classical solutions of (3.4.57). We

will prove

Theorem 3.4.9 Letd <3, a € (0,1/2] and up € H™ with m > 4. Then
there exists a T > 0 depending only on ug such that (3.4.57) possesses a
unique classical solution u, which remains in C([0,T.]; H™F* N C?).

Proof Let € > 0 be a small parameter. Consider the regularized equation for
uE
Opuf = uf x A**uf + eAuf, (3.4.70)
with initial data u®(x,0) = wo(z). For such a system, the previous results
imply that (3.4.70) possesses a global classical solution u¢ € C([0,T]; H™*%)
when € > 0 is fixed. We now show that there exists T, > 0 over which u®
is regular and converges to a classical solution u of (3.4.57). It suffices to
establish certain a priori bounds for u¢ independent of €.
More specifically, we will prove that u° is uniformly bounded in H™+¢
and Jyu® in H? for some d/2 < s < m + a. By integration by parts, we have

1d
E&vaAauaH%Q -l-EHVm—HAa'LLEH%Q _ (ue % A2au5’AmA2au5).
For the right hand side term, we have
(us XAQa, AmA2o¢us)
=(V"(uf x A**uf), V" A?*F)
:(Vmua % A2au5’ VmAQaua) N (’U,E % V'rnAQ(xue7 VmA2auE).
By the elementary property of cross product, the last term vanishes, and we
need only to consider the remaining terms.
Let us consider the first term. Since V commutes with A2, the first term
can be written as

(V™uf x A2, V™ A%°) = (AY(V™uf x A?Yuf), V™ AYE).
By calculus inequality, we have
[A(V™u® x A**uf) [z <O V™ A%u®|| g2 || A% 6| oo
+ V| o | AP || )

1

1 1 2d
for some 2 < p,q < oo such that — + — = 3 Choosing p =
P q

d— 2«

€ (2,00)
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for d > 2 and any p € (2,00) for d = 1, we have by Sobolev embedding

IV [ A% 0% | Lo <l [ [u®[| e

d
when m > 2a + —. On the other hand, for any j = 0,1,--- ,m — 1, we can
always select (p1,q1) € [2,00) X (2, 00] and (p2, ¢2) € (2, 00] X [2,00) that may
depend on j such that
[A(V7uf x V™A% || 2 <O(|| VI A2, ||V A2 6l || o
+ “Vju5||Lp2 |‘Vm7jA2au€||LQQ)

<O[lwf|[Fmea-
Therefore, we deduce that there exists some constant C' > 0 such that

d
HEHUEHHWHﬂ < COlluf Fpmsa,s

and therefore, there exists 0 < T, < (C||lug|| ggm+«)~! such that for all ¢ and
0<T<Ty,

||UOHH”m,+w
su US| gmaa < .
ogth H ||H X 1_ CT||U()HHm+u

(3.4.71)

This inequality implies that «¢ is uniformly bounded in C([0,T]; H™t%),
provided that T < T,.

d
On the other hand, since H® is an algebra for s > > there holds
1fgllz: < C|l Sl

Using this inequality and expressing O;u® in terms of the other terms in
(3.4.70), we get

g”H“'a vageHs

sup | 0wuf||ms < C, Vte€[0,T.].
te[0,T]

Finally, using the Lions-Aubin compactness theorem [152,222] (see for ex-
ample, Lemma 10.4, Chapter 10 in [152]), {u®} is compact in C([0, T%]; H?),
which is also compact in C ([0, T]; C?) by Sobolev embedding theorem. There-
fore, we can pass to the limit ¢ — 0 to obtain a local classical solution
u € L>([0,T.]; H™*) of the equation (3.4.57).

In addition, u is continuous in the weak topology of H™VY, ie., u €
Cw ([0, T); H™*®). Let ¢ € H-"+) since u® — u in C([0,T.]; H®) for
s < m+ a, it follows that (u®,¢) — (u,p) uniformly on [0,T] for any
¢ € H™*. Using uniform boundedness of [|uf]| in H™** and the fact that
H~*is dense in H~("+%) we have (uf, ) — (u, ¢) uniformly on [0, T] for any
© € H=(m+) by means of £/3 argument. This shows u € Cy ([0, T]; H™)
and hence

liminf ||u(t, ) || gm+e = ||uollgm+a-
t—0+
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On the other hand, estimate (3.4.71) implies that

Ol T
sup ||u®||gmta < ||uol||gmre +
0<thll [ e <ol T CT g

V0 < T < Ty,

and hence

limsup ||u(t, )| gm+e < |Juol|gm+a.
t—0+

In particular, we get the right continuity of ||u(¢,-)||gm+e at t =0,

i [, ) = [oll e

The left continuity at ¢ = 0 can be similarly deduced and gives us the strong
continuity at t = 0. For the continuity at ¢’ € [0,7T.], we can take u(t') as
initial data and repeat the argument to show the continuity of ||u(¢)||gm+e
at t' € [0, T,]. We therefore complete the proof of the theorem.

A natural question is whether the unique local solution exists globally or
will it develop singularities in finite time. This question is not easy to answer
since there is no regularizing effects in this equation. However we can give
some regularity criteria to show that it can be extended globally if we know
before hand that u is in a reasonably regular functional space.

By the construction of the local classical solution of (3.4.57), the solution
can be continued in time provided that ||u|| gm+« remains bounded. That is, T'
be the maximal time of the existence of smooth solutions u € C([0,7"); H™%)
if and only if lim;_,7 ||u|| gm+a = c0. Although we cannot show directly that
T can be chosen to be oo, we can give some necessary condition for such a
maximal time. L.e., we can give the following regularity criteria, involving
some integrability of higher order derivatives. Hereafter, we denote the space
L™* of all functions v such that the quantity

T
||| Lrs = (/0 lo( 7l

ess supgor g 00 7)oy ifr= oo

1/r
25d7'> , if 1 <p<oo;

is finite, where ||v(-,7)|| s is the usual Lebesgue norm.

Lemma 3.4.11 Suppose that ug € S? is smooth and v is a smooth solution

to (3.4.57), then
lu@)lzr < luollze, Vp € [2,00].

Proof The proof is the same as that in Lemma 3.4.9.
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Theorem 3.4.10 Let d < 3, a € (0,1/2] and ug € H™* with m > 4, so
that there exists a classical solution u € C([0,T); H™t*NC?) to the fractional
Landau-Lifshitz equation (3.4.57). Then for any 0 < T < oo, if when o = 1/2
that

T T
/ V| pedt < o, / | Aul| dt < oo, (3.4.72)
0 0

or when 0 < a < 1/2 that

T
/ 2
0

for some s > 1 satisfying 2a + g < 1, then the solution u exists globally in
time, i.e, u € C([0,00); H'T®).

T
r=dt < o0, / | A%%u|| e dt < oo, (3.4.73)
0

Proof From the a priori estimates, we know that for any 7" > 0, we have
u € L>®(0,T; H*) and

sup |Jul e < lJuollme-

Multiplying the equation with AA2®y and by integration by parts, we have

L4 oAl =V x A%, VAR
=(AY(Vu x A**u), VA®u) (3.4.74)

<IVA“u| 2 [[AY(Vu x A%%u)|| 2.
By calculus inequality, we have
[A%(Vu x A**u)[| 2 < O ([|A*Vul| 2| A ]| oo + [ Vul| Lo [ A**ul| o)
(3.4.75)

1 1 1
where — + — = =, with p,q¢ > 2 and ¢ # .
poq 2

When a = 1/2, we can only let ¢ = 2 and p = oo and in this case we
obtain

d
3 1VA2ullis < CIVAY2uld (|Aulle + [ Vul =),

which implies that the local solution can be extended to [0, 7] under assump-
tion (3.4.72) and remains in L>([0,T]; H'*®).

When 1/3 < a < 50 e have

IVull o[ A%l Lo < CVA“u]|94)| Wulf3. ) (3.4.76)
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where we have used the Gagliardo-Nirenberg inequality for the fractional
Sobolev spaces [203]

IVullze < CIVAul|7: [ Vul 12

1A% U] L0 < Ol VA U] 2] V] 127

Here the constants 2 < p,q < 00, ¢ # 00, 0 < 0,0 < 1 satisfy

1. 1_1
p q 2
d d d
3a—(—i—5(1+a—L—Z)+(1—6)<1—C—i>.
D 2 s

This system has many solutions, among which one solution to (3.4.77) can
be written as

d_d 30[_1_'_(_1_@
:2(d—a) :2(d—0z) 9: S p 5: q
p d_2a7 q a ? d d7 d d
a—=+- o— =+ -
2 s 2 s
Note in this case,
2d d
30[—14—?*5
0+ 6= a_C_lJrC_l <1,
2 S

d
provided that 2a 4+ — < 1. Moreover, for any p,q, 6,0 satisfy (3.4.77), we
s

d
have from the assumption 2a + — < 1 that 6§ + J < 1. Note also that the
s

larger 6 + 0 is, the less regularity of | Vu| s is required. Hence we choose
0 + 6 =1 in the following.
Putting (3.4.75) and (3.4.76) into (3.4.74), we obtain

d (o3 (e (e
IIVA*ulZe < [A*VullZ: (A% 1 + [[Vu

o). (3.4.78)

Lsdt}.

Therefore, by applying the Gronwall inequality, we have

T
SW)HVAMH§9<HVA%MM9GW{/)|AMUCJWLM+HVUQ®I
0

0<t<T
Under the assumption (3.4.73), this inequality implies that

uwe L0, T; H'®).
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When 0 < a < 1/3, we choose p = 2d/(d — 2«), and ¢ = d/a, we have

[Vullrr < C VA ul| L2

d
and for 2a+ — < 1,
S
A%l < ClVulle-

thanks to Lemma 3.4.11. Again, we recover the inequality (3.4.78). There-
fore, we complete the proof for all 0 < a < 1/2.

Scaling analysis. Let u(z,t) be a solution of the equation (3.4.57), then
the scaling uy(z,t) = u(Az, \22t) is also a solution. Motivated by the work
of Caffarelli, Kohn and Nirenberg [33] (see also [229]) for the Navier-Stokes
equation, we call the norm ||A%u|

L7(0,1;L¢) 18 of dimension zero if
||Aﬂu>\||Lr(o,T;LS) = ||ABU||U(0,T;LS)

holds for any A > 0, see also [229]. It is easy to see this holds if and only if

2 d
B==45 (3.4.79)

ros
Therefore, the regularity criteria may involve the finiteness of ||A%u s for
B, 7, s satistying (3.4.79). Note that condition (3.4.72) satisfy this relationship

withr =1,s = oo and § = 1 when o = 3 Therefore, we expect the following

regularity criteria concerned with ||A%u|

L7s.

Theorem 3.4.11 Let d < 3, o € (0,1/2] and ug € H™T* with m > 4, so
that there exists a classical solution u € C([0,T); H™t*NC?) to the fractional
Landau-Lifshitz equation (3.4.57). Then for any 0 < T < oo, if

T
/ A2 (8)]| o dt < o0,
0

and

T
| 18Pt et < .
0

d
for some B > 2a+ — and 1 < s < 00, then the local solution can be extended
s

into a global classical solution and remains in L>°(0,T; H™+e).

Remark 3.4.6 When « < 1/2, we can choose s sufficiently large such that
we can choose B < 1/2 to reduce the differentiability requirement of Z as
required in Theorem 3.4.10, therefore the theorem is meaningful.
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Proof Repeating the arguments used in Theorem 3.4.10, we easily prove that

sup |l grre < Cllug|| gite-
0<t<T

Now we go to the global estimates for ||[AA%ul/gz.
Multiply the equation (3.4.57) with A2A%“Z to obtain

5 dtHAAauHLz =(A(u x A%u, AN*y))
=(Au x A**u +2Vu x VA u, AN*¥y) (3.4.80)
=(AY(Au x A**u) + 2A%(Vu x VA2 u), AN*u)

=:1+4+11I.

The following proof is divided into three cases, according to 2a < < 3«

and £ > 3a.
Case 1. 2a < < 3a
For I, we have

1T =[(A%(Au x A%*u), AN“u)|
<C||AAul| 2 (AN 2| A*u]| Lo + [| Aul| 2o | A% ul 20)
<A u] g (|AA |2l A%u] oo + |V Au] 955 AP
where we have used the Gagliardo-Nirenberg interpolation inequality and the
constants 2 < p,q < 00, ¢ # 00, 0 < 6,0 < 1 satisfy
1 1

P aq
1%9(1+ag)+(19)<5§>7

3@%5(1+ag>+(15)<ﬂ§>.

1. Choosing 6 + 6 = 1, we have

1
=3

Since2a+c—l<6,weﬁnd9+6<
s

Ls)-

1] < ClIAAY |22 ([ A**ul| L + [[Aul
For the second term I, by Gagliardo-Nirenberg interpolation inequality
for the fractional Sobolev spaces, we have

11| < ClIAA w72 ]| A7

Therefore, combining the estimates for I and I1, we have

Ls)a

S SIAN U, < CIAA (A% ul o + |A°
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which implies that

sup [|AAu(t)][22 < C|l| AN |22 [|efo (1A wllzoe +IAZullze)dt
0<t<T

Case 2. 3 > 3a.
For the first term I, we have
[T| =[(A%(Au x A**u), AA*w)
<[ AAu| 2 (AN | 2| A* ]| oo + || Au]| o || A* ]| £0)

1 1 1 d d
where =4+ — = = and ¢ € [2,00). Choosing p = >2and ¢ = — < o0,
P oq 2 d— 2« a

we have
Au||rr < C||AAYY|| L2,
and

1A%l 20 < Cl[A ]| e

d
thanks to the condition 8 > 2a 4+ — and Lemma 3.4.11. Hence
s

L)

1] < ClIAA w22 (A% ull L + A7l

For the second term,
[IT] <C|(A*(Vu x VA**u), ANu)|
<ClAA ] L2 (VA U] Lo [VA*ul| Lor + [[Vul| o2 [ VA* ul a2 )
=: C||AAul|p2 (I + I13).
The terms in the parentheses (---) can be handled similarly, by using the

Gagliardo-Nirenberg interpolation inequality and adjusting the index p1, g1, p2
and gy appropriately. We then obtain

1] < Cl| AN [Tz (A% ul L~ + A7l

).
Therefore, in the case 5 > 3a, we get the bound

sup ||AA%ulj2 < C.
0<t<T

Higher order estimates can be obtained by induction. By interpolation
between m — 1 + a and m + «,

lullzrm < Cllull G 1o llull ora,
we recover all the integer order bound for the solution. The proof is complete.

It will be very interesting if one can prove the global existence of smooth
solutions when the regularity criteria is dropped.
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3.5 Fractional QG equations

This section considers the following inviscid two-dimensional quasigeostrophic
(QG) equation
0 +u-VO=0 (3.5.1)

as well as the two-dimensional viscous QG equation
Oy +u-VO+ k(—A)0 =0, (3.5.2)

where 6 = 0(z,t) is a real valued function of x and ¢, 0 < a < 1 and
Kk > 0 are real numbers. As mentioned in Chapter 1, § represents potential
temperature, u represents the fluid velocity, which can be represented by the
stream function v

u= (u1,up) = (— g—i, g—i), (=) 2 = —0, (3.5.3)

and 1 is identified with the pressure. In what follows, the spatial domain is
either periodic when = € T? or the whole space when « € R?. Hereinafter,
we usually denote A = (—A)'/2. Introducing the Riesz operator, u can be
expressed as

U= (0, A0, —0,, A710) = (—R26, R16) =: R0,

where R;,j = 1,2 are Riesz operators
Rif(k) = —ich f(k), k€ Z2\{0},
R1(€) = —iLf(€), €eRA\{o}.

In case of R2, the Riesz operator can be expressed in terms of the singular
integral

R;f(z) = CPV. %dy, j=1,2,
R2

where C is a constant. By Calderon-Zygmund theory of singular integral,
there exists a constant C' = C,, for any p € (1, 00) such that

l[ullr < Cpl|O]] Lo (3.5.4)
In what follows, we will also consider the nonhomogeneous QG equation

Ot +u-VO+ k(—A)0 = f, (3.5.5)
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where f is a known function.

In what follows, we will present some of the recent results for the two-
dimensional fractional QG equation, such as the existence and uniqueness of
its solutions, inviscid limit, and long-time behavior. For more details, readers
are referred to [22, 34, 39, 40, 52-56, 58, 119, 120, 125, 190, 197, 220, 221, 223]
and the references therein. In particular, [39,54] proved existence of smooth
solutions for subcritical case, and [52,58] proved global existence of solutions
with small initial data in L°°. Recently, [125] proved the global well-posedness
for the critical 2D dissipative quasi geostrophic equation based on a non-
local maximum principle involving appropriate moduli of continuity, and [34]
showed that solutions of the quasi-geostrophic equation with initial L? data
and critical diffusion (—A)l/ 2 are locally smooth for any space dimension
based on the De Giorgi iteration idea. Under the supercritical situation, [40]
proved global existence for small initial data in a scale invariant Besov space.

3.5.1 Existence and uniqueness of solutions

By a weak solution of (3.5.5), we mean a function § € L>(0,T;L?(T?)) N
L2(0,T; H*(T?)) such that

T
/ 0(T)pdx — / Bopdx — / / Ou - Vdadt
T2 T2 0o Jr2

T T
+H/ A - A®pdxdt :/ fedadt,
0o Jr2 0o Jr?

for any p € C>°(T?).

Theorem 3.5.1 Let T > 0 be arbitrary, 0o € L?*(T?) and f € L*(0,T;
L?(T?)), then there exists at least one weak solution 8 € L>(0,T; L*(T?)) N
L2(0,T; H¥(T?)) for two-dimensional QG equation.

By Faedo-Galerkin method, we can construct approximate solutions 6,
such that ||6,,(t)||z < Cl|6o||2. By selecting a subsequence if necessary, 6,
converges to a weak solution of (3.5.5). Indeed, it suffices to consider the
convergence for the nonlinear terms

J+1
/Onun~chdx:f /ZR{]} [ g‘P](Alan)dz,
T2
(3.5.6)

A denotes the commutator and {j} = 2 when

where [A, 5‘@] = 3_90_[“)_@

a—l‘j (i‘)Ij (i‘)Ij

j=1and {j} =1 when j = 2. Then the right hand side of (3.5.6) can be
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rewritten as
2
LS R @E 621
T 35

It can be shown that K is a compact operator depending on the test function
, from which it follows the convergence of the nonlinear terms.

In general, weak solution of the equation is not unique. However, one can
show that weak solution is unique among strong solutions.

Theorem 3.5.2 Suppose that a € (1/2,1], T > 0 and p, q satisfy relations

1 1
p=1l, ¢>0, ——l—g:a——.
P q 2

Then for any 0y € L2, the two-dimensional QG equation admits at most one
solution 6 € L>(0,T; L*) N L?(0,T; H*) such that 0 € LP(0,T; LY).

Proof Suppose that 6; and 6 are two different weak solutions with the same
initial data. Then 8 = 01 — 05 satisfies

00 +u- V0 4+ uy - VO + kA0 = 0,

where u = u; — us = R0, — R16s. Taking inner product of this equation
with ¢ = —A7'0 and using [} Yu - V0 = 0 yield

] < w1+ OO 101

1/1 1
where = — (5 + —) and C(k) = Ck™T°F. Then
& p

d =5
1l < CRNO 27 ¢l 72
dt

from which it follows that ¥» = 0 and hence 6 = 0.

By applying the energy method, the existence and uniqueness of local
smooth solution for the inviscid QG equation can be proved, as it did in the
monographs [151,152].

Theorem 3.5.3 Let k =0, and 0y € H*(R?) with k > 3 being an integer,
then there exists Ty > 0 such that there exists a unique local smooth solution
0 € H*(R?) for the two-dimensional QG equation on [0,T). Furthermore,
if Ti < oo, then ||0(-,t)||gx — 00 ast N Ty.
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To give blow up criteria similar to the Beale-Kato-Majda criteria for
the Euler equation [18], we introduce a(z,t) = D(x,t)€ - &, and a*(t) =
1

maxecgre2 a(z,t) where {(z,t) = represents the direction vector of

Vol
1

V40 and D = 5((Vu) + (Vu)?) is the symmetric part of the velocity gradi-

ent.

Theorem 3.5.4 Suppose that 0 = 0(x,t) is the unique smooth solution of
the two-dimensional inviscid QG equation with initial data 6y € H*(k > 3),
then the following statements are equivalent:

(1) 0 <t < Ty < o0 is mazimum existence interval of solution HF:

(2) when T /T,

T
/ VOl Lo (s)ds — 00, T — Ty
0
(8) o*(t) satisfy
T
/ a*(s)ds » o0, T —T,. (3.5.7)
0

Proof Similar to [18], it is easy to show that (1) and (2) are equivalent. It then
suffices to show that (1) and (3) are equivalent. Since from Riesz operator,

(&) = Mé(f), one can show by Sobolev theorem that

€l

o (1) < CIVult) | o ey < CITu(t) e
<Cllullgr < ClO@) | gx, V>3, (3.5.8)

where C is a constant. Hence, if (3.5.7) holds, then integrating (3.5.8) over
[0, T] yields

T
/ 16()||gpeds — 00, T —To.
0

Therefore [0, 7}) is the maximal existence interval of 6(z, t).
On the contrary, if

T
/ a”(s)ds < M < oo,
0
then it follows

Ty
/ IV0(5) | Lo ds < ™[V 185 | L < oo, (3.5.9)
0
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In fact, based on (1.3.7) and definition of o*, one obtains

d *
EIIVLW)HLOC < a* ()| V0(t)] e
(3.5.9) then follows from the Gronwall inequality. The proof is complete.

Theorem 3.5.5 Let a € (0,1), k > 0, Q = R? and 6y € H*, then the
following assertions hold.

(1) If s = 2 — 2q, then there exists constant Cy such that for any weak
solution of (3.5.2) satisfying ||[A°O|lL2 < k/Co there holds ||A0(t)|| 2 <
|A*6o|| 2 for all ¥t > 0 and 6 € L*(0,00; H¥T®). The solution is unique if
0y € L2,

(2) If s € (2 —2a,2 — al, then there exists T > 0 depending on k
and ||A®0o||L2, such that for any weak solution of (3.5.2), there holds 0 €
L>(0,T; H?) N L2(0,T; Ht*) and 0 is unique if 6y € L?.

(3) If s > 2 — a, there exists T > 0 depending on k, ||6o]|r2 and ||A®6]| 12
such that any weak solution 0 of (3.5.2) belongs to L>°(0,T; H*) N L?(0,T;
HSJ”*) if g € H® and is unique.

(4) If s > 2 — 2, then there exists a constant Cy > 0 such that if

)

||90||L2 : ||A 00||L2 < k/Cy, (3.5.10)

then weak solution of equation (3.5.2) is unique and
[A*0(t)]| > < [0l 2.

Furthermore, if (3.5.10) holds strictly, then 6 € L*(0, oo; H5T®).
Proof First, we note (u - V(A*6),A%0) = 0 since V - u = 0. Taking L? inner
product of (3.5.2) with 6, one has
5 <61 + slAel ., <
Integration then yields 6 € L°°(0,00; L2) N L%(0,00; H*). Taking L? inner
product of (3.5.2) with A?%0 yields

. dt||A59||L2 FR|[ASTOO)2, = —(A%(u- V) —u- V(A®0),A%0). (3.5.11)

Since A® and V commute, one has from commutator estimates and (3.5.4)
that

(A% (u - V8) — u- V(A%0), A*0)] =|(A°(u- VO) — u- (A*VE), A%0)]
SO[A*(u-VO) —u- (A°VO)|| 2| A0 22
<C (V| A*6] o
+ A% ul| oo [ V0] o1 ) [ A6]| L2
SC[|AG][er [[A®0]| Lo [[A®0]] L2,
(3.5.12)
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1 1 1 2
where p1,ps > 2 and — + — = —. In particular by selecting p; = — and
P op2 2 a
p2={__,one has from (3.5.11) and (3.5.12)
1 d s 2 s+a 2 2—« s+a S
5 IA0ze + RIATT0N T2 < CIATT0l| 2| A*T40] L2 ]|A°0] 2, (3.5.13)

thanks to the Sobolev embedding
|AG||Ler < CIIA*%0]| 12,  ||A%O||Le: < C|[ATO| L.
Case 1. When s =2 — 2a.

In this case,

| &

IA°0] 7 + KIIA“T2(1F2 < ClIA6|To | A2

N —
o

t
If ||A®00|| 2 < k/C, then for any t > 0, there holds for all t > 0

K

IA*0(E) 12 < 1460 2 < 7.

Hence, 6 exists in the Hs for allt > 0 and is uniformly bounded. Furthermore,
if ||[A%0o]| 2 < k/C strictly, then 8 € L%(0, +o0; H5+?).

Case 2. When s € (2(1 — «),2 — a].
Recall the Gagliardo-Nirenberg inequality
a—s

—« s+a s - 2-
IA2726]|2 < ClIAT20) 2| A% 127, 8= ——€[0.1)

Then by using (3.5.13) and Young’s inequality, we obtain

1 d S ST ST S -
5 IAONE: + sllATe0] 7. <ClA0l|27|A%0) 7"
) 2 voy  (3.5.14)
<G IO + CR) A6 277
Therefore, one has
d s 2 s+a 2 s %
g IAOI: + KIATTOl|7. < C(R)IA%0]] 27 (3.5.15)

and by ignoring the positive term on the LHS and direct integration

tC(k)a s=242a

A%O|2, < ||A%6o|22 |1 — AOgl|,. ©
A6 < 1A%00l132 |1 — =25 A0l
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This inequality shows local existence in the H* for any initial data 6y € Hs.
Furthermore, (3.5.15) implies within the interval of existence that

2(3a+s—2)
()| 2577 ds < oo.

t
1
1A s < Aol +
0

It is standard to derive global existence when the initial data is small.
Since a < 1, then 1 4+ g + (Qfﬂ)% > 2. Let v € (0,2 — ) then
s+«

200 —2 200 —2
(s + )20 —i—s): a s and 2—fB—~v > 0.
s

s(s+a)
From the interpolation inequality

1484+ —9 ie, y=
S+«

1A°6] 12 < C|IA*T20)| 737 ||6]| 757

L2 »

it follows that

.s+a

[A%0257 = [[A*6] 7l A°0]27 ™ < ClIA* 20 A%O) 77

(3.5.16)

7ol

Using (3.5.14) and (3.5.16), one has

L A%0)2. + w|AF0)2, <CIAT0]2. 0 Bl N i

2dt

e N Al e N O e
=C 121161l > [A°6]]

Therefore if initial values satisfies (3.5.10), then global existence in H* fol-
lows.

Case 3. When s > 2 — a.

It follows from the Gagliardo-Nirenberg inequality that

2—a s+2—a
1A= 2 < Cl|A%6]| 15 [16]] "

Then from (3.5.13) and Young’s inequality,

s+2—a s—24a
2dtHAS@HLz+/~”~HA”“¢9IIL <CYATTO)| 2| A0 o 10]] .7

K C s 2(s+2—a) 2(s—2+a)
<TIAT0 3 + 1A 6l
(3.5.17)

If §g € L?, then

+2-a)

d R . C 2(s—2+a) s 2(s
A0+ RIAT0I5. < 0ol e T A0 T . (3518)
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Ignoring the positive term on the LHS and integrating over [0, 7] then yield

2—«

Ct 2 — 2(s—24+a)
MHQOHLQ :

2—2«
IA*0]|72 < [[A%6o] 2 |1 — [A%6ol| =
Therefore, one obtains the local existence of solutions in H® for any given
initial data 6y € H® for s > 2 — . Furthermore, 6 € L?(0,T; H*t?) follows
by integrating (3.5.18) over [0, T]. Similar to Case 2, it is standard that small
initial data implies global existence in H?®. The details are omitted for clarity.
So far, the proof is formal since we only provide the a priori estimates.
In order to give a rigorous proof, we can make use of the standard method of
retard mollification (cf. [33]) to first obtain as above the uniform bounds for
the mollified solutions and then pass to the limit to obtain the same bounds
for the weak solution 6. The approximate solution can be constructed as
follows. Let 6, satisfy

010y + Up - VO, + A*¥0,, = 0, (3.5.19)

where u,, = S5, (6,) is
Ss. (0) = / S(FYRL0, (¢ — 6,7)dr,
0

and 0, — 0. The function ¢ is smooth and non-negative, supported on [1, 2]

and / ¢(t)dt = 1. For any n, (3.5.19) is linear and wu,(¢) only depends on
0

O, in [t — 20, — 0y].
To complete the proof, we need to show uniqueness. First we state the
following proposition, whose proof will be postponed.

Proposition 3.5.1 Let x > 0, @ > 0 and 0 is a weak solution of the two-
dimensional QG equation (3.5.2) with initial data 6y € L?. If moreover for
some € € (0,a] and g < oo, there holds

a+e
2 )

T
1
| I s < oo, 4% =
0 p q
then the weak solution is unique on [0,T].

Using the proposition, we immediately know the uniqueness of the weak
solution in the following cases.

1. When £>0, a € (0,1), s=2(1—a), 6p € L? and ||A%0p| 2 < x/Cp holds
strictly. In this case, the solution # € L?(0,00; H*T®) N6 € L>(0,00; H?)
is global. By interpolation, 6 satisfy the criterion in Proposition 3.5.1 and
uniqueness follows.
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2. When £ > 0, « € (0,1), s > 2(1 — a) and 6y € L% Similarly, from
interpolation uniqueness follows.

3. When £ > 0, a € (0,1), s > 2(1 — ) and 6y € L2 In this case, one
has 6 € L*>°(0, 00; H®). Since s > 2(1 — &), one can choose ¢ < oo such that
H® — H'=o%eP, Therefore, § € L4(0,T; H'~**P?) and uniqueness follows.

Proof of Proposition 3.5.1 Suppose that 6,02 are two solutions of (3.5.2)
and u; = R160;,i=1,2. Let § = 0, — 03 and u = u; — uo, then

O, +uy- VO +u- Vo + kA%0 = 0.
Therefore, by taking inner product with ¢, one has
(01, 0) + K(A%0, M%) = —(u1 - VO,0) — (u- Vb2, ).

Since u is divergence free, letting ¢ = 6 then yields

1d

slflze + KIA%01T = —(u- Vs, 0) < C[[ V0| l1o0]]7z,

from which it follows by Gronwall inequality that

t
10122 < C||60]|%: exp{/o ||V92||Lood7}. (3.5.20)

Let @ > 0 and € € (0, o, then since V - u = 0, one has

—(u-V03,0) = —(A“"=(0u), A=*V0y) < |AT 05| Lo [|AY 5 (Ou) |

P

where by calculus inequalities

(A0 oy <ClOLar ull fra—c.az + Cllull Lo [|0]] gra—c.az
L
<C0| ar 10]] gro—<.az »
1 1 1 1
where — + — = — =1~ —. Therefore
q1 q2 V41 p1
1d

53ll01ze + Rl015 < ClONLa 1Ol fa-coas 1020l 1-asens

Furthermore, by Gagliardo-Nirenberg inequality

1 2
(Ilg 125 B =—|1- 1):
010 <Cl013100, =1 (1-2) e 0.0y

_ 1 2
(6 e-cn <SCUOI05", v = (14— 2) e
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which yields

+
2 102 + w101 < ClOlinaee 012 P 01151

Let pa = 2/(8 + ), then by Young inequality

Kz 2
S0 + w01 < 101+ OO e 1612,
where p = pa/(p2 —1)=2/(2 — (8 +7)). Thus
d
T 101Z2 + sll6l1%. < ClO, ..., 16113,

from which it follows from Gronwall inequality that

16172 < ClifollZ- exp{/ 102172, . de}-

We complete the proof by identifying p1 = p, ph = ¢ and noting 8 + v =
1 2
S(aver )
o b1
T
Remark 3.5.1 By (3.5.20), the solution is unique zf/ IV Ledt < o0,
0
which is the BKM blow up criterion for (3.5.2). Refer to Theorem 3.5.4.

In particular, when « € (1/2,1], we have

Theorem 3.5.6 Let o € (1/2,1] and s > 0 satisfy s + 2a > 2, then if
0y € H*(T?), there holds for solution of the two dimensional EQ equation
(3.5.2) that

IA%0(0) 2 <€, WE<T

where C' is constant depending only on T and ||6o]| m- -

Proof Taking inner product of (3.5.1) and A0 yields

5 SINOZ: + A0, = — ((u- V0), A2°0).

By maximum principle, Lemma 3.5.1 and multiplicative estimates,
S K STo S
| ((u-V0), A%0) | < SIIATT0I[L: + C(x)[[AO] 72
The result follows from Gronwall inequality.

For later applications, we make the LP-estimates in the following
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Lemma 3.5.1 Let 0 be a solution of the 2D QG equation, then for any
€ (1,00), there holds
16@) || < [16ollze-

Proof Recall that for any p € (1, 00), there holds
P—29AS 1 s/29p/2|2
|0|P~“0A°0dx = = [ |A*/°6P/%|*dx.
p

Therefore, multiplying the 2D QG equation by p|f|P~26, integrating over
x € T? and noting V - v = 0, one has

d
GO, -+ [ 1aver22dz <o,
completing the proof since x > 0.

3.5.2 Inviscid limit

This subsection considers the inviscid limit of the 2D QG equation when x —
0. In Theorem 3.5.4, we have obtained local existence of smooth solutions
for £ > 0. In what follows, we denote the solutions by (6., u,) when k > 0,
and simply by (0, u) when x = 0.

Theorem 3.5.7 Let Q = R? or T2, 6 and 0, are solutions of two-
dimensional QG equations (3.5.1) and (3.5.2) with the same initial data
0o € H® with s > 3, respectively. If [0,T,) is mazimal time interval of
existence, then for any t < Tk,

16(2) = 0 (D)2 < Cr,

where C' is constant depending on 0y and Ty only. In particular, C' does not
depends on k.

Proof Let © =0, — 0 and U = u,;, —u. Then © satisfy
00 +u, - VO +U -V + kA**(0 +6) = 0.
Taking inner product with © yields

1d

5 O3 + KIA°O]2, = (- VO,0) + (U - V0,0) + 5(120,0)

=L+ L+ 1.
It follows that Iy = 0 by integration by parts. For Iy and I3, we have
|L2| <[Vl U] 21O 2 = VO] = |©]|72,

K? o 1
Io] <5 1A%0)%: + 5103
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It then follows that
d
&ll@HQm +£[[AO]72 < 2]V L + D)[[O]172 + £2(|0]| 720 -

By Gronwall inequality, we then have
t
10117 < el GIVol=+Dds @7, + 52 / el-CINOl= 09 |3, dr.
0

Since ©¢ = 0, it then follows from Theorem 3.5.4 that ||O| 2 < Ck, com-
pleting the proof.

Next, we state the inviscid limit result in space H™(R?). For this we first
note

Lemma 3.5.2 Letm >2,0 € H™ and w € H™ with V -u =0, then

- V0| gm <Ol rm||0]| grmsr, (3.5.21)
|(u-V0,0) | <Cllull gm0, (3.5.22)
|(u-V0,0)2| <Cllull g=|0]F, (3.5.23)

where (-,-) represents scalar product in H™.

Proof 1t suffices to note that H™, m > 2 is an algebra.

1
Theorem 3.5.8 Let a € (2, 1}, 0o € H™, m > 3, then

(1) there exists 0 < To < T depending on ||0o||gm but independent of k,
such that there exists a unique solution of (3.5.2)

0, € C([0,To); H™) N AC([0, To); H™ 1) N LY(0, To; H™T).  (3.5.24)

Furthermore, {0 }x>0 is uniformly bounded in C([0,Tp); H™).
(2) the limit O(t) := lin%) 0,.(t) exists strongly in H™1 and weakly in H™
K—>
uniformly for t € [0,Tp]. And 0 is a solution of (3.5.1) such that

0 € C([O,Tg];Hm) N AC([O,T()], Hmil).

Proof The existence of smooth solutions have already been shown in Theorem
3.5.5 and 3.5.6.

Now, we show that {6} is uniformly bounded. Taking H™ inner product
with 0,, one has

1d

5 g 10sllrm + K(AZ0s(2), 04 (£)m < Cll6x][77m - (3.5.25)
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From the positivity of the second term on the LHS, it follows

d

— 9;{
=10

wrm < OOl

By comparison principle, we have |0, (¢t)||gm < ¢(t), where ¢(¢) is solution
of the ODE

dy

—= = Cp?(t 3.5.26
2 = ce) (35.20)
with initial data ¢(0) = ||0p|| gm. From classical theory of ODEs, there exist
To > 0 and ¢ such that ¢ is absolutely continuous in [0,7p] and satisfy
(3.5.26). In particular, it follows the local existence of smooth solutions by
Faedo-Galerkin approximation and such a priori estimates. It can be seen
that ¢ and T are independent of k. From (3.5.25), there exists a continuous
function ¢ on [0, Tp] depending only on ||fy||g= such that

n/t(Azaf)H(t), 0, (t))mds < Y(t), VYt e[0,Ty). (3.5.27)
0

Let k1 < Ko, © =0,;,, — 0, and U = u,, — uy,, then

00
8—tk + 11 A%%O + (k1 — k2)A?%0,, = —U - Vb, = u,, - VO.
Taking H™~! inner product with ©, and using (3.5.4) and Lemma 3.5.2, one

obtains

1d
5 gl OlEm—1 < (k2 =51) (A% 0z, ©) 1+ CoC (0 | rrm+ O |z ) O][7 1
Since ||| g is uniformly bounded in [0, Tp], we have

d
T 1Ol < Rl A% 0y | s + K|O] s,

where K = C¢(Tp) is a constant independent of k1 and ko. It follows
t
[E / 1426, (5)|| s s
0

t 1/2
<Vt (nn [ 1020, G ds)
0

where we have used ©g = 0.
Since

A0, |5 ~ (1 + A% T 2A20,, |5 < A% 0y |,
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then for 2o — 1 < a,
1A% 0,y [3m—r < A Oy [T = (A% Oy, Oy ).
It then follows from (3.5.27) that
18|z < Veate™ (1) /2,

yielding
L €@ gm-1 = 0.

Therefore, the limit 6(z,t) = lim, o0, (x,t) exists strongly in H™~!, and
is uniform in [0,7p]. Thus 6(-,t) € H™! is a continuous function of time.
Moreover, ||0,||g= is bounded in [0, Tp] thanks to (3.5.26), hence 6(t) € H™
for any t € [0, Tp], 0., — 0(t) weakly in H™ and uniformly in [0, Tp] and 0(t)
is weakly continuous in H™.

We have already shown that 6,, belongs to the class of functions in (3.5.24),
hence u, - VO, (t) — u - VO(t) weakly in H™~1 and uniformly in [0, Tp].
Therefore, u - VO(t) is weakly continuous in H™~!. Next we show that 6 is
a solution of (3.5.1). Fix x > 0, integrating (3.5.1) over [t1, t2] then yields

ta
O.(ta) — O,(t1) = — / kA0, + u, - V0,dT.
ty

Let ¢ € H™ ! be a smooth function, then taking inner product of the above
equation with ¢ in H™~! yields

(0(t2) = 0(t1), Om—1 = —/t 2(u V0,0 pm_rdr.

When k — 0, obviously k(A%%0,, ()m—1 = k(0x, A2*C)m—_1 — 0. Therefore,

t2
0(t2) —g(tl) = —/ u - Vodr.
ty

It then follows that 6 is a solution of (3.5.1) belonging to
0 € L>(0,To; H™) N AC([0, To); H™1).

Uniqueness follows from Proposition 3.5.1. Finally, since 6 is weakly contin-
uous in H™ and limsup,_,q ||0(t)||g= < ||6o]| =, it is easy to show 6 is right
continuous at ¢ = 0 and hence right continuous at any ¢ € [0,7p]. By time
reverse, the left continuity of (t) € H™ is obtained. The proof is complete.

Remark 3.5.2 1. Theorem 3.5.8 still holds if the 2D QG equation has an
external force term f € L*(0,T; H™), m > 3.
2. Theorem 8.5.8 still holds in the periodic case.
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The following theorem concerns the inviscid limit of weak solutions with
initial data in L2.

Theorem 3.5.9 Let 0y € L?>(T?), 0,0, are weak solutions of equation
(3.5.1) and (3.5.2) with the same initial data 0y, respectively. Then for any
T >0 and any ¢ € L*(T?),

limsup(f.(-,t) —0(-,t),9) =0, Vt<T.

Kk—0

Proof Consider the Galerkin approximate sequence of solutions 8™ € S, and
0" € S,, where S,, = span{e’™*}, 0 < |m| < n. Then there are suitable
subsequences such that 67 — 6,, and " — 0 weakly in L?(T?). Therefore
when n is large enough

[0k (1) = 0, 1), )| <+ (0 — 6", )]
<e + [l L2l0g — 0™l 2
<Le + Cyk,

where in the last step, we have used the inviscid limit of smooth solutions in
Theorem 3.5.7. The proof is complete.

3.5.3 Decay and approximation

This subsection considers the decay and approximation of the solutions of
the 2D QG equation.

Theorem 3.5.10 Let o € (0,1], 6 € L'*(R?) N L*(R?). Then there exists
a weak solution § of equation (3.5.2) such that

106, Dllz2r) < CL+1)77,
where C is a constant depending on ||0o||rr and |00 2.
Proof Taking Fourier transform of the equation to obtain
80 + |€12°0 = —u - V0.
Since V-u =0, \u/V\9| < [¢]/|0]12 2 by Hélder inequality, and hence it follows

from the Gronwall inequality that

t
165, 1)] < 160(6)] + IEI/O 1011Z2d7 < |60 £+ + [€][160]1Z1. (3.5.28)

Taking inner product of equation (3.5.2) with € to obtain

1d
- — 012 AYO12 =0
> R2||+/R2| 2 =0,
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which implies by Plancherel identity that

G |Een [ jerar=o

For the second term, one has

/|§\2“|é|2> / PP > g (2) / 02
R2 B(t)e B(t)e
—g(2) / 62 — g2 (1) / 02,

R? B(t)

where g € C([0,0); RT) is to be determined, B(t) = {£ € R?: |¢] < g(t)}
and B(t)¢ is its complement. From (3.5.28) it then follows

102 + 267 (¢) / 02
RZ
2

g(t) t
<m0 | [wonLlw / ||9<T>||%2d7} dr,

which yields by integrating on [0, ¢]

62 fot g% (T)d'r/ |é|2
R2

t S
<[16o]12- + / &2 5 g (r)ar [0192a+2<s>+c2s92“+4<s> / ||9<7>||‘z4d7} ds,
0 0

4
dt be2

1 1
where C; = 27t/|6]|2, and Cy = mt. Let g?*(t) = <§+2—> [(e+t) In(e+2)] 71,
«
then /o 9 (M7 — [In(e + #)]+ &, and hence
16]2> < Clln(e +1t)] '~ =
1 ¢t 2a
Let g2 = ——then e2Js 9" (M7 — (1 4 )1/ thus

2a(t + 1)’
1012 < CL+ )"V + C(1 + 1)1 / 16(5) 125 [Ine + 5)] 1~ # ds.
It then follows from Gronwall inequality that

l6@)lI7: <C+07Y, a<1,

where C depends on ||6p]| 1 and ||p]| 2. So far, we have proved the theorem
formally. It can be made rigorous by the retard mollification method in the
proof of Theorem 3.5.5.
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Similarly, we have

Theorem 3.5.11 Leta € (0,1], 0y € LY(R*)NL?(R?). If f € L'(]0,00); L?),
and there exists constant C such that

IFC e <CA+1) 0, [f(E 1] < Ol (3.5.29)
then there exists a weak solution 0 of the QG equation such that
16(-8)]| 2 < C(1 +#)~ 2.
We will establish derivative estimates of solutions.

Theorem 3.5.12 Let a € (1/2,1], 8 > « and

Cy— < g < 00. Suppose

that g € L* N L%, AP0y € L? and f € L'(]0,00]; LY N L?) satisfies (3.5.29)
and AP~ f € L?((0,00); L?). Then the solution 6 of (3.5.5) satisfies

t 1/2
8802 < Colt 473 4. ([ INf@)as) L vz
0
(3.5.30)
where Cy, Cy depend only on 6y and f.

Proof We only give the formal proof. Take the inner product of (3.5.5) with
A280(t) to obtain

1d
O T / |ASHB(0) 2
2 dt R?2 R?2
= / (w-VOAPOdz + [ fA?POdz =1, + I,.
R2 R2
(3.5.31)
For the term I, we have
2
|I] < E/ |ATPO(t) 2da + f/ AP~ f2da. (3.5.32)
8 R?2 R JRr2
Next we will show that for I;, we have
1] < SIA200) 32 + Colbo, , PIA™ 2], (35.33)

1 1 1
where s=8—a+1, -+~ + 7 Indeed, since u = (u1,us2) and V - u = 0,
p q

then u - V6O = V - (uf). Using Plancherel theorem and Holder inequality, we
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obtain

/ (u- VO)A*Phdz| = ’
R? R?

(£10ur (€) + &:0uz(€))[€2P0(¢)de

2
<> e @l e,
<IATT T (Gu) [ 2 [|A*O0] 2
SEIAI + 2146w,
where s = § — a + 1. By multiplicative estimates, we obtain
1A Ow)ll2 < Clulla| A% o + 6] | A*ull0).

By the boundedness of Riesz operator, for any p € (2, co) there exists constant
C such that ||A®u||r» < C||A%0|zr and |lul|z« < C||6]|ze. Therefore,

1A% (0u)|| 2 < C0l|Lal|A%O)| e, @=1,2. (3.5.35)

On the other hand, multiplying (3.5.5) with ¢|0]9~26 and integrating over
R2, one has

SlNL. < ( J1o205az ~ [161 260 Vo)t~ [ |e|“9<A>ae) .

Since V - u = 0, the second item on right hand side is zero, and by the
positivity of the fractional Laplacian (—A)®, the third term on the right
hand side is nonnegative, we obtain

d _ _
0Nz < q/ 10197260 fdz < ql| £l zal0]1 2"
This leads to the LP estimates of the solution,
t
16]]a < [100]] La +/ 1 (7)) adT. (3.5.36)
0

Inserting this into (3.5.35) and noting the hypothesis f € L(0, 00; LY), one
obtains

1A% (0w) | 2 < C(Bo, )N Lo < C (B0, /AT 50 1o
Inserting this into (3.5.34), one then obtains (3.5.33), where C(k, 09, f) =

4
EC(HO’ f)?. Finally, from (3.5.31), (3.5.32) and (3.5.33), we obtain

||AB9||L2dx+ ||Aa+56||L2da: co||A”0||Lz+—||A‘3 “fl22, (3.5.37)

CL|Q

1
2
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2 1
where Cy = C(k, 0, f) and7:s+1—p:ﬁ—oz+2<1—p>.

Let By = {¢ : |€]*> < M}, where M > 0 is to be determined. Choose

d_ 1 1 1 1
<g<oo,then - >-=-——-—>1—-—aand —+a—1>0. In this
2a0 — 1 2 p 2 q p

1
case,vza—&—ﬁ—Q(—i—oz—l) < a+ f and hence
p

12013 = [ jgiePdg+ [ 1P bPas
< M2|0()|22 + MG A B (1|2,

Lete M be sufficiently large such that M74(%+a71) < % then yields
0

K
CollA70() 172 < ZIAFP0@)172 + CoM*[[6(1)][72- (3.5.38)

Furthermore, since

Aol > [ leperlopag > ar [ 6P

BZ\/I Bl\l

— M| APO|2, - A% /B €270 2,

then we obtain
[A*H260(1) (172 = MP*(|A%6] 72 — MPCH|6(2)]17. (3.5.39)
From Theorem 3.5.11, (3.5.37), (3.5.38) and (3.5.39), we have
d L L2
&HA%@)H; +KM|IAPO(1)[72 < CoMe(1+ )= + ;HM F@OI7:,
(3.5.40)

where Cj is a constant depending on f, 6y and k and ¢ = max{2v, 2a+ 25}.
Let v = kM2, then multiplying (3.5.40) with e”! yields

t
IAPO(t)]|22 <e"'||APGo|22 + CoM© / e =) (s + 1) " ds
0

2 t
42 / AP f(s) [2ads.
0

K

By observing
/t eV (54 1) wds < C(1+)" =
and . ' .
| e A ) s < [ 1A,
we thus compolete the proof of Theorem 3.5.102.
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1
Corollary 3.5.1 Let a € (2, 1} , m > «a, and suppose that 6 is a smooth

solution of (3.5.2) with initial data 0y € L*(R?) N H™(R?), then for any
t > 0, there holds

6 lm < CO+DTI, Ju@®llam < C1L+8)75,

where C' only depends on the initial data. Furthermore, if m > 1 and r €
[2,0), then
<G (1407w, 0<y<p-1,

IAY6(0)][r < Cr(1+1) 725, [ATu(t)]

where C). is constant depending on initial data and r.

Corollary 3.5.2 Let § > 1, then under the assumptions of Theorem 8.5.12,
102 < C,
where constant C' depends on f and 6y.

Proof 1t suffices to show that 6(t) € L' and ||A(t)|| is uniformly bounded.
In fact, if # € H?, then

1

[seuac<c ([ avirriera)”

where C? = [, (1 + [€?)7Pd¢ < oc.

The following theorem shows that when § = 1, we can get L estimates
of the solution. We need only to provide L' bound of its Fourier transform.

Lemma 3.5.3 Let 8 = 1, then under the assumptions of Theorem 8.5.11,
if moreover 0y € L* and f € L'(0,00; L1),

10tz <O, VE=0
for some constant C > 0.

Proof From Theorem 3.5.11, there exists constant C' > 0 such that ||[V6(¢)||2,
= ||AG(t)||L2 < C for all t > 0. Using Fourier transform, ¢ can be expressed
as

t
0 = e e g, — / e HIEP (=) 0ds + H(t),
0

t
where H (t) = / e‘“lglza(t_s)f(s)ds. By the assumption of f, ||H(t)||;» < C
0
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is uniformly bounded and
~ ~ t 2a —
1)) 21 < ||6ol| 11 +/ e <IE7" =)y, w9 L1ds + C. (3.5.41)
0

In the following, we will show that the second term on the RHS is uni-
formly bounded. For this we let € > 0 to be determined and

t—e t o .
1:/ Tz H:/ e IE =9 Bl uds,  if e < £
0 t—e
t —_—
I=0, II:/ |lw- V0| r:ds, ife>t>0.
t—e
We first estimate I7. When ¢t > ¢, then

t
U</ e FIEP =9 o|ju - V|| p2ds
t—e

t
1
<C | ——<IVOlr2lullL~ds
t—e (t - 5) 2

< Csup | V0|2 sup [|6(s)]| et~ 2,
>0 0<s<t

where we have used the fundamental estimate ||u(t)||L~ < Clla(t)|: <
Cl0(t)||Lr. Since ||VO(t)|| L2 is bounded in time, we can select € > 0 such
that

1
1< = bup 10(s)| L,  VE>e. (3.5.42)
2 0<s<

When t < ¢, similarly we obtain

t
< Osup|| Vo2 sup (s )”Ll/ (t—5)"2ds < C sup [|0(s)|pe! 2.
0

0<s<t

Thus (3.5.42) still holds.
We next estimate I. When ¢ > &, then for any s > 0, |[u(s)|2 =
[0(s)|2 < C(1+ s)"2« < C and |[VO(s)| > < C, thus
t=e 2a 1 T —
I</ || —r|§[F* (t— S)HLlHu VGHLOCdS C/ WHuV@HLwdS
0

1
<0/ 1/a||u||L2||V9||des C/O md

< ’57 a<l1;
Clog( /€), a=1.
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Since ¢ is fixed, we have I < C either when a@ < 1 or a = 1, i.e., I is uniformly
bounded in time. By (3.5.42) and (3.5.41), we obtain

A 1 ~
6()]122 < C+ 5 sup 10(s)]ze, V>0,
t

0<s<

where C' is independent of ¢t. Therefore, we complete the proof.

Next we consider the approximation to the QG equation by linear equa-
tions. Let ©(t) satisfy the linear equation

00+ A**0 =0, 6|—o = bp.

Theorem 3.5.13 Let a € (0,1], 6p € L*(R?) N L?(R?) and 0 is a weak
solution of 2D QG equation with initial data 6y. Then there exists some
constant C' > 0 depending only on ||0o||L1 and ||6o]|L2 such that

16(£) — ©(t) || L2(re) < C(L+ )75
Proof Let w =6 — O, then w satisfies
dw 4+ A**w = —u - V. (3.5.43)

Take the L? inner product of this equation with w to obtain

%/|w|2+2/|[\aw|2 :/@(u.va)dsg (3.5.44)

where we have used the fact [g.(u- V6)§ = 0. From Proposition 3.1.2 and
Theorem 3.5.10, the right hand side of (3.5.44) is bounded by
‘/@(u-VG)dx <|IVO||z=]lf]2: < C(1+1)"=.

Similar to the proof of Theorem 3.5.10, we obtain

d .
d—/|w|2+zg2a(t)/|w\2 <2g2“(t)/ B2+ C(L+6)%, (3.5.45)
L l€l<a(t)

where g(t) is to be determined. On the other hand, since a < 1, by taking
Fourier transform of (3.5.43), and by analogy of the proof of Theorem 3.5.10,
one obtains

t t
e, 1)) < J€] / 16() 225 < ¢ / (1+5)*ds < Cle].

Lt’ then we get by integrating (3.5.45)

(1 +t)ﬁ/|uv\2 <C [(1 +5)ads + /Ot(l + s)ﬁg‘l(s)ds} .
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Therefore, we obtain
2
lwlz: < C(L+8)'7=,

completing the proof.

3.5.4 Existence of attractors

This subsection considers the existence of attractors for the two-dimensional
QG equation. We first introduce some general concepts of attractors. For
more details of attractors in infinite dimensional dynamical systems, readers

may refer to Temam [213].

Definition 3.5.1 Let (W,d) be a metric space. A semi-flow in (W,d) is
defined by a family of mappings S(t) : W — W, t > 0 such that

(1) for any fized t > 0, S(t) is continuous in W,

(2) for any fized w € W, S(0)w = w, and

(3) for any w € W and s,t € [0,00), S(s)S(t)w = S(s+ t)w.

Definition 3.5.2 Let S(t) be a semi-flow in the metric space (W,d), a set
@/ C W is called a global attractor if

(1) o is a non-empty compact subset,

(2) o is invariant, i.e., S(t)o/ = & for any t > 0, and

(8) im¢—, 1 oo d(S(t)B, &) = 0 for any bounded set B C W, where d(A, B)
= sup,e4 infyep d(z, y).

Definition 3.5.3 (absorbing set). A set B C W is called absorbing or an
absorbing set, if for any bounded subset By C W, there exists t1(By) such
that S(t)By C # whent > t;.

Uniformly compact The operators S(t) are uniformly compact for ¢ large,
if for every bounded set A there exists ty depending possibly on % such
that Uy, S ()2 is relatively compact in W.

Theorem 3.5.14 Let S(t) be a uniformly compact semi-flow in a metric
space W, and there exists a bounded absorbing set . Then the w-limit set
of B, o = w(PB) is a mazimal, compact attractor, where the w-limit set of
B C W are defined as

In applications, x € w(Z)-limit is and only if there exist sequences z,, € B
and ¢, — oo such that S(t,)x, — x when n — oco.

For completeness, we next introduce some concepts of weak attractors (cf.
[23,198]). The purpose of introducing weak attractors is to deal with the case
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when semi-flows is not uniformly compact with respect to d. Suppose that
there exists another metric § in W. Roughly speaking, the weak attractor
is bounded in the d-topology, compact in the d-topology, and the dynamic
maps d-bounded sets into sets that are d-bounded and §-compact.

Definition 3.5.4 The semi-flow S(t) is called d/§ uniformly compact, if
for arbitrary d-bounded set 8 C W, there exists ty possibly depending on %
such that Uy, S(t) B is relatively compact in the d-topology of W.
A set B C W is called a d-absorbing set if A is d-bounded and for any
d-bounded set By C W there exists t1(Bo) such that S(t)By C # whent > t;.
For any B C W, its weak w-limit set w®(B) can be defined as

V(B =N USHZ

T20t>7
where the closure is taken in the §-topology.

Similarly, = € w’(B) if and only if there exist sequences z, € B and
tn, — oo such that §(S(t,)xn, ) — 0 when n — oo.

Definition 3.5.5 A set &/ C W is called a global d/§ weak attractor, if
(1) o is non-empty, d-bounded and §-compact,
(2) < is invariant, i.e., S(t)o/ = o for allt >0, and
(3) for any d-bounded set B C W, limy_, 4 6(S(¢)B, o) = 0.

Theorem 3.5.15 Let S(t) be a semi-flow in the metric space (W,d) and §
be another metric in W such that S(t) : W — W is d-continuous Vt > 0. If
there exists a d-bounded absorbing set % and S(t) is d/§ uniformly compact,
then w®(2) is a global weak attractor.

Proof Denote &/ = w’(%).
(1) By definition of uniformly compact, there exists to(Z#) such that
Uist,5(t) A is relatively d-compact in W. That is, J S(t)%’(s is §-compact
t>7
when 7 > tg(#). By definition, &7 is the intersection of a family of non-
empty, decreasing, d-compact sets, and thus is non-empty and é-compact.
(2) Next we show S(t)o = &7. Let x € S(t)<7, then there exists y € o
such that z = S(t)y. By definition, there exist sequences {y,} and ¢, — oo
such that §(S(¢,)yn,y) — 0 when n — oo. By the semigroup property and
d-continuity of S(t), one has

S(t+ ta)yn = S(E)S(tn)yn = S(t)y = =,

as n — 0o. Therefore, z € o7.
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We also need to show S(t)&Z D «/. Let © € &/, then there exist se-
quences {y,} and ¢, — oo such that S(t,)yn 2, . When t, > t, we have
S(tn)yn = S(t)S(tn — t)yn. Since S(t) is d/o-uniformly compact, we can
select a subsequence t,,, such that S(t,, —t)yn, LN geW. Ast,, —t— oo,
it follows § € o7 and hence

S(tn )y = SE)S (b, — Oy > S(1)F =,

by d-continuity of S(t). Therefore z € S(t).<.

(3) We prove by contradiction. Suppose that there exists a d-bounded set
By € W such that §(S(¢)By, <) does not tend to zero as ¢ — oo. That is
there exist a > 0, t,, — 00 and u, € By such that §(S(t,)un, o) > a > 0.
Since A absorbs By, there exists 7 = 7(Bp) such that v, := S(7)u, € £ and
thus there exist sequences s, = t,, —t — oo and v, € % such that

5(S(sn)vn, &) =2 a> 0. (3.5.46)

On the other side, since S(t) is d/d-uniformly compact S(s,)v, has a o-limit
in W, which belongs to 2 by definition of weak w-limit set. This contradicts
with (3.5.46), completing the proof.

Here we are interested in existence of strong attractors of two-dimensional
QG equation (3.5.5). Readers who are interested in weak attractors can
refer to [22]. Let Q = [0,2x]? and suppose that § and f have mean zero

_ 1 _
over 2 without loss of generality. That is, 6 := @ fQ fdz = 0 and f :=

1 _
9] Jo fdz = 0. Otherwise, we can consider (3.5.5) with 6 replaced by 6 — 6

and f replaced by f — f. The main result is as follows.

1
Theorem 3.5.16 Let a € (5, 1] ,k>0,8>2(1—a)and f € HS=*NLP

do not depend on time. Then the solution operator S : S(t)6y = 0(t), Vt > 0
well defines a semigroup in H®, and

(1) for any fized t > 0, S(t) is continuous in H?;

(2) for any 0y € H®, S :[0,t] = H? is continuous;

(3) for any t > 0, S(t) is a compact operator in H*;

(4) {S(t) }+>0 has a global attractor o in H®. < is compact and connected
in H?, is the maximal bounded absorbing set and minimal invariant set in H®
and attracts all bounded subsets in H® in the norm of H® for any s > 2(a—1);

(5)if a > 2/3, then o attracts all bounded subsets of all periodic functions
in the space L? in the H*-norm for any s > 2(a — 1).

Proof The rest of this section is dedicated to the proof of Theorem 3.5.16.
The proof is divided into three parts.
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1. A priori estimates and proof of (3).

Firstly we provide some useful a priori estimates. Let s > 2(1 — «v). Take
L? inner product of (3.5.5) with @ to obtain

K 1 _
S SN0 + RIABIE = (£,0) < SIA“O: + 5 1A~ I,
from which it follows

d . 1, .
1012z + KIA%017: < — A7, (3.5.47)

Let A1 denote the eigenvalue of A, then since 6 has mean zero over {2,

d (o3
G+ w0 < 1
By Gronwall inequality, one has
F? F?
103> < <||eo%z - —) Tt — (3.5.48)
125} Ml
where p1 = kA3% and F = || f||2. It follows that there exists an absorbing

set in L? with radius [|6o]|2, + F?/p1. Furthermore, by integrating (3.5.47)
over [t,t + 1], one has

t4+1
1 —«
10t +1)II7= + fi/t 1A20(s)[I72ds <[|0()]1Z= + ~lA iz
F2
< <||00%2 - —) e Ht (3.5.49)
M1
2 o
toa T —HA fllZe-
Therefore there exists t, = t.(||0p]|2.) such that ftﬂ |A“6(s)||2 .ds indepen-
dent of the initial data 6y when t > t..
Suppose p > 2, multiply (3.5.5) by p|0|P~26 and integrate over 2 to obtain
d
GO, + slA267 2 < [ floP 20,
dt Q
thanks to the divergence free condition V -« = 0. Therefore

d (o3
101 + s X220 < Il 107 ] o = pll fle 1612

following

d KA
-— P + g p.
dt”GHL Hf”L
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Thus
pllfllee

2c0 7
KA

b4 (3.5.50)

10(0) 1 < (neonm _nlf ”“) o

2c
KA]

It follows that ||0]| L+ is uniformly bounded and there exists an absorbing ball
in L? for any 6y € LP, for any p € [2,00).

Next we consider uniform a priori estimate in H* when s > 2(1 — «).
Let a € (1/2,1) and 6y € H®. We let r = s if s € (2(1 — «),1) and let r
be arbitrary in (2(1 — «),1) if s € [1,00). Then 6y € H* C H" C LP, where
1 1-r
p 2
the other hand, by taking H?® inner product with 6, one has

1
<a-g. Therefore 0, u € L*(0, +00; L?) thanks to (3.5.50). On

d 1, .
IOl + RIAT 0T <A f|72 + ColllO] oo + [lull o) [A*P0] 72

1 S— S
<A Il + ClIA 0|17,
1 1 . .
where s > 0, p € [2,00) and 8 = 3 + - < «a. By Gagliardo-Nirenberg
p

inequality,

1-8

B
IA=20] L2 <ClIA*F0l| 72 | A%6]] 2=

K C
<EATeOlEs + 1A,
1 1
for any — € |0, — 3 ) Therefore,
p

d s 2 K s+a 2 1 S—Q 2 C s 2
- ’ 2 = § 2 < - ) 2 — ° 2.
ZIAOIE + ZIATF0) 3 < A f ) + 1A%

When s < a, by uniform Gronwall inequality and (3.5.49), we know that
|[A%0]| L2 is uniformly bounded with respect to ||0p||m= and there exists an
absorbing set in H*. Furthermore, by integrating this inequality over [t, t+1],
we get

T
/ A0 (8)||2adt < oo, (3.5.51)
0

and is uniformly bounded with respect to ||6o]|m=. It follows the uniform
boundedness of ||A®0]|;> when s > 2(1 — «) by uniform Gronwall inequality
with a bootstrapping argument and the existence of an absorbing set in H*
for s > 2(1 — a). Since the embedding H*' << H®! is compact for all
S2 > $1, and there exists an absorbing set H® when s > 2(1 — «), we know
that S(t) is compact in H® for all ¢t > 0.
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2. Proof of (2).

For any fixed 6y € H*, we regard S(t)fp as a function from R* to H*.
We will show that this map is continuous. Since we have already shown
0 € L2(0,T; H5*?), to show 0 € C([0,T]; H®) it suffices to show that A%¢; €
L?*(0,T; H=®). Let ¢ € H* be arbitrary, then

(A*0s, ) = —(A*(u- VO), ) — (A*F20,0) + (A, ).
Therefore
(A%, )| < (I (- VO)]1 12 + [IAT0] 12 + A F12) [ A%] 2,
from which it follows
1A%l o < AT (u- VOl 2 + [ATT0) L2 + A fllz2.  (3.5.52)
Since V - u = 0, we have
1A (- V0) |12 = ATV ()12 < A0 (0u)] 2. (3.5.59)

Let o € (1/2,1) and 0p € H®. Welet r = sif s € (2(1 — ), 1) and let r
be arbitrary in (2(1 — «),1) if s € [1,00). Then 6y € H® C H" C LP, where
11—

p 2
Moreover, by multiplicative estimates

1
< a-— 5 < 1/2. Therefore 6, u € L*°(0,+o00; LP) by (3.5.50).

A= (0u) || L2 <CIO]| e IATT*ull Lo + [|ull Lo | ATT720]| Lo)

o (3.5.54)
<00 Lo ||ATF72) L,
1 1 1 1 2 1
where — + — = —. Denote ¢* = ——, then ¢ = — < ¢*. Since — +
P q 2 l1-« r q*
(s+a)—(1+s—a) _ l,then
2 2
[AY57%0]| o < CAYT*7%0) or < CAT0| 12 (3.5.55)

It follows from (3.5.52)-(3.5.55)
[A0: ]| -0 < (ClO] Lo + DIATO) L2 + |A*7f | 2.

Therefore, fOT |A%0:(s)||?,_.ds < oo thanks to (3.5.50) and (3.5.51).
3. Proof of (1).

Finally, we show that for any fixed ¢ > 0, the solution operator S(t) is
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continuous from H?® to itself. For this purpose, we let § and n are two
solutions of the 2D QG equation with initial data 6y and 79, respectively.
Let (=0 —n, w=u—vforu=RY9 and v = Ry, then V-w = 0 and

(u-VO,0) = (v-n,0) =(u-VO,0) = (u-Vn,¢)+ (u-Vn,p) = (v-Vn,p)

which implies
Since V -u = 0, (u-V{,¢) = 0 and letting ¢ = ¢ and using Gagliardo-
Nirenberg inequality yield
S Il + RIACI: = — (w- T, )
<C||ATI||LP1||C||Lq|\w||Lq Cll A e [I€I10
<Cllnllw SIS 1<
K
<§||C||§1a + ClllZm IC122,

1 2 1
where — + — =1 and = — € (0,1). Therefore,
p1 g api

d
3 I<lZe + sl < CllnlFe. s, €113,

1
where po = 1/8 = ap; and p) = pa/(p2—1) = et From Gronwall

inequality, it follows
T p/
€112 < CJIC(0)]| peelo Mapds.

We let r = s when s € (2(1 — «),2 — «) and let r be arbitrary in (2(1 —
a),2—«) when s € [2— «a,400), then H® C H". Let p1 =2/(2—r — ) > 1,
then pf = 2a/(3a+ s — 2) € (1,2] and hence

LP2(0,T; WPty C LP2(0, T; HTM) C L*(0,T; H™t*) c L*(0,T; H**).

Denote C1(n, T fo [[n(s) ds, then

W1 P1

T
Oy T) < / 192(8) 2o ds < +oc.

Therefore,

T
o [ IO eas < IO {1+ cor e 0D}
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By Riesz Lemma from real analysis, we have ||((¢)| g — 0 for a.e. ¢ >
0 if ||¢(0)||z2 goes to zero. By the continuity of ||((t)||g« in ¢, we know
IC(t)|| g« — O for every t. Therefore, ||S(t)|| is continuous in H® when s €
(2(1 — ), q].

When s > «, to prove (1) in Theorem 3.5.16 we need only to show the
Lipshitz continuity of the solution operator in H*. We only treat the case

1
when a € (5, 1> while the case when o = 1 can be treated similarly to the

2D Navier-Stokes equations. Letting ¢ = A2%¢ (3.5.56) then yields

d
L NSCI2s + mAFRC20 = (A(u- VO) — u - V(AC), A%C)

2 dt
— (As_a(w . Vn),As‘m() =1+ I
For the term I, one has
S— ST S— K STQ
| B = (A7 (w - V), AT Q)] < CIIAT (w - V)| + AT L.
By multiplicative estimates,

1A= (w - )|z SC(IA*="w]|oa [Vl Lr2 + [Jw] Lo [|A*72F 0 Loz )
<SC(IA*= o [[A9] Loz + ¢l o [|A*F ]| a2,

1 1 1 1 1 1 . 2
where p1,p2,q1,q2 > 2, —+— = — and —+ — = —. Selecting p; = ——,
P P2 g  q 2 1—a
2 1 2
P2=—,q1= and ¢ = ———, we have
le’ l—« 200 — 1

IA*7CllLer < CIACl| 22, [AnllLes < CA* )Lz < CJIAT ]| 2
Iz < ClIAZ TN L2 < CIAYCI22 < ClIAC] Lo,
[A*= | oe < ClIA ]| 2.

Therefore .
L] < ClIAZFn|72A°C]72 + ZHA”‘“CHiw

For the term I, we have
(| =] (A*(u- V() —u- (A°V(), A() |
<O (w- V) = u- (A*VO) | | A*C]Z2,
since V and A commute. By commutator estimates, we obtain

[A*(u- V) —u- (A*V ()2 < C([VullLo [|A*C] r2 + [|A%ul| Lo [V (]| Loz
< C(|AOll Loy [|A*C 2oz + |A%0] Lo [V (]| Le2),
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1 1 1 1 1 1 . 2
where p1,p2,q1,q2 > 2, — + — = = and — + — = —. Selecting p; = —,
P p2 2 @ g 2 a

2
1 —«

2
P2 = yq = and g2 = —, we get
«

1—

1A0] Lor < ClIAZT0]| L2 < CIAT L2, [A*C|[Lr2 < ClIATT (|2
A0l Lo < CIIA*TO) 2, [[ACl|Ler < CIA*T L2 < AT 2.

It follows that
L] SOIATF0) 2| AFC| 2| A*C]l 2
<OAFG 32| A3 + TIATC 3.
Therefore
%HASCH%z + Rl < CIATOlIT: + ATl T) 1A,
which implies by integration in time that
[A*CO7: < CIAC(O)[Faefa 1A Oz AT 0l 0

Notice that .
/ (IA+26]2, + [A*+n|22)ds < oc.
0

We complete the proof of continuity in (1).
Finally, item (4) can be proved by (1), (2), (3) and Theorem 3.3.8. For

2
item (5), we note that a > 2(1 — «) since a > 3’ and thus for any 6y € L2,
there holds for any 7' > 0 that

T
| 1a%6z: < oc
0

and
2 o 2 2 1 2
16+ 1)llz2 + ff/t 1A%6(s)l|Z2ds < O)]z2 + — AT fl|Z.
The proof is complete.

3.6 Fractional Boussinesq approximation

The study of flows in the Earth’s mantle consists of thermal convection in
a highly viscous fluid. For a description of dynamics of flows of an incom-
pressible fluid in processes where the thermal effects play an essential role,
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the Boussinesq approximation is a reasonable model to present essential phe-
nomena of such flows. In this section, we study the fractional Boussinesq
approximation for the non-Newtonian fluids [109]

ur+u-Vu—V-7(e(u)) = -Va+nb, (3.6.1)
V-u=0, (3.6.2)
O; +u- VO + kA0 =0, (3.6.3)

subject to the initial values
u(0) = ug, 6(0) = by,
with the periodic boundary conditions
u(z,t) = w(x + Lx;,t), 0(z,t) =0(x + Ly, t), t >0,z €Q, (3.6.4)

where Q = [0, L)%, L > 0 and {x;}?_, is the natural basis of R?. The unknown
vector function u denotes the velocity of the fluid, the scalar function
represents the pressure and 1 = (0, 1) is a unit vector in R2. 6 is the scalar
temperature, A2*(0 < a < 1) is the power of the square root of the Laplacian
A = (=A)z and & > 0 is the thermometric conductivity. Ti;i(e(u)) is a
symmetric stress tensor

p—

rii(e() = 2mo(e + [e]2) T eyj — 2 Aey;, €>0, i,j=1,2,  (3.65)

B _1 6u1 Ouj 2 2 3 9
500 = 5 (ge+ 52+ Rl = 3 fes(wlP

ij=1

where pg, 41 > 0 are constants. There are many fluid materials, for example,
liquid foams, polymeric fluids such as oil in water, blood, etc., satisfying such
constitutive relation. If pouq # 0 in the constitutive relation (3.6.5), the fluids
are called bipolar. While g # 0, u1 = 0, the fluids are said to be monopolar,
because only the first derivative of the velocity is involved in the stress tensor,
such as the Ladyzhenskaya’s model. While p = 2, ug # 0,41 = 0, equation
(3.6.1) turns out to be the famous Navier-Stokes equation. The fluids are
shear thinning in the case of 1 < p < 2, and shear thickening in the case of
p > 2. For definiteness, we consider the case 1 < p < 2 in the following.

The objective of this section is to study the existence, uniqueness and the
long time behavior of weak solutions. First of all, we give the definition of
weak solution as follows.
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Definition 3.6.1 Let ug, 6y be given. A couple (u, ) is called a weak solution
of fractional Boussinesq approzimate (3.6.1)-(3.6.4), if for all T > 0 and
1<p<2,

we L®(0,T; H,) N LP(0,T; HYP) N L*(0,T;V,), u; € L*(0,T; V"),

0 € L=(0,T; H) N L*(0,T; HY),
and satisfy

/ / awd +/ /”’a %ddeM/ /Aumpdxdt

+2Mo/ / (e + le(w)[2) "> eij (u)es; (1) da

— /0 /Q Orpodadt + /Q uoy(0)dz

for every ¥ = (11, 1) € L*(0,T;V,) NWLP(0,T; HYP) with (T) = 0, and

T T 9 T
7/ /Qcptdx—i—/ /ul Hdac—i—/f/ /(A”‘H)(A”‘g@)dxdt:/Hogo(O)dx
o Ja o Ja O 0o Ja Q

for o € L®(0,T; H) N Wh2(0,T; H*) with o(T) = 0.

The spaces appeared in the above definition are defined as follows. First
we let Q = [0, L]?(L > 0) denote the periodic domain. L%(f2) denotes the
Lebesgue space with norm || - ||z« for ¢ € [1,00]. (I, X) denotes the space
of continuous functions from the interval I to X and L9(0,T;X) denotes
the space of all measurable functions u on [0,T] valued into X, with the
norm [|ul[7q 0 1.x) = fo [lu(t)]|%dt, for 1 < ¢ < oo and when ||ul| Lo (o, 7,x) =
esssupye(o 7y |lu(t)|| x when g = co. H® and H* denote the Sobolev spaces as
before. We also define a space of smooth periodic functions with zero integral
as follows:

= (v eC ) [ vda =0}

where per represents that v is periodic with respect to x. Let H.
completion of C'9,.(Q2) in the H® norm. Actually, if v € H?

per per?

per De the
we can deduce
v e H* for s > 0. In the following, we always assume v € H*® and the zero
mean condition [, vdz = 0 is included in H®. The H_j,,-norm is equivalent to
H?-norm under the zero integral condition. In this case, the Sobolev embed-
ding theorems are also valid [192]. The space H*® satisfying the divergence
free is denoted by

H:={ue H°| V-u=0},
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and the space H? satisfying the divergence free is denoted by
H: :={uc H*|V-u=0}.

In particular, when s = 0, H = H°, H, = H?, H, = H?, respectively. We
also let (-, -) denote the inner product of H,. When s = 2, V, = H2, and V/
is the dual space of V.
We also define a continuous trilinear form as follows,
8 -
b(u,v,w) = (9 w]dx u,v,w € H |

which has the properties : b(u,v,w) = —b(u,w,v), and b(u,v,v) = 0. In
particular,

(B(u),w) = b(u, u,w) = wjdx u,w € H.

8
TS
For u € V,, the operator A,(-): V, — V' is defined by
(Ap(u),v) = / y(u)esj(u)eij(v)dz,  u,v € Vy,
Q

where y(u) = (e + |e(u)|2)Psz.

Consider the following eigenvalue problem —Awu = Au, with periodic
boundary conditions. Let A = —A, according to Rellich theorem, A~!
compact in H, then

Aw, = Aywn, w, € D(A), (3.6.6)

where {w,}72 , are the eigenfunctions and also are basis of V, An > 0 and
An — 00, when n — oo. On the other hand, for the fractional diffusion
operator A%2*(0 < o < 1), we have

A*%w,, = A wn.

Now, we apply Galerkin method to construct weak solution. We start
with some useful a priori estimates, where the commutator estimates play
an important role. Then by the compactness method, we can take the limit
for the approximating solutions, whose limit is a weak solution of Boussinesq
approximation. Finally, uniqueness is also established.

Lemma 3.6.1 Assume that u € L>=(0,T} Hg) NL*0,T; Vg), then the func-
tion B(u(t)) defined by

(B(u(t)), @) = bu(t),u(t),¢), Vo€V,
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belongs to L*(0,T; V'), and the function Ap(u(t)) defined by,
p—2
(A a(0).9) = 230 [ (e + o) % sy wes; (0)da

belongs to L2(0,T;V").

For the detailed proof, one can refer to [27].
Let {w,} be the normalized eigenfunctions defined as (3.6.6). Then {w,}
forms an orthonormal basis of H, », which is also a basis of H®. Let

Um(t) = Z h (t)u.h Z]zm wz

We consider the following abstract approximating equation

(Ut i) + (- Vg, 003) + 2p0((€ + () [?) 2 e(um), e(wi))

(3.6.7)
=+ /Jl(AUm, Awl) = (ﬁema w’i)7
(emty Wi) + (um . Vem; Wi) + K/(Aaam, Aawv) =0, (368)
with the initial conditions
(UTI’L(O)’wi) = (u0mawi)7 (ern(o),wz) = (eom,wz‘), (369)

where ug,, — ug in Ho., Oom — Oy in HsNL2.

From the local existence and uniqueness theory of ODEs, the local in
time existence and uniqueness of solutions to equations (3.6.7)-(3.6.9) are
obtained. In order to prove the global solution, we will show some a priori
estimates independent of m.

Lemma 3.6.2 Suppose that « € (0,1), ug € H,, 6, € H* N L2, with
2l —a) < s <2—a, for any 0 < T < oo, and the approximating solution
(U, Om) to (3.6.7)-(3.6.9), there holds the following estimates

T
sup_ (0] < C. / () e < €,
0

0<t<T
sup (0O <0 s 1000 <C, [ 10m(@)]E e < C
0<t<T 0<t<T
Proof Multiplying (3.6.8) with j;, and summing up the equation, we get

1d

0,1 A0,
2dtH [+ & <=
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where we have used the divergence free condition V - u,, = 0. Therefore, for
any T > 0,

T
16 ()11 + 25/0 1A% ()] *ds < [160]1%,

which gives the basic uniform boundedness of #,, in L?, and the property
O € L*(0, +00; H*), which are independent of m.
Multiplying (3.6.7) with h;,, and summing up the equation, we have

1d

2 2\ 252
—— ||wm, —|—2,u0/ €+ le(uy, 2
> lluml (e + le(um)P)

esj(tm)eij (um)dz + pir | Aupml* = (0, wm),
where we have used the divergence free condition. Noting that the second

term in the left hand side is nonnegative, we drop it in the following compu-
tation. Applying the Young’s inequality yields

16m1?
2

1d
s —umll® + pal| Aum ||* <

1 2
> Q1 *glluml

For any T > 0, we have from Gronwall inequality that for any ¢ € [0, T
t
[ ()] < € [luol|? +/O e[| (s) ] *ds

T
< o (Juoll? + / 16m()]|%ds),

which gives the basic uniform boundedness of u,,, in HU, and the boundedness
of U, in L%(0,00; V), which are independent of m.

Multiplying (3.6.8) with A{j;, and summing up the equation, we obtain
1d
2dt

where we have used the condition V -u,, = 0, and (u,- V(A®6,,), A%0,,) = 0.
Next we estimate the right hand side of the above equality. Noting that A®
and V are commutable, then

IA%0, )17 + & AT00 )12 = — (A% (U - Vi) — tm - V(A%0,,), A%6,,),

[(A% (U - VOi) — - V(A°0,,), A0,
= [(A°(tm - VOp) — up, - (A°VO,,), A%0,,)]
S ClA* (um - Vi) — i - (A*V 0 [[[[ A0,
. 1 1 1
Since for any p1,ps > 2 with — + — = =, we have
P p2 2
1A (i, - VOi) — Uy - (A°VO,,) ]|
SO Vum | Lo [|A°Om || Loz + || AU || Lr2 | VO || L1 -
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such that

2
We can select p1 = —, p2 =
«a -«

[Vt Ler < CIIA* " upml|, |V |e < CIA>T0,]],
AU || Lre < ClIA T upl|, [|A%Gm]lLr < CIIAT0,]).
Thus, we have
”As(um : Vam) — Um - (ASVHm)H

< C(IA> " um || A O || + 1A ¥ [[[[A> 7O ])
= C(”“mHZfa”ASJraem” + ||um||s+a||A27a9m”)’

235

From the assumption 2(1 — @) < s < 2 — a, we can apply the Sobolev

embedding H? «— H2~%, and H? < H"®, then

1A (= V) =t - (A0 [| < Ol 12| A O | + e 2| A2~ O],

and

[(A% (U - VOi) — U - V(A®0,), A%0,)| (3.6.10)

< Cllumll2| A% [[(|AT 00 | + |42 O 1)

From the e-Young’s inequality,

S ST K ST 02 S
Clltmlll|A*Om [ AT O[] < ZIATT0m[|* + — ([m |31 A°0m[|). (3.6.11)

For the second term in the right hand side of (3.6.10), noticing the assumed
condition 2 — a < s+ a, if 2 — a = s+ «, the estimate is similar to (3.6.11),

if 2 — a < s+ «, we can apply the Gagliardo-Nirenberg inequality,

2—«

[A2= 0| < Cllfm | PIAF 0%, 0< B =
S+«

<1

Thus

et 2| A2~ 0o 1A [| < Clltim]|2 | Al |~ [ A*F 01 |
Ot [FIIA 0 |2 + | A0 |2
c

K s
< CllumlBIA%0m* + F A0 + C,

NN

where the last inequality is due to the e-Young inequality.
Then

| ~

S K ST S
1A0m]1* + SIAT0m |2 < C(luml314%0m %) + C,

N =
(ol

t
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noticing that fOT lum(s)]|3ds < C, then
1A%, ()] < Cf| A%y |? exp® Jo lum @lizds LoT < €,

and

T
/ A6, (0)||2do < C,
0

where the constant is independent of m.

Now, we can prove

Theorem 3.6.1 Suppose that « € (0,1), up € H,, 6y € H* N L2, with
2(1 — a) < s < 2 — a, then there exists a unique couple weak solution (u,6)
to equations (3.6.1)-(3.6.4), such that

u €L®(0,T; Hy) N LP(0,T; H“?) N L*(0,T; V,),
0 cL>(0,T; H®) N L?(0,T; H*+*), VYT > 0.

Proof Existence: From the above a priori estimates, then we can extract a
subsequence still denoted by u,, such that for any 7" > 0,

{tm} converges to u weakly star in L>(0,T; H,),
{um} converges to u weakly in L*(0,T;V,),

{6,,} converges to 6 weakly star in L>(0,T; H®),
{6,,} converges to 0 weakly in L?(0,T; H*T®).

Combining Lemma 3.6.1, we have {u,,} is uniformly bounded in L?(0, T; V"),
thus {u,,} converges to u strongly in L?(0,T; H'). Then by a standard
procedure we can pass the limit m — oo, the above convergences are sufficient
to pass the limit in the linear term.

The difficulties in the limiting process, lie in the nonlinear terms. We
notice that

T T
/ / U+ VU ¢ dadt = 7/ / U+ VO U, dadt,
o Ja o Ja
T T
/ / Uy + VO, ¢ dadt = —/ / Uy - V@ O dadt.
o Ja 0o Ja

Thus, both convective terms are handled by the strong convergence of u,, in
L?(0,T; H).
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On the other hand, for 1 < p < 2, ¢ € €,

// (€ + |e(um(s );2eij(um(5))

— (e+ [e(u(s)))"7" i3 (u(s))]ei; (¢)dads
<|/ / €+ |e um = ev]( )eU( )dxds| (3612)

+|A / (e + e(um) )2 = (e + [e(u)[2) "2 Jes; (w)ei; (¢)dads|
—-Al +.A2.
Obviously,

v <2 [ el @) < € [~ ulslolhds.

If |e(um)| < |e(u)], by mean value theorem, there exists & such that |e(un,)| <
¢ < le(u)|, and

p—

(e +le(um)?)"= = (e + e(u)[?) ="
:p§2*+ff¥ﬂdwm2fmww>
<? ; 2(6 + le(w)[2) = (2le(w)])(le(um)| — le(w)])

< (p = 2)(e + le(w)2) "= [e()le(um) — e(u)],

—2/ /e+w )22 et — u)[e(9)ldzds
/n W)llle(s) s

SC/WW—MMMM&
0

then

For the case of |e(un,)| > |e(u)], the result can be obtained similarly.
From the above estimates, we deduce that

p—2

/ﬁ,/gue++e<unxs>n2>E%zew<unxs>>—<e+—w<u«ﬂ>ﬁ>—fwnjuws>nem<¢>dxds
C/H%A$—M$MMM®

<o [ ums) - HMQ (/IMW®>,
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where the constant is independent of m. The convergence of (3.6.12) can
be deduced from the strong convergence of u,, in L2(0,T; H'). Finally, by
a standard procedure, we can show (u,6) is a weak solution to equations
(3.6.1)-(3.6.4).

Uniqueness: Now suppose that (ug,61), (usz,02) are two solutions of
the fractional Boussinesq approximation with the same initial data. Let
U= Uy — ug, 9:91—92, then

up +u1-Vug —ug - Vug — 210V - [(e + |e(u1)\2)pT_2e(u1) (3.6.13)
— (e+ le(u2) ) 7" e(uz)] + 1 A%u = o, a
0: +uy - VO, —uz - Vs + kA0 = 0. (3.6.14)

Multiplying (3.6.13) with u and taking the inner product in L2, then

1d

5 dtIIUIIQ +paflull3 <100, w)] + [(u - Vuz, ), (3.6.15)

where we have used the divergence free condition V -« = 0, and the property

_9 —2

(=V - [(e+ le(un)[*) =" e(ur) — (e + [e(u2)[*) "= e(uz)], ur — uz) > 0.
Obviously,
1 1

(6,0)] < 5l + S 612,

and
(u - Vg, u)| < [ul| oo [ Vue]|]ull
< Cllulla]luz|l2][ull

M1
< Illullg + Cllual[5]lul®.

Multiplying (3.6.14) with 6 and taking the inner product in L?, we have

(Ul . V91,0) - (UQ . V@g,g) :(ul . V91,9) - (u1 . VGQ,Q)
+ (u1 . V02,9) - (UQ . VQQ,Q)
:<U1 -V, 9) + (u - Vs, 9)
From the divergence free condition V - u = 0,

Ld

S IO+ KIA) < (- W62,6)], (3.6.16)

and from the Hélder inequality and Sobolev embedding, we know

(- V02,0)] < |ullL[|VO/|6]] < Cllull2[[VO[[6]-
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Noticing 2(1 — ) < s < 2 — «, we have
(- V2, 0)| < Cllul|2]|02]|s1ol0]
22!
< ulls + ClloalZa ol
Combining the above estimates together, we have

1d H1 @
535 0ul? 1612 + (Gul + slavel?

1
< (5 + 0N 0ulRe 161 + (5 + Cllual?) .

1
Taking the maximum of { + CHU2||27 + C|02|5+a} = o/ (t), we have

u()1” + 16(t)]* < explo 292 ([u(0)|* + [[6(0)]).

t
From above proof, we know / 7 (s) is bounded, which completes proof of
uniqueness.

Remark 3.6.1 The a priori estimates obtained in this section are indepen-
dent of the periodic domain Q. Thus let |Q — oo, suppose that o € (0,1),
ug € Hy, 0p € H?, with 2(1 — a) < s < 2 — «, we directly obtain the existence
and uniqueness of weak solution to the initial value problem.

In the rest of this section, we consider the decay of velocity and tem-
perature. For simplicity, we set the constant k = 1. Now, we consider the
following equations with dissipative condition in the whole space RZ:

up+u-Vu—V- (2uo(e+ le(w)|?) "2 e(u) =2 Ae(u)) = —f(u)+nb, (3.6.17)
Vou=0, (3.6.18)
0 +u- VO + A0 =0, (3.6.19)

where f(u) satisfies the condition

(f(u),u) = 1||ul|?, for some I > 0.

The conditions of f(u) are the dissipative conditions, which play an important
role in proving the decay of solution. To obtain the decay of temperature,
we first show

Lemma 3.6.3 Letug € H,, 0y € L2N LY. Then

10(&,1)| < [|6o]lr + Cle]t.
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Proof The Fourier transform of the temperature satisfies the following equa-
tion:

0, + Fl(u- V)] + |£>*6 = 0,

and
Fl(u- V)] =F[V - (fu)] < Z/ﬂ i€ dz < [€][|u]][6]]-

Thus, we have
Oc + 16176 < 1€][|ull]|6])-

Now using exp(t|¢|?¥) as a multiplier, then

d A 2 2a
3 O exp™ ) < exp T (fgull 011)

Integrating in time over [0, ¢], it follows that

t
0(¢,t) < exp™*1 6o (€) +/ exp” S (Jeull16]1)ds

0
t
< 90llus + / €l llull6]ds
< |10ollLr + ClElt,

where the last inequality is due to the uniform boundedness of velocity and
temperature.

Now, we present the main decay results of temperature and velocity.

Theorem 3.6.2 Let (u(t),0(t)) be a solution of equations (3.6.17)-(5.6.19),
assume initial value ug € Hy, 0p € L*>NLY, 2(1—a) < s < 2—a, (f(u),u) >
U|u||?, for some l > 0. Then

1
Case 1: when 0 < a < >

- C
lu@)1* <exp™ fluoll* + 35
c

901 < oy e
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1
Case 2: when a = 3

C i
[u@)1* <exp™ [uo® + 75 [ exp™? +

C

00 <y

1
Case 3: when 3 <a<l,

lu(®)1* < exp™ [luoll* + 73

_ ¢
(14t)a-2
Proof First, we consider the L? decay of temperature, then the decay of

velocity can be obtained by the decay of the temperature. Taking inner
product of (3.6.19) with € in L?, we obtain

lo)1* <

d g2
— 2[|[A%0||* =
1017 +201A6]> = 0

This energy equality is the starting point of the Fourier splitting method.

The idea is to obtain an ordinary differential inequality for the energy norm

of the temperature. This is obtained by working in the frequency space and

splitting the space into two appropriately chosen time dependent subspaces.
By Parseval’s equality,

d N 2 2a () 2 _
G | benpace [ P opae~o. (3.6.20)
Multiplying (3.6.20) with (1 +¢)2, then

Slaso? [ o opag+ar? [ gelie o

dt R2 ’ R2 ’

=2(1 +t)/ 16(¢,1)|de. (3.6.21)
R2
Let B(t) = {€ € R?|(1 + t)|¢** < 1}, then

(0 [l nras > e [ lePelae oag

>/ ftldé/ (e, b)[de.
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From (3.6.21), we can deduce that

d 2 N 2 N 2
Gl [ penfag <20+ [ ICURTCEED

To obtain decay of the temperature, we need an intermediate estimate for
the Fourier transform of the temperature for frequency values in B(t). From
(3.6.22) and Lemma 3.6.3

i 2 ) 2 2
g0+ [ orag <2040 [ oo clentas

1
Let M2 = 70 We have for the term of the right hand side

21 M
204 2
/B(t)(l + [£]6)“d¢ _/0 /0 (1 +rt)*rdrdr

M
<4n/ (r + r3t%)dr
0

<4n<1 1 +1 12 )
SN2+ 4@+t )]

Then

i 2 N 2 1 1
Fl+o? [ ieorag <o [(m)il + (1+t)53]’

which yields by integrating in time over [0, ¢],

2 2 2 2 t|: 1 1 :|
(1+1) /RZ 10(¢,¢)[7dE < [|6o]| +C/O Ry + TR ds.

(3.6.23)

1 2 1
Casel: 0<a< 3 In this case, — —2 > — > 2 and hence
@ @

1 n 1
14+s)a !l (1+s)a-3

(o2 [ o oras <ol o [ 1 Jas
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<l6o]* +C

<2i)(1+wi—2

1 + 1 + 3
1_ 2 _
1+t)==2 1+t 2_,

<||6o))®> +C

1
Noting — > 2, the last term in the right hand of inequality is nonnegative.
@

Then the above inequality gives the following estimate

: 160l ! ! ’
0 2d¢ < T :
| e npas < 2 (1+t)a+(1+t)a—2+<3_4>(1+t)2
«
o C
S+

1 1 2
Case2: o = —. In this case, — — 1 =1, — — 3 =1, and hence
2 « «

6ol2 . m(l+8)  C
(1—Et)2 “ate Sty

/ 0(e,1)2de <
R?

1 2 1
Case 3: 3 < a < 1. In this case, 0 < — — 2 < — < 2, and hence
@ «

6ol|? 1 1
190l° , . .

(1+2)? (z_é)(ut)é (4—%)(14—1&)52

3

(4—%)(14—@2

/ 0(e,1)de <
R2
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160l 1 1
NEETE +C +

(2-D)a+ns (1-2)a+nis

C
giza
(141t)="2

where the last term in the right hand of the first inequality is negative and
hence dropped.

After obtaining the decay of the temperature, now we consider the decay
of the velocity. Taking inner product of (3.6.17) with u in L?, we obtain

1d

5l Al + 250 [ (c+ o)) 2 e(w) P = (00,0 = (£, )

which gives

- < - .
2l < (06, 0) + (7))
Obviously,
Hul® | 110]?
< .
(nf,w) < =5 21

Combining the restricted condition for f(u), then (—f(u),u) < —I||u/|?. Thus

1d

I e U
2 dt

2
< .
Juf? < ~-1 4+ 120

From the decay of the temperature, we know

1
Casel: 0 <a< 3 In this case,

ol ¢

d 9 9
— l < < .

Applying the Gronwall inequality,
O t
(O < exp ol + 5 [ exp s+ 1) P
0

We divide the integral into two parts,
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t

¢ 2
/ exp =) (s 4+ 1)"2ds =exp ™ [/ exp!®(s + 1) "%ds
0 0

¢
+/ expls(s+1)2ds]
t

2

—lt
, 1
<6X2 (exp® —1) + ———— (exp* —exp?)
t
- +1
| 5+1)
exp—lt " explt
STt T2
41
(G
it
exp” 2 1
<22~

From the above estimates, we have

c 1
@) < exp™ uoll® + 35 | exp™ +————
—+1
(3+1)
1 .
Case2: a = 3 In this case,
EHUHQ'FZHUHQ < Hé’”2 < C

Similarly, we can obtain the following inequality

t
a1 < exp ol + [ expl9 s+ 1)1,
0

and

t
/ eXp—l(t—S)(S+ 1)_1d8 g €xp +
0

then

C it 1

hﬂW<prmw+ﬁewf+(r__
—+1>
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1
Case 3: 3 < a < 1. In this case,

d o 5 _ 11617 c
ull® + 1 ||u]]* < < .
ll? + Ll < 50 < s

Similarly, we can obtain the following inequality

C t
O < exp~" ol + T [ exp 10 s+ 1)~ (2,
0

and

then

_ C e
||u(t)||2 < exp t ||U0H2 + 2 exp 2 +

2_o
t @
—+1
Obviously, if ¢ tends to infinity, the L? norm of velocity tends to zero.

Remark 3.6.2 f(0) = 0, f'(u) > 1 > 0 is a special case satisfying the
restricted condition for f(u).

Remark 3.6.3 Furthermore, the result of Theorem 3.6.2 can be modified
as follows:

1
Case 1: O<oz<§7

C

S
t
2l-+1

lu()]* <exp™"* [fuol|* +

C
(1+1t)2

le)? <
Case 2 L
ase a: @ = —
27

Ju(®l” < exp™" fluoll” +

C

1001 <
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1
Case 3: 3 <a<l,

_ C
Ju(®)]|® < exp™ Jluo|* + 5 75>
2 =+1
(5+
C
10ON* < ——5—-
(1+1¢)a

Remark 3.6.4 If a = 1, the proof becomes complex, the above method is
inwalid. In fact, we cannot obtain the decay estimates of temperature similar
to inequality (3.6.23), but by other ways we can solve this problem. First,
multiplying equation (3.6.20) with f(t) = (In(e+t))3, by Plancherel’s theorem
and detailed calculation, we can obtain

C

0@ < m'

Then, multiplying equation (3.6.20) with f(t) = (1 +t)?, the corresponding
decay estimates can be obtained.

3.7 Boundary value problems

This section introduces the boundary value problems of fractional differen-
tial equations by the harmonic extension method. In recent years, many
researchers explored the properties of fractional Laplacian and related frac-
tional partial differential equations defined on a domain with boundaries from
different points of view. In particular, Ma et al investigated the regional
fractional Laplacian by the concept of generators of random processes. They
obtained some integration by parts formulae and existence and uniqueness of
some boundary value problems were obtained, cf. [98—100]. Caffarelli et al
obtained some important results on boundary value problems and obstacle
problems of the “elliptic” equation with fractional Laplacian based on the
harmonic extension method, spectral decomposition and the Sobolev trace
theorem. The basic idea is to transform the nonlocal problem with fractional
Laplacian to a local problem in a higher dimensional space, cf. [31, 32].
Cabre and Tan [30] considered the positive solutions of nonlinear problems
with fractional Laplacian. We only make a simple introduction here and
the interested readers may refer to the literature above and the references
therein.

Consider the case when o« = 1/2. Let u be a smooth solution of the
problem
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u(z,0) = g(z), = €R (37.1)

Letting T : g — —uy(x,0), then we have (T'oT)(g)(z) = T(—uy(x,0))(z) =
Uyy(2,0) = —Ayg(z). By integration by part, we know that T is a positive
operator, thus T = (—A)Y/? and (—A)'/2g(x) = —uy(z,0). In other words,
the operator (—A)'/2 coincides with the Dirichlet to Neumann operator in

{Au(m,y)zO rcRY y>0

the upper half space of R%*1.
Now, we consider a general fractional Laplacian (fA)a/ 2. Consider the
Dirichlet problem

Agu+ %uy +uy, =0 z€RY y>0 (3.7.2)

and
u(z,0) = g(x), z€RY, (3.7.3)
where g : R? = R and u : R x [0,00) — R. The equation (3.7.2) can also

be rewritten as

V- (y*Vu) =0, (3.7.4)

l—a
where V = (V,, V,). By taking coordinate transform z = (1 Y ) , we
—a

have y*u, = u, and (3.7.4) is transformed into a non-divergence form
Agu+ zTau,, = 0. (3.7.5)
It can be shown that there exists some constant C' such that
C(=A)"?g(z) = —u.(2,0), a=1-a. (3.7.6)

To this end, we first derive a Poisson formula. Consider the “n 4+ 1 4+ a-
dimensional” Laplace equation (3.7.2). When n > 1 + a, the fundamental

solution at the origin can be expressed as ['(X) = Cpi144|X 17779, where
ntita 1
= F<w - 1) /4 and X = (x,y). It can be directly

checked that I' is a solution of (3.7.2) when y # 0 and lim,_,o+ y®u, = —Cdy.

Cn+1+a =n

1—a
T > yields the fundamental solution
—a

Using the transform z = <

- 1
I'(z,z) =C), a —,
(5:2) = Ot e T (1 e papiom)y ==

which solves (3.7.5) when z # 0 and u,(z,2) — —dp as z — 0.
On the other hand, letting P(z,y) = Ch.oy'~*/(lz|2 + |y[2)™ =, then
the solution of (3.7.2)-(3.7.3) can be expressed by the Poisson formula
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w(X) = [ Plr—¢&y)g(§)dE.

R4
The corresponding Poisson kernel of (3.7.5) can be obtained by
. z
P(x,z) = C,, —.
) = O ey (= a0y

(3.7.7)

By the Poisson formula, we can compute by definition of the fractional Lapla-
cian
u(z, z) — u(z,0)

uy(z,0) = lli% .

—lim [ Ple—¢,2)(g(6) — glx))de

z—0 2z Rd
C

1
— g —g d
ZlII(l) > / } (|1- £|2 (1 )2|Z|2/(1 a))n'+;_a ( (6) (:C)) 5

_ 9(§) —g(x)
= CP.V. /R o g _€|n+1_ad§

1

= —C(=A) 7 g(x),

where the limit in the third step exists as long as ¢ is regular enough. On
1
1—-a

—a
the other hand, direct computation yields y®u, = < ) u. Therefore,

(3.7.6) follows.

By employing the extension method, one can obtain some important re-
sults similar to the Harnack inequality. Let u : R? x [0,00) — R be a
solution of (3.7.2) such that lim, o y®uy(x,y) = 0 for |z| < r, then the ex-
tension @(z, y) is a weak solution of (3.7.4) in Br = {(x,y) : |z|*+|y|? < R?},
where t(z,y) = u(x,y) for y > 0 and (z,y) = u(x, —y) for y < 0. Indeed,
let h € C§°(BRr) be a test function and € > 0, then by (3.7.2) and integration
by parts we have

Vi - Vhly|*dX = +/
Br Br\{ly|<e} BrN{|y|<e}

:/ V- (ly|*hVii)da
Br\{ly|<e}
+ / v
BrN{|y|<e}

:/ hity (z, €)eda
Br\{|y|=¢}

+/ Vi - Vhly|®dX.
BrN{|y|<e}

Iy

- Vh|y|*dX (3.7.8)
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The second term on the RHS clearly goes to zero since |y|*|Vu|? is locally
integrable and the first term converges to zero if e%dy(z,e) — 0 as ¢ —
0. Therefore, 4 is a weak solution of (3.7.4) in the Bg across y = 0 if
€Uy (z,e) - 0ase —0.

We have the following

Theorem 3.7.1 Let f : R? — R be a nonnegative function such that
(=A)*f =0 on B,. Then there exists a constant C' = C(s,d) such that

sup f < C inf f.
Br/2 BT/Z

Let u be the extension of f that solves (3.7.2). Since f is non-negative,
so is u. By reflecting it through the hyperplane y = 0, since (—A)O‘/Qf =0,
then u is weak solution of (3.7.4). Theorem 3.7.1 follows from [84].

To further expound the idea of harmonic extension in treating the bound-
ary value problems, we continue to consider the nonlinear problem in a
smooth domain D c R

{(—A)Wu = f(u), inD,

: (3.7.9)
ulop =0, and v > 0 in D,

Here (—A)'/2 is defined by the eigenvalue problem of the standard Laplacian.
Let { Ak, pr} be eigenvalues and corresponding eigenfunction of the problem

—Apy = Appr, such that prlop = 0 and ||oxl|z2(py = 1, (3.7.10)
then (—A)Y/2 is defined by

u= chcp = (—A)Y 2y = ch)\,lc/chk,
k=1 k=1

which clearly maps H{ (D) to L?(D). For a given function u defined on D,
consider its extension v on the cylindrical region C = D X (0, 00) such that
v =0 on dLC = dD x (0,00). Similar to the case of RY, the fractional
Laplacian can be constructed by the extension method. Let v satisfy

Av=0 and v > 0in C,

0
v =0, on 0rC and 8_:}1 = f(v) on D x {0},
then the trace u = Trv on D x {0} is a solution of (3.7.9). Indeed, since 9yv
is still harmonic and vanishes on 9.C, it follows that (—A)'/2u = —uv,(-,0).

Let Hj (C) = {v e H'(C)lv = 0 a.e. on 91C} equipped with the norm

1/2
[lv]] = (fc |Vv|2d1:dy) and Trp be the trace operator defined by Trpv =
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v(-,0). It then follows that Trpv € HY2(D). We define Vo(D) = {u =
Trpv:v € Hy 1 (C)}.

Proposition 3.7.1 Let [(z) = dist(x,0D), then

u?(z)
I(z)

{u € LX(D):u= Y bppy, such that > bIN/* < oo},
k=1 k=1

Vo(D) :{u e HY/?(D) : /D dr < oo}

(3.7.11)

2 1/2
and is a Banach space under the norm ||ul|y,py= {'“'1%11/2@)"'/ uldx} .
D

oo

Proposition 3.7.2 Let u = Zbkgok € Vo(D), then there exists a unique
k=1

harmonic extension v € H&,L(C) in C of u having the expression

v(z,y) = > bror(z) exp{-N/"y}, V(z,y) €C.
k=1

Thus the operator (—A)Y/? is given by the Dirichlet-Neumann map

= N2

Dx{0} k=1

ov
_AV/2, - ZY
(=8)" u= o=

These two propositions will be proved in what follows. We first give some
properties of the space Hg ;(C). Let DY2(R4™) be the closure of smooth

functions compactly supported on Riﬂ under the norm ||w||D1,2(Rd+1) =
+

([ga+r |Vw|?dzdy)t/2. Then, for w € DH2(RE), there holds the Sobolev
¢
trace inequality

(d—1)/2d
( / |w<a:,o>|2d/<d—1>da:) < C() (/ |Vw<a:,y>|2da:dy>
Rd Ri+1

(3.7.12)
From [137], there exists an optimal constant C(d) = (d — l)ai/d/Z as well as
w € DV?(RE) such that equality in (3.7.12) hold, where o is the Lebesgue
measure of the d-dimensional unit sphere.

2d
When d > 2, we let 2* = 1 Let v € H 1 (C) and extend it to RY\C

1/2

by zero. Then the extended function can be approximated by functions that
=d

are compactly supported on R :1. It then follows from the Sobolev trace

inequality that
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1/2
(/ |v(m,0)|2*dx> <C (/ |Vv(x,y)|2dxdy> , d=2.
D C

It then follows by Holder inequality that

(ﬂgwamwmﬁwq<c(ZJVmeﬁu@QUi

where 1 < ¢ < 2 ford > 2 and 1 < ¢ < > for d = 1. That is,
Trp(H} 1 (C)) < LY(D) continuously and the embedding is compact since
Trp (Hyp, (C) < H'? (D) and HY? (D) — L% (D) compactly. Here,

Il | /2oy is given by

ju(e) — u(@)?
\w@wm:// M7WH<MM+/W Dlfde.  (37.13)

The space Hj ; (C) can also be characterized as follows.

1/2*

Lemma 3.7.1 There exists some constant C' depending on D such that

2
/ de < C'/ \Vo(z,y)Pdedy, Vv e Hy . (C)
p lx) c ’

where [(x) = dist(z,0D).
Proof First consider d = 1 and D = (0,1). For xg € (0,1/2), we have

xo
o(20,0) = v(t, 70 — |72y = / (00— By) (£, 20 — £)d.
0

So that,
@
|’U(IO70)|2 < xo/ 2|Vv(t7:r0 — t)|2dt.
0

Dividing the equation by x¢, integrating with respect to z¢ on (0,1/2) and
taking the change of variables © = t,y = x¢ — t, we finally obtain

1/2| (9607 1/2 1/2 , ,
dz [Vo|*dy < |Vv| dzdy.
0

When xo € (1/2,1), the lemma can be proved in a similar manner.

In the case of high spatial dimensions, suppose D = {x = (2/,z4) : |2/| <
1,0<zqg<1/2} and v =0 on {xg =0, 2’| < 1} x (0,00). According to the
results from one-dimensional case, we see that as long as |2/| < 1

1/2 1/2
/ \v(x 0) C/ / |Vo|2dzady.
0
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Integration with respect to z’ then yields

2 1/2 2
D Tq D Jo Td ¢

The results for a general domain can be derived by boundary flatten skills.

From this lemma, we can indeed prove the first equality in Proposition
2

3.7.1. Let u € HY?(D) satisfy / uT < 0o. Let @ be the extension of u in
D

all of R? by assigning @ = 0 in R\ D, then there exists a constant C such

that 2(2)

<112 2 u \z

U <C { u + / da:} < 00,

il sy < C { Ml + [ 55
where ||ﬁ||i11/2(Rd) is given by (3.7.13) with D being replaced by R?. Thus @ €
H'Y2(RY) is the trace in R? = 8Ri+1 of a certain function v € Hl(RiH).
Next, there exists a local bi-Lipschitz maps that maps R‘j_“ into D x [0, 00)
being identity on D x {0} and maps R\ D into 0D x [0, 00). By composing
such a bi-Lipschitz map with the function ¥, we obtain a H& 1 (C) function,

whose trace is u on D x {0}. Therefore, the first equation of (3.7.11) is valid.
For a given function u € Vo(D), consider the following minimizing prob-

lem
inf {/ Vo’ dzdy : v € Hj 1 (C), and v(-,0) = u in D} . (3.7.14)
c

By definition, the set of v is nonempty. By lower weak semi-continuity
and compact embedding Trp(Hg 1 (C)) < L(D), there exists minimizer
v € H&L(C) which is the harmonic extension of u to C vanishing on 0;C.
Furthermore, the minimizer is unique. This can be seen from the inequality

V1 — Vg 1 1 v1 + v
< = — Z _
O\J( 5 ) 2J(U1)+2J(’U2) J( 5 )

N

0,

where J(v) = / |Vo|2dady.
C
To study the relationship between v and u, we denote v = h(u) to be the
harmonic extension from u to C vanishing on 0r,C. By divergence theorem
and Lemma 3.7.1, we know there exists a constant C' such that

[ullve(py < CllA(u)llag , c)» Yu € Vo(D).

On the other hand, A is bijective from Vy(D) to H, the subspace of H&L(C)
made of harmonic functions in Hg ;(C). Moreover, since Vo(D) and H are
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both Banach spaces, the open mapping theorem gives that there exists a
constant C' such that

1Ry, ) < Cllullvypy,  Yu € Vo(D). (3.7.15)
Let Vo(D) be the dual space of by Vi (D) whose norm is given by

||9va(D) = sup {{u,9)}
u€Vo(D),|lullvy(py=1

Let £ € V(D) be a smooth function, then from divergence theorem, it follows

/ VoVndzdy = / @gdx,
C D on
which yields by (3.7.15) that

e

Therefore, ?b € Vi (D) and H
n

Cllullvy oyl llve( D)

Oh(u)
on

< Cllullyy(py- Thus we have
Vs (D)

0
Lemma 3.7.2 The operator (—A)Y? : u a—Z|DX{0} is a linear bounded

mapping from Vo(D) to Vi(D), where v = h(u) € Hj 1 (C) is the harmonic
extension of u in C vanishing on 0rC.

In what follows, we consider the spectral representation of (—A)'/2 and
the corresponding structure of the space Vo(D). Let u € Vo(D) C L*(D)

oo
have the expansion u = Z brpr and consider
k=1

T,y) = Zbkgok(a:) exp{—)\,tﬂy}, y > 0.

Obviously, v(z,0) = u(z) and Av(z,y) = 0 when y > 0. On the other hand,

/ / |Vu|2dmdy:/ /{|VIU|2+\8yv\2}dmdy
o Jp o Jp

:22 b%)\k/ exp{ — 2)\1/2y}dy
szk 1/2 Zzﬁ N2
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This shows that v € Hg 1 (C) if and only if Z biAi/z < 00. Therefore, if this
k=1
condition holds, then v € Hg ;(C) and hence v = h(u). This is the second

equality in Proposition 3.7.1.

8 o0
By direct calculation of — = yields (—A)Y2u = Zbk)\,lcﬂtpk €
Yly=o k=1
V(D). Therefore, Proposition 3.7.2 holds.
1/2.

Next, we consider the inverse of (—A)

Definition 3.7.1 Let B : g +— Trpv be a map from Vi (D) to Vo(D), where
v 18 the unique weak solution of the problem

Av=0, inC
I (3.7.16)
v=0, on drC and o g(z) on D x {0}.
n
That is, v € Hg (C) and satisfies
[ vevedsdy = (.600), v € 13 (€. (3.7.17)
c

The existence and uniqueness of the weak solutions follows from the Lax-
Milgram theorem by studying the functional in H& .(C):

1 *
1) = 5 [ 1Vodady = (5,000, g€ V(D).
It is obvious that the operator B is the inverse operator of (—A)'/2 and
(BoB)g = (—A)"!g. Furthermore, we have

Proposition 3.7.3 Bo B|p2py = (—A)~' : L*(D) — L*(D) is a bounded
linear operator, where (—A)~! is the inverse Laplacian in D with zero Dirich-
let boundary conditions.

The operator B : L*(D) — L?(D) is self-adjoint. For arbitrary vy, vy €
Hj 1(C), there holds

ov v
/C(ngvl — v1Avg)dzdy = /D <U28—nl - vla—;)dx,

from which it follows

/ Bgs - g1dx = / Bg - godx,
D D

and

/Ug($,0)(—A)71/2U1(I,O)dI:/ v1 (2, 0)(—A) 20y (2, 0)du.
D D
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Taking £ = v in (3.7.17) and using the compactness of the embedding
Trp(H} 1 (C)) < HY*(D), we know B is a positive and compact opera-
tor on L?(D). From the spectral theory of compact self-adjoint operator,
all the eigenvalues of B are positive real numbers and the corresponding
eigenvectors consists of an orthonormal basis of L?(D). Furthermore, such
eigenvalues and eigenvectors can be expresses in an explicit form. This leads
to the following

Proposition 3.7.4 Let {¢r} be an orthonormal basis of L?(D) with {\k}
being the corresponding Dirichlet eigenvalues, forming a spectral decomposi-
tion of —A in D with Dirichlet boundary conditions as in (3.7.10). Then for
all k > 1, there holds

A2 =2 in D
{( ek =N i (3.7.18)

Pk = 07 on 0D.
In particular, {¢}} is also a basis formed by the eigenfunctions of (—A)'/2,
with eigenvalues {)\,16/2}.

We end this section by giving a result of the following problem

{(_A)m“ =f@, @D (3.7.19)
u =0, on 0D,

where f € V(D) and D is a smooth bounded domain in R%. By the extension
method, the solution of the problem can be represented by u = Trpv for
some v € Hj ; being the solution of (3.7.16) and v(x,0) = u € Vo(D). The
following proposition is parallel to the regularity results of W?? estimates
and Schauder estimates in elliptic equations, whose proof is omitted here for
simplicity, cf. [30].

Proposition 3.7.5 Let a € (0,1), D be a C*>% bounded domain in RY,
g € Vi(D), v € Hy 1 (C) be the weak solution of (3.7.16) and u = Trpv be
the weak solutions of (3.7.19). Then,

(1) if g € L*(D), then u € H}(D),

(2) if g € H(D), then u € H*(D) N H}(D),

(3) ifg € L>°(D), thenv € Wh4(Dx (0, R)) for all R > 0 and 1 < q < oo.
In particular, v € C*(C) and u € C*(D),

(4) if g € C*(D) and glop = 0, then v € C1*(C) and u € C*(D), and

(5) if g € (D) and glop = 0, then v € C**(C) and u € C*>(D).



Chapter 4

Numerical Approximations in
Fractional Calculus

Recent decades have witnessed a fast growing applications of fractional calcu-
lus to diverse scientific and engineering fields regarding anomalous diffusion,
constitutive modelling in viscoelasticity, signal processing and control, fluid
mechanics, image processing, and researches on soft matter behaviors, to
just mention a few. Compared to integer-order calculus, fractional calcu-
lus has the capacity of providing a more simple and accurate description
of complex mechanical and physical processes featuring history dependency
and space nonlocality, and has thus induced the occurrences of a series of
fractional differential equations. Although the analytical solutions of some
of fractional differential equations are obtainable, yet these solutions are ex-
pressed in terms of special functions which are usually difficult for numerical
evaluation, and the solutions are even inaccessible for some of fractional non-
linear equations. These naturally lead to a rapid increasing developments of
numerical methods for fractional differential equations. Due to the history
dependency and space nonlocality of fractional calculus, numerical solution
of fractional differential equations usually characterizes extremely high com-
putational cost and memory requirements. Even though a high-performed
computer is employed, it is still difficult to perform a long-time or large-
domain simulation, whose operations are found to increase exponentially with
time. Up to now, the “short memory principle” has been proposed to reduce
the computational effort, but this principle, as pointed out by Ford et al,
will yield instability in numerical computations for some specific problems,
which implies the applicability of the “short memory principle” seems not
very appealing. It is therefore an open issue how to successfully implement
the long-time simulation for fractional calculus. On the other hand, less
are now known about the systematic analyzes on the stability of numerical
methods concerning fractional calculus, together with the solution techniques
for high-dimensional fractional differential equations, especially for nonlinear

257
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equations.

The succeeding three chapters mainly concern numerical methods for
solving fractional differential equations. These methods include: (1) finite
difference methods based on Euler explicit, Euler implicit, Crank-Nicolson,
and predictor-corrector schemes; (2) series approximation methods compris-
ing Adomain decomposition method, variational iteration method, homotopy
perturbation method, homotopy analysis method and differential transform
method; (3) finite element method; and (4) other methods such as spectral
methods, mesh-free methods, etc. The above methods possess their respec-
tive merits and drawbacks, and are applicable for problems having different
governing equations and initial and/or boundary value conditions. It should
be also noted that much less are known about the rigorous theoretical anal-
yses, such as stability and convergence analyses, of some existing methods.

Before embarking upon the numerical methods for fractional differential
equations, we first present some typical discretization schemes for fractional
derivative (or integral). These schemes are mainly based on the definition
of Griinwald-Letnikov fractional derivative (or integral), the numerical dis-
cretization of Riemann-Liouville fractional derivative (or integral), the nu-
merical integration formulas, and the extensions of conventional finite differ-
ence schemes.

Throughout the chapter, unless stated otherwise, we always assume f(t)
a sufficiently smooth function defined on [a,T], along with the notations
b= a+jh, f(t;) = f5,5 = 0,1, ,[(T - a)/h] and

bga) _ (] + 1)1—a 7j1—04,

where [x] takes the integer part of x, being the maximum integer that does
not exceed x.

4.1 Fundamentals of fractional calculus

There have been different types of definitions of fractional derivatives, and
different fractional derivatives are usually associated with different discretiza-
tion schemes and thus with different stability and convergence analyses. It
suffices in this section to mention the following three types of fractional
derivatives that usually appear in the fractional differential equations of prac-
tical interest.

1. Griunwald-Letnikov fractional derivative

Integer-order derivatives can take the form of the limit of backward dif-
ference quotient of the corresponding order:
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A0 — i (70 - 56— ),
2
dfdtgt) _ }]L%%(f(t) —2f(t—h)+ f(t— Qh)),

—=lim — » (-1) f(t—kh)
Homd () N

—1)*T(n +1)
}Hoh" Fk—i—l F(n—k;—i—l)f(tikh)’ nel,

where ( Z

Extending the integer-order derivative above to arbitrary-order derivative,

):Ofork>n.

e., replacing the differential order n in (4.1.1) by an arbitrary real number
a, leads to the standard Griunwald-Letnikov fractional derivative:

[e%e] _1\k o
GLDf(t) = lim — ZO r(k(+11))rr(fy jkll 1>f(t —kh), a>0. (4.1.2)

Given a function f(t) defined on [a, T| and vanishing for ¢t < a, the Griinwald-
Letnikov fractional derivative can be written as

1 [(t—a)/h] ()
GLpya _ «
Df(t) = hm 123 ,;:0 wy f(t—kh), a>0, (4.1.3)

(@ _ (@) (EDTlet+l) N
where w; ' = (—1) ( 3 ) “ThT Tk <] is called the Griinwald
Letnikov coefficients.

Also, according to [158], a shifted Griinwald-Letnikov formula is defined

as
[(t—a)/h+p)
“EDf () = lim ST wft—(k—ph), a>0. (414
k=0

2. Riemann-Liouville fractional integral and derivative
n-th order integral, where n is an positive integer, can be written as

1 ! n—1
)/0 (t—7)"""f(r)dr, (4.1.5)

oD f(t) = T(n)

and replacing the n in (4.1.5) by the arbitrary real number « yields Riemann-
Liouville fractional integral, which reads

1 / (t — 1) f(r)dr. (4.1.6)

D™f(t) = T(a)
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By letting 8 = m — a(m — 1 < 8 < m) for integer m, the Riemann-Liouville
fractional derivative of order 3 takes the form of

aDﬂf(t) =a D™ aD_af(t)

- i_";[ﬁ /at(t_T)a_lf(T)dT]~ (4.1.7)

In particular, for ¢ = —o0, (4.1.7) is called the Liouville fractional deriva-
tive. It is trivial that if f(¢) vanishes for ¢ < a, Riemann-Liouville and
Liouville fractional derivatives are just the same.

3. Caputo fractional derivative

Caputo fractional derivative is defined by

t
Cpof(t) = %/ (th)mfaflf(m)(T)d'r , m—1l<a<m,
a = (m—a) J,
Fm(e), a=m.

(4.1.8)
where m is a positive integer. Particularly, if a = 0, then ¢ D f(t) is abbre-
viated to DY f(t).

4. Relations among three types of fractional derivatives and the essential
difference between fractional- and integer-order derivatives

Proposition 4.1.1 [218] Letm —1<a < m,m €N, f(t) € C™[a,b], then
1t holds that
GLpaf(t) = ,DYf(t). (4.1.9)

Proposition 4.1.2 [218] If, form —1 < a <m,m € N, ;D*f(t) and the
(m — 1)-th order derivative of f(t) att = a are both bounded, then

aCDaf(t) =,D> [f — Tmfl[f; a]](t)

m—1 ) (q (4.1.10)

t— k—a
P F _a+1( a’) )

(=)

where Tr_1[f; a] is the (m — 1)-th order Taylor expansion of f:

m— 1

mlfv Z

k=0

(k) (a).

Remark 4.1.1 1. Riemann-Liouville and Grinwald-Letnikov fractional
derivatives are equivalent under a condition that is easy to satisfy for many
practical problems, and we thus allow this equivalence without further explicit
statement.

2. Caputo and Riemann-Liouville fractional derivatives are equivalent if
f®(a)=0,k=0,1,---,m — 1.
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8. If the conditions of Proposition 4.1.2 hold, then the relation among
three types of derivatives afore-mentioned will be given by:

D Z Tk (H 1)(75 = @)+ IDVf(t) = JDf(1). (4.1.11)

4. The essential difference between fractional differential operator and its
integer-order counterpart is: the former is a mon-local operator whereas the
latter is a local one. The integral nature of fractional derivatives or integral
underlies the very nonlocality of our interest.

4.2 G-Algorithms for Riemann-Liouville fractional
derivative

From the definition of Griinwald-Letnikov definition (4.1.3), a simple but ef-
fective approach to approximate the Riemann-Liouville fractional derivative
D f(t) is to remove the limit symbol in the definition of Griinwald-Letnikov
fractional derivative, thereby leading to a discretization scheme in form of
truncated series. We call the resulting scheme the Griinwald-Letnikov ap-
proximation scheme. The scheme is commonly used to evaluate the Riemann-
Liouville fractional derivative because of the equivalence between the deriva-
tive and Grinwald-Letnikov fractional derivative, and is one of the numerical
methods that have ever been utilized to approximate fractional derivative (or
integral) in researches of early period (see Chapter 7 in [179] and §8.2 in [176]).
The Griinwald-Letnikov approximation scheme can be given by

[(t—a)/h]
DEFO RS W fe—kh) = (DUW) . (42)
k=0

t —
Letting f(a) = 0, taking h = ? and using the relation

N

w§a>:(_1)j(?):(j?1):%, (4.2.2)

we obtain the following detailed approximation scheme

Dy F(1) = (tTa) Pl (t—j (““)) (4.2.3)
et LG +1) N ' -

I'(=a)

=0

In particular, for a = 0, the scheme amounts to

oDIf(t) ~ ’“Lr(a]:; Z F(;O‘)f (t— ?V_t) (4.2.4)
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which we call the “G1l-algorithm”.
Gl-algorithm can be written in a compact form as

(D) =h Y (4:2.5)
k=0

which is also called the “fractional backward difference quotient” approxima-
tion scheme.

Similarly, using the definition of shifted Griinwald-Letnikov fractional
derivative (4.1.4) produces the approximation scheme below:

[(t—a)/h+p]
DEFO =R ST W = (= p)h) = (uD° f(t))GS( . (420)
k=0 ?
and we call it the shifted Griinwald approximation scheme, abbreviated to
“G's(p)-algorithm”.
Generally, for the non-negative integer p, the Gg(,)-algorithm can be rep-
resented by:

[(t—a)/hl+p

(anf(tn)) S D DY S A (4.2.7)
Gsw) —o
The Griinwald-Letnikov coefficients above wj(-a) = (—1)j< ? ) are actually

the Taylor expansion coefficients of generating function w(z) = (1 — z)%, and
these coefficients can be secured using the following recursion relations:

Wi =1, >:(1—O‘}L >w§>1, j=1,2---. (4.2.8)

In addition, Oldham and Spanier [176] presented in 1974 the approxima-
tion schemes given by

[t—a, 1]

Dy f(t) = Jim h Z f( ( 1)h> (4.2.9)

St
JDif(t) = ;{ii%h_l > (-1 (t— (j - %) h) . (4.2.10)

Jj=0

These schemes feature fast convergence, from which one can derive an im-
proved Griinwald-Letnikov fractional derivative defined by (i.e., letting p =
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a/2 in Eq.(4.1.4))

D (1) = lim

3 mf (t _ (j - ;a) h) (4.2.11)

j=0
Letting a = 0 rewrites (4.2.11) to
p—a [H/hta/?]

oDy f(t) = lim o) ZO %f <t (j - %a) h) . (4.2.12)

Removal of the limit operation in above equation produces the “fractional

central difference quotient” approximation scheme, which is usually called
the “G2-algorithm”. This scheme needs the functional values at the non-grid
points and thus requires function interpolation. For instance, a three-point
interpolating formula reads:

(- 20)

@
o —) (t— G- D)
( ~ N p— ) (4.2.13)
4

— - = —(j+1
(5 -9)s0-G+om,
then the corresponding G2-algorithm can be presented by:

n—1
o 1
(a'D?f(tn))GQ =h"" jz:% wJ( )<fn—j + ia(fn—j-i-l - fn—j—l)

1

+-a? (fn—j+1 —2fn—j + fn—j—l))-

8

Remark 4.2.1 G1-,G2- and Gg- algorithms are all developed from the
definition of Grinwald-Letnikov fractional derivative or integral, and they
can thus be used to approzimate either the fractional derivative (o = 0) or

(4.2.14)

fractional integral (o < 0).

Theorem 4.2.1 [158]  Suppose f(t) € L1(R) and f € p*T1(R), and let
Anf(t) =h~ Zw f(t—(k—p)h), (4.2.15)

where p is non-negative real number, and Af(t) = D*f(t) be the Liou-
ville fractional derivative (namely, the Riemann-Liouville fractional deriva-
tive with a = —oo, see (4.1.7)), then, as h — 0,

Anf(t) = Af(t)+O(h), t€R. (4.2.16)
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Proof Let f(k) = F{f(t);k} = / ¢'* f(t)dt be the Fourier transform of

(), then FL(E— h): K} = o f().

For arbitrary complex number z and a > 0 it holds that

1-2) i ( . )zk - iw,ia)z’f, (4.2.17)
k=0 k=0

thus the Fourier transform of (4.2.15) yields

FLALF(0); Ky = b i W pR (1)

m=0

e —1kphf k‘ Z wy 1kmh (4218)

= hp@ 71kphf( )( _ 1kh)
(—ik)*p(—ikh) f(k),

where

1—e" 7

z

o) = (

It is straightforward to see that there exists some ¢ > 0, such that

)aezp —1+(p- %) 2+ 0(|2). (4.2.19)

|p(—iz) — 1| < clz|, Vz € R.
So that we have

y{Ahf(t)Qk} (i )af(k) + (- 1k:)af(k)[ (—ikh) — 1]
F{Af(t);k} + ¢(h, k), (4.2.20)

where (k) = (~ik)*[¢(~ikh) — 1)f(k). and |B(h. k)| < [k|*clhk]|f(K)].
Since f(t) € L1(R), and f € p*T1(R), we see that

I= /oo (1 + [k f(k)|dk < oco.

—o0
Accordingly, we finally obtain

o0
lp(h, )| = \i/ e %o (h, k)dk| < Ich.
2mi J_ o
Remark 4.2.2 1. From (4.2.19), it can been seen that for p = /2, the error
of Ay, takes its minimum and a second-order accuracy is accordingly achieved,
but note that interpolation should be used to derive the functional values
at non-grid points. The corresponding approximation scheme is (4.2.11),
namely, the G2-algorithm.
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2. Awoiding interpolation can simplify the computation. This can be done
by letting t, — (k — p)h be the grid points, where we need to find an optimal
non-negative integer p, such that |p— «/2| is minimum. It is obvious that for
0 <a<1,p=0 is acceptable; while for 1 < a <2, p=1 is optimal.

3. If f(t) = 0 fort < 0, then Apf(t) is comprised of a finite number
of terms, and Af(t) is equivalent to Riemann-Liouville fractional derivative.
This indicates that when f(t) is sufficiently smooth at t = a and f(a) = 0,
G-algorithms can achieve first-order accuracy, which leads to the following
conclusion:

Corollary 4.2.1 [179,218] Suppose f € C"[a,T],a > 0,N = (T —a)/h €
N, then the finite Grinwald-Letnikov fractional differential operator

N+P
=h Z W f(t = (k= p)h) (4.2.21)

s(p)

(.21 )

G

is the first-order approximation of Riemann-Liouville fractional differential
operator DY if f(a) =0, namely,

(«D°r1) . =DEf(t)+0h) < f(a) = 0.

Gs(p)

Otherwise, if f(a) # 0, then it holds that

(por®),  =Drit) +Oh) +O(f(a)).
s(p)

Next we use G 4(,)—algorithm to evaluate the fractional derivative of sin(x)
at * = 1. By using the properties of fractional calculus [179], the explicit
expressions of the fractional derivative are given by

1)
tl @ 1_‘2(71_"_)2_)7 I<a< 1,
D%sint = . (—1)i1gi (4.2.22)
* =, 1 2.
t F 2i+4—a)’ sas

The errors of G, are tabulated in Table 4.2.1. Tt can be observed that
the convergence of the algorithm is of the first-order, which originates from
the fact that the errors halve when the step h halves. Moreover, through
comparing the errors, we see that taking p = 0 and p = 1 turns out to be
sensible and optimal when @ = 0.2 and « = 1.6, respectively. This conclusion
is in accordance with the discussions given in the remarks mentioned above.
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Table 4.2.1 Absolute errors from G, (p)-algorithm for different

approximation step h

h a=0.2 a=1.6
p=20 p=1 p=2 p=20 p=1 p=2
0.1 —0.0032 0.0243 0.0412 0.0890 —0.0214 —0.1249
0.05 —0.0016 0.0132 0.0254 0.0439 —0.0108 —0.0637
0.01 —3.1650e—004 0.0028 0.0058 0.0087 —0.0022 —0.0130
0.005 —1.5826e—004  0.0014 0.0030 0.0043 —0.0011 —0.0065

0.001 —3.1653e—0052.8447e—0045.9954e—004 8.6735e—004 —2.1676e—004  —0.0013
0.0005 —1.5827e—005 1.4234e—004 3.0024e—004 4.3362e—004 —1.0838e—004 —6.5022e—004

4.3 D-Algorithm for Riemann-Liouville fractional
derivative

In 1997, Kai Diethelm [65] presented the numerical integration formulas (see

[64]) for finite-part integrals in order to approximate the fractional integral

and derivative.

Lemma 4.3.1 [179,218] Given m—1<a <m,m € N,a ¢ N and f(t) €
C™[0,T], Reimann-Liouville fractional derivative can be expressed in terms

of Hadamard finite-part integral:

oppy L tf)
D f(t) = I‘(—a)/o e (4.3.1)

Similarly, Caputo fractional derivative can also be represented by a Hadamard

finite-part:

C,Daf _ / f B m 1[f 0]( )dT. (4.3_2)

(t —T)ott

To discretize (4‘3.1), transform the variable interval from [0,¢] to [0, 1],
and select equispaced grid points t; = jh. We thus have the Reimann-
Liouville fractional derivative (4.3.1) written by

« _ —a 1
oD f(t,) = t / f( fathf d¢ = Fiia)/o ga(fl)df, (4.3.3)
where g,(§) = f(tn — tng)

So far, the numerical approximation of Reimann-Liouville fractional deriva-
tive has been transformed to the approximation of Hadamard finite-part in-

' g(€)
[, e

tegral
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The compound integration quadrature formula [64] given by Diethellm
can be employed in numerical evaluation of the above integral, whose proce-
dure can be described as: (1) Partition the integration interval [0,1] as 0 =
xo <21 < -+ < xp = 15 (2) Interpolate the integrand g: construct the piece-
wise interpolating polynomial of degree d, i.e. g4, each fragment of which is
the interpolating function on the sub-interval [z;_1,2;](l = 1,2,--- ,n) with
respect to d + 1 equispaced points z;_1 + %(xl —x-1), p=0,1,---,d; (3)
Exactly compute the weighted integration of §q with weight function £~2~1.
Ultimately, we obtain the numerical integration formula:

2163)

0 §a+1

which depends on n, d, @ and selection of grid points.

Qn[g] = dg,

In particular, taking zx = k/j, k = 0,1,---,j and making piecewise
linear interpolation, i.e. letting d = 1, yields

Qulgl = 3 whng(k/n)
k=0

where
ne _17 k = O
Wk,n = 17 le_a_(k_l)l_a_(k+l)l_aa I1<k<n—-1
O(( —O() (a—l)n_a— (n_l)l—a+n1—a’ k=n
1, E=0 (4.3.4)
__n® (@) _ ()
= ooy (A e (a)lgkgn—l
(o =)= +b,",, k=n.

With the weighting factors wy, , just derived, the approximation scheme of
the Reimann-Liouville fractional derivative is given by:

DO F(t,) ~ in:) S wiaf (b —kh) = (D°7(1)) . (435)
k=0

We call this scheme the “D-algorithm”.

Theorem 4.3.1 Ifa € (0,2),a # 1, f(t) € C?[0,T),t, = nh € [0,T], then
there exists a-dependent constant c, > 0, such that the truncated error of
D-algorithm satisfies

D f(ta) = (D (1)) | < callfloch®™2. (43.6)

See the proof in [66] (Theorem 2.83) and [65] (lemma 2.2).
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We still consider the evaluation of fractional derivative of sin(z) at z =1
but using the D-algorithm discussed here. The errors are given in Table
4.3.1. The algorithm is proved to be convergent since for different «, the
error reduces with the decreasing step. To see the convergence rate, we
consider the variation of error with the step h, which is shown in Fig. 4.3.1,
where only logarithmic coordinates are considered, and where the dotted and
solid lines denote the numerical results and line y = (2 — «)z, respectively.

From the figure, one can see that the error variation with approxima-
tion step under logarithmic coordinates is linear and parallel to the line y =
(2 — @)z, which imply that the algorithm can achieve a (2 — a)-order conver-
gent rate, namely, |D* f(t,) — (D"‘f(tn)>D| = O(h?>7®).

Table 4.3.1 Absolute errors from D-algorithm for different

approximation step h

h a=0.01 a=0.5 a=1.5
0.01 4.8999e-007 1.9018e-004 0.0693
0.002 2.4486¢-008 1.7370e-005 0.0310
0.001 6.6534e-009 6.1709e-006 0.0219
0.0002 3.1609¢-010 5.5547e-007 0.0098
0.0001 8.4463e-011 1.9668e-007 0.0069

0 . . . . . .
5t J

—~ —10} ]

2

£

&

S _is5t ]
720 - .
725 1 1 1 1 1 1

~10 -9 -8 -7 -6 -5 —4 -3

logo(h)

Figure 4.3.1 Variation of error with approximation step.

Analogously, we can also apply the ideas behind D-algorithm to Caputo
fractional derivative by using the relation between the derivative and the
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Riemann-Liouville fractional derivative. Incidentally, the D-algorithm can
also be exploited to the case o < 0, and there, it is actually the R2-algorithm
having second-order accuracy, which shall be presented in the next section.

4.4 R-Algorithms for Riemann-Liouville fractional
integral

The key point in numerically computing fractional integral equations, es-
pecially linear and non-linear Abel integral equations as well as integro-
differential equations having fractional integral operators, is to find an ef-
fective numerical approximation of Riemann-Liouville integral. In what fol-
lows, we detail an approximation scheme proposed by Lubich (see also the
paper [145] of Lubich and his collaborators).

Riemann-Liouville fractional integral is defined by (let ¢ < 0)

. , 1 i)

o, "f(t) =D} f(t) = T(— q)/o =T (4.4.1)
ft_T A.
s

Applying different integration quadrature formulas will lead to different
numerical approximation schemes for Riemann-Liouville fractional integral,
e.g. the applications of different compound integration quadrature formulas.
Note that (4.4.1) can be written by

[t/h] ..
_ 1 Jt+1 _
T () = D) = pry D / WD (14
§=0 7ti

Accordingly, numerical approximation of Riemann-Liouvile fractional inte-
gral has been transformed to the approximation of (4.4.2). We call this type
of approximation schemes the “R-algorithms”.

Taking compound rectangle quadrature will produce

tj+1
Ty 1 f(tn) = oDi f(tn) Z/ i Tatl dT

1 - tivi
J
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With considering the above approximation scheme, the so-called “R0-algori-
thm” for approximating Riemann-Liouville fractional integral can be pre-
sented by:

—q n—1
~ (D2 (t) = LN )

(oijf(tn)) ro  T(1—ygq) =0

RO

Alternatively, taking compound trapezoidal quadrature will yield

[ D St St / dr

~

Tatl 2 a1
VI RS [ A
= —2q j+1 YA

from which and (4.4.2), we derive the “Rl-algorithm”:

(7 7r), =(eDir), = 2F Zb D (fu 4 fso)- (44.6)

Furthermore, if using linear interpolation for integrand f, namely,

b f(t-7)
/tj ) dr

L[ A ) O by, 4o

. Tat+l ’
J

one will obtain the “R2-algorithm” which is given by:

(077 7(w)) ,, = (o211 (1))

_ h™1 Ti{b(lﬂ)(J"’l)fn j = Jfn—j-1 b(q)fn j=1 = Jn- J}
S T(1-gq) / —q 1—¢q

R2

(4.4.8)

Remark 4.4.1 1. Integral terms in (4.4.2) can also be approximated by
other high-order quadrature rules; in other words, the integrand f(t — ) can
be approximated by other interpolating formulas such as piecewise quadratic
interpolation.

2. R-algorithms can still take unequispaced grid points.

3. The accuracy of R-algorithms is of the one- , (1 —q)-, and two- orders
for RO-, R1-, and R2- algorithms, respectively. For details please see [72]
and the lemmas 5.2.1 and 5.2.2 in the succeeding chapter.
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Now use R-algorithms to evaluate the Riemann-Liouville fractional inte-
gral 0 Jf(t) of the Mittag-Leffler function f(t) = Ea1(—t?) at t = 1. The
Mittag-Leffler function is defined in form of series

0o on
Ea’ﬁ(Z) = 7;0 m7 A (C7ﬁ > 0, (449)

and using the basic properties of fractional integral can obtain the explicit
expression of the fractional integral, i.e.

0TC Bt (—t") = 9B, 14 o(—th). (4.4.10)

Table 4.4.1 gives the absolute errors from the R-algorithms. It can be
seen that the error reduces as the step h decreases which indicates the con-

Table 4.4.1 Absolute errors from R-algorithms for different

approximation step h

h RO R1 R2
a =0.05 a=0.8 a = 0.05 a=0.8 a =0.05 a=0.8
0.01 0.0073 0.0027 0.0031 1.3139e-005  1.7314e-006 7.2609e-006
0.005 0.0036 0.0014 0.0015 4.3150e-006  4.5968e-007 1.8159e-006

0.001 6.9375e-004 2.7149e-004  2.7918e-004 2.9340e-007  2.0747e-008 7.2659e-008
0.0005 3.4217e-004 1.3569e-004  1.3487e-004 8.9663e-008  5.4268e-009 1.8166e-008
0.0001 6.6357e-005 2.7125e-005  2.4892e-005 5.5004e-009  2.3813e-010 7.2668e-010

* a=0.05 | ]
— y=1.05x
—18} & ©) 04:?,? _
- —— y=1.0X
¢ O a=0.8
—20 3 — y=1.8x E
—22 . . . , ,
-10 -9 -8 -7 —6 -5 —4

logy(h)

Figure 4.4.1 Variations of errors from R0- and R2- algorithms with

approximation step.
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vergence of the algorithms. The variations of errors from R-algorithms with
approximation steps are shown in Figs. 4.4.1 and 4.4.2 where only logarithmic
coordinates are considered. From Fig. 4.4.1, we see that for different «, the
error variations of RO- and R2- algorithms with approximation step are linear
and parallel to line y = x and line y = 2x, respectively, which implies the
accuracy of the two algorithms are of the first- and second- orders separately.
Additionally, Fig. 4.4.2 shows the variation of error from R1-algorithm with
approximation step is parallel to the line y = (1 + «)x, which corresponds to
a (1 + a)-order accuracy of the Rl-algorithm.

logy(error)

>0

O O a=0.8forR2
o O —y=2x 1

—29L

—94 . . . L L
—-10 -9 -8 -7 —6 -5 —4
logyo(h)

Figure 4.4.2 Variation of error from R1- algorithms with approximation step.

4.5 L-Algorithms for fractional derivative

R-algorithms are intended for approximating Riemann-Liouvile fractional in-
tegral. Extending the ideas behind R-algorithms to the approximation for
fractional derivative leads to the “L-algorithms” which will be elaborated in
this section. The fundamental principle behind the L-algorithms is to nu-
merically differentiate the derivative of f, e.g. f’ or f”, which appears in

integrand.
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For 0 < a < 1, the Caputo fractional derivative can be approximated by:

Cpafip y— 1  f(r)dr
Dt f(tn)_ )/0 (

Il -« ty, —7)%
I J
(1 —-a) = T

L S flta—ty) — [t —t) [,
Nr(l—@); h /t Todr

e ni(i ’ (4.5.1)
- m Z(fn_j h f"_j—l)[(j + 1)1_0‘ — jl—a]'
=0

We call this approximation scheme the ‘L1-algorithm’ which can be writ-

ten in a compact form:

o e e
(CDt f(%))m “Tte—a ]Z;; b; (fmi = famjo1)- (4.5.2)

For 1 < a < 2, the Caputo fractional derivative is defined by

O /0 " fm)d

m; o) 1 (ttj; ;/)/Zn o (4.5.3)
T I2-a) ;}/t o=l

and using the second-order central difference quotient approximation for f”,
i.e.,
/thrl f//(tn - T) dr ~ f(tn_tjfl)_z}t(tn_tj) + f(tn_thrl) /tj+1 dr
t t

) Ta—l h2 ) Ta—l
J 3J

—

- ;——a (f"*j“*anfjJrfnqu) (4 1)2>—j279],
(4.5.4)

leads to the so-called ‘L2-algorithm’ given by:

B n—1

(CDtaf(tn)>L2 =: m Z bga_l) (fn7j+1 —2fn—j + fn7];1>. (4.5.5)

In a similar manner, it is straightforward to deduce the algorithms cor-
responding to cases 2 < a < 3,3 < a < 4,--- (L3-algorithm, L4-algorithm,
ete.)
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Additionally, owing to the relation (4.1.10) between Riemann-Liouville
and Caputo fractional derivatives, the L-algorithms can also be applied to
the approximation of Riemann-Liouville fractional derivative. In fact, from
(4.1.10), one can learn that the only difference between the L-algorithms
for Riemann-Liouville fractional derivative and those for Caputo derivative
is the first several terms. It is interesting to see that using L1-algorithms
to approximate Riemann-Liouville derivative will yields completely the same
approximation scheme as that derived from D-algorithm despite a totally
different deductions. This coincidence can be clearly seen in (4.6.5) and
(4.6.10). In this connection, we see that the convergence rate of L-algorithms
are the same as that of D-algorithm which has been analysed in the preceding
section.

4.6 General form of fractional difference quotient
approximations

All the approximation schemes mentioned in previous sections for fractional
integral and derivative can be uniformly written by

N
Df(tn) = b Y e, (4.6.1)
j=0

where the weighting coefficients cff‘]) depend on n, j, a, but are independent
of f. Below is a list of weighting coefficients determined by different approx-

imation schemes:

G1l-algorithm

« = ) < ] < 3
ey = i T (el —j + 1) AN (4.6.2)
) others.
G y(py-algorithm (p is a positive integer)
(@) In—j+p—a) :
i+p — 0<j< ;
=4 it T T(Ca)l(n—j4p+ 1) ISTEP (463

others.

b
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G2-algorithm

I'n—1-«) oﬁ_g —
T(—a)l(n) \ 8 4)° ]
n-2-a) ) _a_ o, o a _
T(—a)T(n) [( ottty ogo? Ik
Fn—j—-1-0) a2 (n=ja
F(fa)l“(nfj+2){(n 7) 5 (@F3)
() _ 3 2
Cnj = +(a+1)<%+%—1) }, 2<j<n—1;(4'6'4)
CK3 Gf2 .
5 3 th i=mn
2
o —g 2047 J=nt1;
0, others.
D-algorithm
(1—ajn=> = b, J=0;
(@) (@) : .
RO N— by = by, I<jisn—L (465
T T2-a) | 1, j=n;
0, others.
RO-algorithm
RONNN. b, 0<j<n—1 (4.6.6)
™ T(1—a) | 0, others.
R1-algorithm
by, j=0
o) = 1 bgzljja) + bgzljjoi)p I<jsn—1 (4.6.7)
o AM(1-a) | 1, j=n; o
0, others.
R2-algorithm
(I1—-—a)n=@— bgloi)l, Jj=0;
@_ L Joe - 1<j<n—1; A
ij - F(Z . Oé) l:L J J j — ( 68)
0, others.
Ll-algorithm (Caputo fractional derivative)
Tbéﬁl’ w I
@ _ 1 b ' 1<j<n—1;
A n—j n—j—1» ~J = ’ 4.6.9
. F(2 — Oz) 17 ] =n; ( )

0, others.
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Lil-algorithm (Riemann-Liouville fractional derivative)

(1 )— a)n(";‘ — bgloi)l, ji=0;
@_ 1 b b 1<j<n—1;
c == n—j n—j—1 == ’ 4.6.10
. F(2 — O[) 1’ ] =n; ( )
0, others.

L2-algorithm (Caputo fractional derivative)

b, j=0;
—op( ) 4 plenh) j=1;
o) = b b -+ n L 2 <n— 1 (g1
7 T@B-a) | 22>_3 j=n
1, j=n+1;
0, others.

Remark 4.6.1 1. The positive and negative « in the general form (4.6.1)
correspond to the approzimations of fractional derivative and integral, re-
spectively. For G-algorithms, a can be either positive or negative; for R-
algorithms, « is limited to a negative number; and for L-algorithms, a should
take a positive number.

2. D-algorithm, R2-algorithm and L1-algorithm (Riemann-Liouville type)
have the same weighting coefficients, although the deductions of these coef-
ficients and the approximating objectives are both different. Moreover, D-
algorithm is only switable for uniform grid while R- and L- algorithms can be
extended to unequisapced grid points.

3. The general form (4.6.1) generally takes N = n for G1-, D-, R2-, and
L1- algorithms; N = n — 1 for R0-algorithm; N = n + 1 for G2- and L2-
algorithms; and N = n +p for G —algorithm.

4.7 Extensions of integer-Order numerical
differentiation and integration

4.7.1 Extensions of backward and central difference quotient
schemes

In analogy with deriving the G1- and G2- algorithms from extending integer-
order derivative to fractional derivatives, we can also directly derive the frac-
tional difference schemes from extending the difference quotient schemes of
the integer-order derivative, namely, backward and central difference schemes,
to their fractional-order counterpart.

We first consider the shift operator E” and difference operators Vj,, Ay, 0p,
(for backward, forward and central difference, respectively), where h € R.
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Imposing these operators on u(t),t € R yields

EMu(t) = u(t + h),
Viu(t) = u(t) — u(t — h),

Apult) = ult + ) ~ u(t) W
opu(t) =u(t+ h/2) —u(t — h/2).
Obviously, shift operator E possesses the following properties:
E°tT =E°E", o,7€R, (4.7.2)
together with the relation:
Vw=I-E" A,=E"'—1, ¢,=E"?—-E?2 (4.7.3)

By using the above notations, the backward and central difference quo-
tient of first-order derivative can be represented by:

(1) = Dhuge) = D) oy Tl o)
W(t) = Dlu(t) = L) - lt=h2) 4 o) = ‘”ﬁ”f )+ o).

Here and hereafter, we assume u(t) sufficiently smooth. These approximation
schemes can be generalized to the approximations of high-order derivatives
u™(t) = D™u(t), n €N:

D"u(t) = [Viu®)] Z];:(t)] +O(h) =h™"(I — E~™)™u(t) + O(h)
and
Dty = B | o2y = hn (B2 - MRy + O02).

hn

Here, we assume h > 0. The power operation of the difference operators
Vi, 6 can be determined by binomial expansion:

vi= Yo ap( "),
=0

n

o = Z(*l)j( ;l )E(n—j)h/2E—jh/2 - ﬁ:(q)j( Zl )E(n/z—jw’

=0 =0

from which we further have:

h- Z ( )t—]h) "u(t) + O(h), (4.7.4)
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Yy (-1 ( ) + (/2 — j)h) = D™u(t) + O(h%).  (4.7.5)

j=0

Now we extend the above schemes to the fractional-order cases:

[e e}

P = ;uv‘( L e
5 = 2(1)j( ?‘ )E(a/%j)h_

Note that the schemes above possess the similar series forms to the follow-
ing expansions (replace E~" by z and the series are convergent when|z| < 1):

(1-2)= i(—l)j( (; )zj = i(—l)jw§-a)zj,

Jj=0 j=0

(2—1/2 1/2 /2 Z ( ) j_ iwj(_a)zj—a/g
j=0

From the power of the difference operators, we derive again the Griinwald-
Letnikov approximation scheme:

h =h" Zw u(t — jh) = §EDu(t) + O(h),

as well as the fractional central difference scheme:

h=0u(t) = h™ Zw“> t— (j — a/2)h) = GEDu(t) + O(h2).
7=0

If w(t) vanishes for ¢ < 0, then we have

[t/h]
h— y=h"¢ Zw u(t — jh) = §EDYu(t) + O(h),
/htar
h™62u(t) 37wt - (j - a/2)h) = FEDu(t) + O(h?).
7=0

The above two schemes are associated with schemes (4.2.1) and (4.2.11),
respectively.
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Remark 4.7.1 1. The forward difference scheme
h™"A"u(t) = D"u(t) + O(t),

is not very suitable to be extended to the approximation of fractional deriva-
tive.

2. If u(t) at t = 0 fails to smoothly extend to the negative semi-axis,
then the approximation schemes will give inaccurate predictions. It is usually
required u(t) = 0,¥t < 0

4.7.2 Extension of interpolation-type integration quadrature
formulas

Classical interpolation-type integration quadrature formulas approximate the
integrand using the interpolation polynomial. We can extend this idea to
approximating the fractional calculus. Without loss of generality, we consider
the approximation of Riemann-Liouville fractional integral using compound
trapezoidal quadrature rule.

Let t; = a + jh, f(t;) = f;(j = 0,1,---) with step h and write the
Riemann-Liouville fractional integral of f(¢) in form of

(T2 0)0) = s [ w1 s
1

n—1 g (4.7.6)
- (t — )" ()
Ly

The f(t) in integrand can be replaced by interpolation polynomials of differ-
ent orders. For instance, using first-order Newton interpolation leads to

n- t1+1 t. — f(t
-1 |:f(t_])+ f( ]+1)h f( ])(T_tj):| dr
=07t
7 On 1
(1-0)
1+a n-j-1/.
j=0
he n—1 (=) )
X n—j—1 _ —_i-1 «@
+F(1+O{) jzo(f]"’l f]) 1+Oé ( j ) ‘|
=hD Gnf)
=0

(4.7.7)

) i actually given by (4.6.8), which indicate that

where ¢;, = c( %) The c(
the approx1mat10n scheme (4.7.7) is the same as the foregoing R2-algorithm.
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Particularly, for oo = 1, (4.7.7) reduces to compound trapezoidal quadra-
ture rule; while for o = 0, (4.7.7) reduces to (o J*f(t)) (tn) = fn.

Similarly, using higher-order interpolation polynomials to approximate
f(t) can produce integration quadrature formulas of higher accuracy. For
example, using second-order Newton interpolation polynomial will lead to an
extension of compound Simpson quadrature rule.

4.7.3 Extension of linear multi-step method: Lubich fractional
linear multi-step method

We first review some fundamentals of linear multi-step method for solving
first-order integral equation, and then extend the ideas to fractional linear
multi-step method.

Consider the following integral equation

y(t) = Ju(t) = /O u(r)dr. (4.7.8)

un(kh), k>0

Denote t, = kh, yi =~ y(tx)(k=0,1,2,---), let uk{ 0 <0

and denote by z the backward shifting operator z = E~":
— k —
RUp = Un—1, 2 Up = Un—k-

The generic linear multi-step method for solving integral equation (4.7.8) can
be written by

QpYn+Qp—1Yn—1+-* '+a0yn7p:h(5pun+ﬂpflunfl+' : '+ﬂ0unfp)a (479)

where the coefficients oy, 8; are prescribed. Considering a polynomial of
degree p

p(z) =ap+ap_iz+ -+, o(z) =pFp+ Pp12+ -+ o2t

and letting

_ r(2)

W(Z) - O'(Z)’
we call w™1(2) is the generating function of linear multi-step method (4.7.9)
for first-order integral equation (4.7.8). As a result, the linear multi-step

method (4.7.9) can be further represented as

p(2)yn = ho(z)un,
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or
Yn = hw 1 (2)un = Ju(nh), (4.7.10)

which is briefly called the (p,o) linear multi-step method. Expanding the
generating function w™1(z) in Taylor series yields

wtz) =wo +Fwiz Fwez? -
and accordingly the linear multi-step method (4.7.9) or (4.7.10) can be given
by

(o)
Yn = thjun_j ~ Ju(nh). (4.7.11)
=0

Since uy = 0 for k < 0, (4.7.11) can be reduced to

Un =hY wjun_; ~ Ju(nh). (4.7.12)
j=0
Similarly, using
Un = h ™ w(2)yn = 3/ (nh) (4.7.13)

can define the generating function w(z) of linear multi-step method for first-
order differential equation.

The generating function of p-order backward multi-step method for first-
order differential equation is [146]

w(z) = Zwkzk = Z %(1 —2)F = W,(2). (4.7.14)

Extending the ideas of approximating first-order integral operator Ju(t)
to the approximation of fractional integral operator leads to

[t/h]
T u(t) & h®(w(z)) " u(t) = h* Y w{ u(t — jh) (4.7.15)
j=0
or
[t/h]
REDRy(t) = T ~Oy(t) = h™(w(2)* ~ h™ Y wi®y(t — jh), (4.7.16)
j=0
where the coefficients wj(ﬂ ), j=0,1,2,---, are the Taylor expansion coeffi-

cients of a given generating function, namely

wéﬁ) + wgﬁ)z + wéﬁ)f +.o=w® (2). (4.7.17)
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The cases < 0 and B > 0 respectively represent the generating functions
related to Riemman-Liouville fractional integral and differential operators,
and they can be obtained by using the 8-th power of the generating function
(4.7.14):

B

w(z) = (w(z)) (4.7.18)

Generating functions vary with the order p. Using generating function (4.7.14),
one can derive the one- to four- order generating functions of fractional linear
multi-step method [146]:

W) = (W) = (- 2)°,

WQ(ﬂ)(z) = (Wg(z)>ﬁ = <g -2z 4+ %,22>5,

8 11 3 1.\"

B 25 1, 1 o
W, (2) (W4(z)) (12 z+ 3z 3% + & ) )

5 (137 10 5,5, 13\
W (z) = (W5(z)) - <E —5z452% — 2+ 22t - gz°> :

8 147 15 20 15 6 1.\"
W) = (Wile))" = (G764 - F e et — g e 5

In fact,the Gl-algorithm in Section 4.2 can be seen as a type of linear

multi-step method whose coefficients wj(-a) = (—1)j( (; )(] =0,1,2,---) is

the Taylor expansion coefficients of generating function Wl(a)(z) =(1-2z~

If only using (4.7.16) in approximation, Lubich has proved that this ap-
proximation possesses the accuracy of the order O(h”) 4+ O(hP) for f(t) =
t*~1, where v > 0 and p is the order of the corresponding multi-step method
(2 ~ 6). It should be noted that for a fixed v, even for a larger p, the error
is still limited to the order O(h"). To achieve a higher accuracy, Lubich pre-
sented in 1986 a technique which added a correction term in approximation

scheme [45]. The approximation scheme can be given by

D] f(tn) ~h PN Wl f(t) 4 R0 w1, (4.7.19)
Jj=0 Jj=0
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Addition of the correction term is able to remove the error term O(hY),
thereby leading the final error to O(h?). The correction term coefficients
Wy, in (4.7.19) can be derived as follows. Taking

A:{7:k+lﬂao>kal:07]—a2a77<p71}3

letting s be the number of elements in set A minus one, and substituting
f(t) =1t9,q € Ain (4.7.19), then lead to a linear system with unknowns wy;:

(a W)

Theorem 4.7.1 Suppose that f(t) is defined on [0,T] and is sufficiently
differentiable, that the coefficients wf are given by (4.7.18) and (4.7.14), and
that wy, ; is determined by linear system (4.7.20), then it holds that

h? Xn:wff?jf(tj) +h7 Z @i f(t;), =D} f(t,) = O(h?), (4.7.21)
=0 =0

where t, € [O,T],w,(f) = O(kP=1), @, ; = O(nP1). See the proof in [145].

Remark 4.7.2 1. For each grid point t,, one needs to solve the linear
system (4.7.20) to derive a group of correction term coefficients w,, ;; the
system matriz is invariable (having Vondermonde structure) even if different
sets of grid points are considered; and the constants in the right-hand side of
the linear system vary with the selection of grid points.

2. The property of the system matriz of the linear system (4.7.20) is
intimately linked with «. The condition number of the matrix would turn
very large for some .

3. The high accuracy is achieved by this approrimation scheme at the
expense of increasing computation effort, where the computations of coeffi-
cients wa) and wy, j become complicated. As an antidote to the problem,
Lubich and his collaborator suggested using fast Fourier transform in com-

puting these coefficients.

4.8 Applications of other approximation techniques

4.8.1 Approximations of fractional integral and derivative of
periodic function using fourier expansion

For a periodic function with period 2L, using Fourier expansion writes f(t)
which is defined on [—L, L] in form of a trigonometric series:

nmw
04 Z an cos t + b, sin —

1) (4.8.1)
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where

1 [F t
a":f/ f(t)cos%dt7 n=20,1,2---
L (4.8.2)

1 [t t
bnzz/_Lf(t)sin%dt, n=1223---

Note that the integer-order derivatives of sine and cosine functions take
the form:

dk k dk k

@[sin at] = a” sin (at + ;) , @[cos at] = a* cos (at + ;) . (4.8.3)
It can be proved from Cauchy integral formula that for a Riemann-Liouville
fractional derivative (i.e. k is a real number), the (4.8.3) still holds [215]. So
that, letting k equals a real number « and using (4.8.3) give the fractional
derivative of f(t):

D f(t)

oo
ap N\« ng,  an ./, any] (4.8.4)
__ %4 BE) [ancos (P4 55 ) busin (M4 S0 )]
T(1—a) +;(L> Jancos (Tt 4+ ) +basin (T4

4.8.2 Short memory principle

For t > a, the approximation scheme (4.6.1) will have a very large number of
adding terms. While for a large ¢, and with certain assumption, the “history”
contribution of f(¢) in the neighbourhood of t = a to the final approximating
value can be ignored. This is what is called “short memory principle”, that
is, to only consider the functional values in the “latest past” [t — L,t] where
L is called the “memory length”:

JDEf(t) ~ 1 DYF(E), t>a+ L. (4.8.5)

In other words, based on short memory principle (4.6.1), replace the original
fractional derivative defined on [a, ¢] by a new fractional derivative defined on
[t — L,t], and then apply difference approximation scheme (4.6.1) to the new

derivative. In this fashion, the number of adding terms will not exceed Nk

It should be noticed that this kind of simplification reduces the computation
effort at the expense of a bit loss in accuracy.

If |f(t)] < M,Ya < t < b, which is actually easy to satisfy in many
practical problems, then based on

oy L " f(r)dr
“th(t)r(—a)/a Ty a#0,1,2, -,
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the error estimation induced by the short memory principle is

. N ML
A(t) = [aDy f(t) — LD} f ()] < T —a)]

This inequality enables the selection of suitable memory length L accord-

M 1/«
_ th At)] <e.
s|r<1—a>|> . then |A(t)] < ¢

Alternatively, Ford and Simpson investigated the nonlinear fractional dif-

(4.8.6)

ing to the accuracy required. If L < <

ferential equation, analyzed the fixed memory principle, and presented the
nested mesh scheme. In their studies, the variable step computation is per-
mitted and a better approximation is achieved at a reasonable computational
cost [86,87].



Chapter 5

Numerical Methods for the Fractional
Ordinary Differential Equations

This chapter presents the numerical methods for fractional ordinary differen-
tial equations. It is noted that many researchers have studied the numerical
solution of Abel-Volterra integral equations of the first kind and the second
kind. These equations are also termed fractional integral equations in which
Riemann-Liouville fractional integral are considered (see the references [97]
and [91]). On the other hand, research on numerical methods for fractional
derivative equations merely commences in recent decades. Here we investi-
gate the numerical solution of fractional ordinary differential equation and
fractional integral equation based on the approximation schemes for fractional
derivative and fractional integral, respectively.

5.1 Solution of fractional linear differential equation

Firstly, consider the linear fractional ordinary differential equation stated in
the general form as [179]

amDY Y () + am 1Dy () + - 4+ ar DY y(t) + agDPOy(t) = u(t) (5.1.1)

where u(t) can be a function and/or its fractional derivatives of different
orders, and it is assumed (,, > Bp—1 > - > B1 > So.

Supposing a zero initial-value condition of function y(t) and applying
Laplace transform lead to
Y(s) 1
CU(8) amsPm +am_18Pm-1 + -+ apsPr + agsPo

where G(s) is also called the fractional transfer function. The exact solution
is presented in [179], but it appears hard-to-implement in computer program-
ming. We thus here discuss other numerical solution techniques instead.

Generally, fractional difference quotient formula (see its general formula
(4.6.1)) is employed in numerical solution. The resulting numerical solution
of the differential equation (5.1.1) can be directly deduced as

286
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1 " ap R~ (
] Bi)
yn = 7(“@71) - = Cnj yj)-
m AiCn.N ; hBi = n,J
hBi
=0

It should be noted that when using the generalized-form fractional dif-
ference quotient formula (4.6.1), special attention should be paid to the
applicability of different approximation schemes and sometimes modifica-
tions needs to be made. The afore-mentioned numerical method is based
on the direct discretization of the fractional derivative or integral and thus
belongs to the direct methods. Another group of methods are called in-
direct methods which through variable substitution equivalently transform
the fractional differential equation to a series of fractional differential equa-
tions [67,71,77]. This group of method can also solve the nonlinear multi-
order fractional differential equations. Other types of methods have also
be developed. Podlubny [179] presented some numerical methods but with
the absence of the corresponding error analyses. After transforming the
multi-order fractional differential equation to a set of fractional differential
equations, Kiethelm [67,71] introduced the linear multi-step method and the
predictor-corrector method to handle the transformed equations and the re-
lated stability and convergence analyses were given. The Poisson transform
method is applied by Ali to solve the linear multi-order fractional integro-
differential equation [8]. The differential transform method is applied by Er-
turk et al to solve the fractional multi-order differential equation. There are
also some other methods including Adomian decomposition method [60, 80]
and separate variable method [61].

5.2 Solution of the general fractional differential
equations

Consider the fractional ordinary differential equation as follows

0%y(t)
ote

= f(t,y(t)), t<]0,T], (5.2.1)

0%y(t)

ote

where a > 0,m = [a] + 1, and fractional derivative operator belongs
to Caputo type or to Riemann-Liouville type.

Proper initial-value conditions should be added to guarantee the solu-
tion existence and uniqueness (see the proof of the solution existence and

uniqueness in [70]). The initial-value condition in Caputo sense is

Dry(0) =y k=01, ,m—1. (5.2.2)
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while
D hy(0) =y k= 1,2, . m, (5.2.3)

in Riemann-Liouville sense.

Since the initial-value condition for Riemann-Liouville sense is written
in a fractional derivative form, the physical meaning is not clear; whereas
the condition for Caputo sense is given in classical integer-order derivative
having explicit physical meaning. Therefore, the remaining part of this sec-
tion centers on the numerical methods for Caputo-type fractional ordinary
differential equations.

Note that, under certain continuity condition, the Griinwald-Letnikov
fractional derivative is equivalent to Riemann-Liouville fractional derivative.
Particularly, for the homogeneous initial-value conditions y[()k) = 0, these two
derivatives take the equivalent form as the Caputo fractional derivative.

Initial-value problem (5.2.1)+(5.2.2) can be transformed to [70]

Z ’“+% [t 2

m=l ok
I SR SR (525)
k=0

Many numerical methods developed for the integer-order ordinary differ-
ential equations can be extended to the solution of equations of fractional
order. However, the nonlocality of the fractional derivative induces signifi-
cant differences in solution process of fractional equations compared to solv-
ing integer-order equations. Numerical methods are mainly classified to the
direct methods and indirect methods. The finite difference which is estab-
lished directly on the original equation (5.2.1) is so called the direct method.
The fractional derivative “D® given in different expression (weak or strong
integral kernel) lead to different approximation schemes. Using the relation
between the Caputo fractional derivative and Riemann-Liouville/ Griinwald-
Letnikov fractional derivative, we can use the G-, D- and L- algorithms,
and fractional linear multi-step method mentioned in Chapter 4. Meanwhile
transform (5.2.1) to Volterra integral equation (5.2.4), and then use the nu-
merical methods originally developed for Volterra problems, particularly the
numerical integration formulas, we can get the so called indirect method.
The R-algorithm discussed in Chapter 4 and the predictor-corrector method
to be introduced both belong to this group.
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Mesh the computational domain: take equispaced grid points t; = jh,j =
0,1,--,[T/h], and denote y, = y(t,), fo = f(n,yn)-

5.2.1 Direct method

Firstly, consider the fractional differential equation with homogeneous initial-
value condition

a;il(gt) = f(tvy(t))a e [O’T]a

y*(0)=0,k=0,1,--- ,m — 1.

(5.2.6)

By the homogeneous initial conditions, we have
o%y(t)
ot

Applying the general fractional difference quotient approximation formula
(4.6.1), we obtain

= “Dy(t) = FEDYy(t) = “FDy ().

N
WSy = Fltnayn)s n=0,1,--,[t/h]. (5.2.7)
7=0

As a result, the numerical solution can be determined by

he 1 N-—-1
YN = Wf(tnayn - a C y]7n - 1 ) [T/h]’ (528)
Cn,N Cp N =1

where N = n (for G1- algorithm, D- algorithm, L1- algorithm and linear
multi-step method) or N = n + 1 (for G2- algorithm and L2- algorithm).
Note 1. When N = n + 1 (for G2- algorithm and L2- algorithm), it can
be point-wise explicitly computed according to (5.2.8). Notice that L2- algo-
rithm can only be used for the case 1 < o < 2. In addition, the L2-algorithm
lacks the systematic theoretical analyses, especially the stability analysis.

2. When N = n (for Gl- algorithm, D- algorithm, L1- algorithm and
linear multi-step method), if f is linear, it can be point-wise computed ac-
cording to (5.2.8). Also, if the initial-value condition is nonhomogeneous, it
can be transformed to a homogeneous problem [218]:

(i) Caputo-type problem

m—1

y(t) = > y®0)t* + 2(t) (5.2.9)

k=0
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(ii) Riemann-Liouville-type problem
Z D Fy(0)t*F + 2(t) (5.2.10)

The original nonhomogeneous problem is finally transformed to a homoge-
neous problem in terms of the new variable z(¢). Then the transformed
problem can be solved using finite difference scheme (5.2.8). For a nonlin-
ear initial-value condition, it is required to solve nonlinear equation or linear
equations.

3. Problem with nonlinear nonhomogeneous initial-value condition
(i) Gl-algorithm

The correction term [218] should be added to the finite difference scheme
(5.2.8) of the Caputo fractional ordinary differential equation. When 0 <

a < 1, the correction term is

=h*f myn Zwk Yn—k — (ﬁ ZOOJ “ )yo, 5 2.11)
]:

where n =1,---, [T/h].
(ii) D-algorithm

Based on the relation between the Caputo derivative and Riemann-Liouville
derivative (see Proposition 4.1.2)

CDY(t) = Dy(t) — DTy [y; 0)(1) (5.2.12)

where
— tF
ol = 3
k=0

and using D-algorithm, we obtain

hiazc"’jyj Z k'y (tnayn)~ (5.2.13)
7=0

It follows

m—1

t
Yn = B[ (tn, yn) + h® Z B0 chy], (5.2.14)

k=0 it
where the coefficient ¢, ; is defined by (4.6.5). Letting o = 1, we obtain the
classical simplest backward difference scheme for the first-order differential
equation. However, the approximation theory for this method is still not
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perfect, and two important problems have not yet been well resolved: the
solvability of equation (5.2.14) and the error analysis.

Diethelm [65,68] discussed the two problems for the special case 0 < o <
1, f(t,y) = py + ¢(x). Equation (5.2.23) becomes

D7 [y(t) —y(O)])(z) = By(z) + f(2),0 <z < 1,5 <0. (5.2.15)

The numerical error is proved to be O(h?~%) when y(t) € C?[0, T]. Diethelm
and Walz [74] further obtained the asymptotic expansion of y,,

M, Mo
Yn = y(xn) + Z ain' ™ + Z bin™ + Oz )(n — o00)  (5.2.16)
1=2 j=1
where the nature numbers M7, M are defined by the smoothness of function
f(z) and y(z). Constants ay(k =2,---,M;) and b;(j = 1,--- , My) depend
on k —«, 2j and M = min[e — M7,2M,]. An extrapolation method for
the numerical solution of equation (5.2.15) is illustrated by this asymptotic
estimation formula (5.2.16).
(iii) Linear multi-step method
Fractional linear multi-step method is firstly proposed by Lubich [143-148]
and Hairer, Schlichte [110].
Based on the relation (5.2.12) and the approximation scheme (4.7.19), the
p € {1,2,---,6} order Lubich fractional linear multi-step method for solving
the Caputo fractional differential equation is stated as

S
h~ an Yt h= Z @n;¥; — D*Tm—1[y; 0] (tn)

o (5.2.17)
_f(n7yn) nzla"'7N'
It can be written as
Yn=hf(tn,yn) + h*D*Tpp_1[y; 0] ()
~ (a - 2.1
*Zwi_)jyj_zwnjij n:1,~-~,N (5 8)

where coefficient w,(ca) is generated by function

(kzp:E (1-2z) ) , (5.2.19)

and the start weight w,,; can be obtained by the following equations

1+4¢ .
Zw"ﬂ - e an i7"

—_
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The details can be seen in Chapter 4. There exists small € > 0, such that the
error of the approximation scheme (5.2.18) on arbitrary grid point is O(h?~¢),
and wg = O(k>™1).
(iv) L-algorithm
Shkhanukov [200] firstly applied the difference method to solve the fol-
lowing Dirichlet problem
d d
L= gt o) g (o) ~r(@Dgu(o) ~glohu(o) =~ (a), 0<a<,
y(0) = (1) = 0: k(z) > co > 0,7(x) > 0,(x) >0,
(5.2.20)

where 0 < o < 1, ¢D§ is Riemann-Liouville fractional derivative. His method
is based on the approximation of fractional derivative
1 i
1— 1—
ODgy(‘rl) = F(? — Oé) ];(xifls;l - xifka)yik (5221)
y(xr) —y(zr—1)

Tk — Tp—1
of y(zx). The above formula is L1-algorithm (4.5.2). Here, we still take the

uniform grid points {z; = jh: j = 0,1---,N — 1}, where h = 1/N is

where yzr = is the first order forward difference quotient

the step length. Applying the approximation formula, Shkhanukov obtained
the difference scheme of the problem (5.2.20) and further proved its stabil-
ity and convergency. Using difference approximation (5.2.21), Shkhanukov
presented the difference scheme of the fractional partial differential equation
with initial-boundary values as

_ 9%u(x,t)

Deu(z,t) = W+f(x’t)’ 0<z<10<t<T,

u(0,t) =wu(l,t) =0, 0<t< T
u(z,0) =0, Dfu(x,t))t=0 =0, 0<z <1,

(5.2.22)

and also derived the stability and convergency of the difference scheme on a
uniform grid.

5.2.2 Indirect method
Linear multi-step method

We still consider the following fractional ordinary differential equation

“Dy(t) = f(t,y(t)), te[0,T),
{ y(®)(0) = by, k= 0,1,--- ,m —1, (5.2.23)
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where a > 0,m = [a] + 1. Caputo fractional derivative operator “D* is
taken due to the fact that the initial-value condition related to this type of
operator possesses clear physical meaning.

It is easily noted that the fractional differential equation (5.2.23) can be
transformed to Abel-Volterra integral equation

y(t) = Tma[y; 01(t) + T f (2, y(1)), (5.2.24)

where

w|“

m—
Tm 1 yv Z
k=0

TH(ty(t) = ﬁ / (t — 1) f(r,y(r))dr.

Applying the p € {1,2,---,6} order Lubich fractional linear multi-step
method to the above equation yields

Yn =Tm-1[y: 0 +h”‘2w ) f(t,5)
(5.2.25)

+hazwnﬂf(tjayj)a 'ﬂl:]_’...’]\/'7
7=0

where the convolution coefficient w,(c_a)

w™(z) = (Z %(1 - z)k> : (5.2.26)

k=1

is given by function

and the starting weight w,; is obtained by the following equations
(1 t49  gta () a
wnij? = n NI
Z & l+q+a) ; 5
R-Algorithm

Diethelm and Freed [73] considered the following nonlinear fractional dif-
ferential equation:

D7 [y(t) —y(O))(z) = flo,y(@)](0 <z <LO<a<1) (5227

whose equivalent form is the second kind of Volterra integral equation

_ L[ it y()]
y(x)—y(O)+F(a)/o TR —dt. (5.2.28)
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The integral in the above equation can be seen as weighted integral with the
weighting function (¢,41 —¢)*~!. Take the nodes ¢;(j =0,1,--- ,n+1) and
apply the trapezoidal quadrature formula to solve problem. This method is
the R-algorithm mentioned in Chapter 4.

R-algorithm is frequently used in the predictor-corrector scheme, there-
fore, we will analyze its specific applications in the following section.

Fractional predictor-corrector method

We still consider the fractional ordinary differential equation (5.2.23).
Mesh the computational domain: take the uniform grid points t; =
jh(h =T/N) and denote y; = yn(t;) = y(t;), f; = f(x;,9;),5 =0,1,--- | N.
(5.2.23) amounts to the Abel-Volterra integral equation (5.2.24), i.e.
m—1 tk
y(t) = D be+ I f (D). (5.2.29)
k=0
The first term on the right-hand of (5.2.29) is totally determined by the
initial-value condition and is thus a known quantity. The second term is
the Riemann-Liouville integral of function f which can be approximated by
R-algorithm previously mentioned. Using relatively accurate R2-algorithm

leads to
m—1 tk n+1
Ynltar1)= D b+ B Y agsn b un(Ey)). (5.2.30)
k=0 ’ j=0

where the coefficients are

(1+a)n® —ntte 4+ (n -1 5 =0;
o1 (n—j+ 1) —2(n —j)te
T TRt a) | g -1 1<j<n—1;
1, j=n.

(5.2.31)

The difference approximation scheme (5.2.30) is called the Adams-Moulton
method.

For this method, since both sides of the equation include the unknown
variables yp, (tn+1) and due to the non-linearity of f, it is often difficult to de-
rive yp(tn41). Therefore iteration procedure is usually employed. To achieve
a better approximate solution, substitute a predicted value y,(t,41) into the
right-hand of (5.2.30).

Let y} (tn+1) be the predicted value, which can be obtained by some simple
method (explicit form). For instance, use relatively inaccurate R0-algorithm
to derive the predicted value:
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m—

(tns1) Z “b +hﬂ2bjn+1f(g,yh< )- (5.2.32)

k=0 7=0

The formula above is called the fractional Euler method or fractional Adams-
Bashforth method, where

i) g1
I I'(l+a)

Replacing yp (t,+1) in the right-hand of (5.2.30) by (5.2.32) gives
m—1 he

tn
yh(tn—‘rl) = Z ];'»1 bk + 1—\(2 ¥ a)f(tTH'layz(t”"Fl))
k=0 (5.2.33)

+h a1 £t yn(ts)-

Jj=0

The method determined by (5.2.32) and (5.2.33) is called fractional Adams-
Bashforth-Moulton method.

The computing process of the fractional Adams-Bashforth-Moulton method
mainly includes four steps:

(1) Predict: predict y?(tp+1) from (5.2.32);

(2) Evaluate: compute f(tni1, ¥, 1);

(3) Correct: correct y(tn+1) by (5.2.33);

(1)

ation.

Evaluate: compute f(t,+1,yn(tnt1) to prepare for the next loop iter-

Hence, it is more common to call this method predictor-corrector scheme,
or PECE (Predict, Evaluate, Correct, Evaluate) method.

Lemma 5.2.1 [72] Suppose g(t) € C1[0,T], then
1
& — h® bin |0 || ot . 2.34
77 ng el et (5.2:30

Lemma 5.2.2  [72] Suppose g(t) € C%[0,T], then there exists a constant
C,, dependent on o such that

|T%g(tn) — h* Za] n9(t)] < Callg”||oth?. (5.2.35)

Theorem 5.2.1 [72] Suppose o > 0,y(t) is sufficiently smooth, “Dy(t) €
C?[0,T) and function f(t,y) satisfy the Lipschitz condition with respect to
the second variable, namely,

f(t,y1) — f(t,y2) < Llyr — yal, (5.2.36)
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then the error of the correct scheme (5.2.32)+(5.2.83) satisfies

_ [ o), a1
omax [y(t;) —yn(ts)| = { Ohr),  a<1, (5.2.37)
i.€e.
) — | — P
omax y(t;) —ya(t;)| = O(RP), (5.2.38)

where p = min{2,1+ a}, N = [T/h].

Proof It will be shown that for arbitrary j = 0,1,--- , N and sufficiently
small h, there exists a constant C such that

ly(t;) — yn(t;)| < ChP. (5.2.39)

Since the initial-value condition is given, the above inequality holds for j = 0.
Assume (5.2.39) holds for j = 0,1,--- , k, now we prove the inequality also
holds for j = k + 1.

Firstly, we observe the error of predicted value yf; 41+ From (5.2.29) and
(5.2.32), it follows

ly(te+1 — y/f+1)|

k
= |[jaf(t’ y(t))]t=tk+1 — h Z bj,k+1f(tjv y])|

=0

k
T CD YWty = b D ikt [CDY(Di=tyy | (5.2.40)
j=0

k
R bl (L, y(6) = F (5, 5))

j=0
< Cltz‘+1h —+ Czt%+1hp,

where c1, ¢y are constants depending on a.
Then, we attempt to obtain the error of the corrected value. By (5.2.29)
and (5.2.33), we have

ly(tesr — yrr)| = [T &y =t — P argr k1 f (bes 1, Uhy)
k
—hY " aj ki [t ;)|
7=0
k+1

T DY (O]i=trss — Y aj a1 [“DY(0)]i=ty ., |
=0
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k
+hY @l F(t,y(t5)) — f(t, )]

=0
+h%a tht1,y(t — f(tes1, vk

k1 k1] f( k+; Y(trr1)) — ftrr1s Vi)l (5.2.41)

sty B2+ ch®hP Y aj k1 + Ch®aki1 pp (h + hP)
§=0
<esty b2 + cahM T 4 est  hP < ChP.

The error is obtained under a relatively strict condition (“Dy(t) €
C?[0,TY)). But for some smooth function y(t), its fractional derivative “ Dy(t)
is likely non-smooth. Diethelm et al also gave the error evaluations under
some other conditions [72].

The convergence evaluation given below is derived for a smooth y(t).

Theorem 5.2.2 Let 0 < o < 1,y(t) € C?[0,T], and f(t,y) satisfy the
Lipschitz condition with respect to the second variable (5.2.86), then

. hite 0<a<1/2
) A — Q@ 1 ) S 3
wie) -l = o { T (SO

where C' is a constant independent of 7 and h.
See the proof in [72].

Note: 1. Compared to the integer order derivative, the fractional order
derivative is non-local operator. It means that the computation of fractional
derivative on each point depends on not only the date in the neighbourhood
of the present instant, but also the data in the whole history. This property
can describe the physical phenomenon having memory features, but leads to
some troublesome in numerical computation. The time complexity of the
present method is O(N?) (while the complexity is only O(N) when solving
integer-order problem), where N is the number of the computational points.
Short memory principle [179] can be employed to lower the complexity at
the expense of the accuracy and stability for some problems. Nest memory
concept can also be a suitable choice since its complexity is reduced to merely
O(NlogN) when retaining the original accuracy [87].

2. The stability analysis of method is equivalent to that of classical
Adams—Bashforth—Moutton scheme. One of the methods to improve the
stability is the so-called P(EC)™E algorithm, which corrects m times for
each calculation. The stability of the method is improved at the expense of
increasing the correcting iteration number while keeping the convergence and
complexity unchanged.
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3. Richardson extrapolation method can be used to improve the accuracy
of the method. Compute the value u]’5y on a grid two times denser than the
original one in each time step, and then take the Richardson extrapolation
value 2ug; o — u;' as the new value @;'. Thus the spatial convergence order
is increased to O(h?).

4. The algorithm idea can be generalized and applied to the unequis-
paced grid case, in which the weighting factors in the predictor and corrector
formulas needs some adjustments but the Richardson extrapolation method
will fail.



Chapter 6

Numerical Methods for Fractional
Partial Differential Equations

Finite difference methods and series approximation methods (mainly in-
cluding Adomian decomposition method and variational iteration method)
are the dominant numerical methods for solving fractional partial differen-
tial equations. The corresponding theoretically analyzing methods include
Fourier methods, energy estimation, matrix eigenvalue method and math-
ematical induction. There still exist other types of methods but with ei-
ther somewhat weaker applicability or absence of relatively sound theoret-
ical analyses. The developments of the correlative numerical methods can
be briefly reviewed as follows. From the end of 20th century, Gorenflo et
al have published a series of papers [93-95, 149, 150] regarding the finite
difference schemes for solving time, space, and time-space fractional diffu-
sion equations. These schemes are formulated by using the equivalence of
the Riemann-Liouville and Griinwald-Letnikov fractional derivatives, and are
further interpreted as the discrete random walk models in terms of time,
space and time-space levels. To guarantee the stability of the schemes,
shifted Griinwald-Letnikov approximation schemes are constructed in place
of the standard schemes. It should be also noted these finite difference
schemes can be easily extended to solution of the generic fractional par-
tial differential equations. In studying the saltwater intrusion into aquifer
systems, Liu et al presented the “Method of Lines” [137] which transforms
the fractional partial differential equation to a system of fractional ordi-
nary differential equations. Their approach takes the backward difference
scheme with variable-order and variable-step, and has been widely accepted
and extensively used to solution of space fractional partial differential equa-
tions. In 2004, Meerschaert and Tadjeran [157] presented the finite difference
scheme for space advection-dispersion equation with variable coefficients, to-
gether with its error analysis. Afterwards, Tadjeran et al, in 2006, derived
a temporally second-order, spatially first-order accurate and unconditionally
stable finite difference scheme by combining Griinwald-Letnikov formula with

299



300 Chapter 6 Numerical Methods for Fractional Partial ...

Crank-Nicolson method. Space extrapolation was used to increase the spa-
tial convergence rate to the second-order, and the proposed finite difference
scheme is further applied to solving other types of space fractional partial
differential equations [75, 158,202, 208]. It is worth noting that the finite
difference schemes mentioned above are all based on the Griinwald-Letnikov
approximation schemes. In addition to that, L-algorithms can also be uti-
lized to construct the finite difference schemes [46, 81,137,199, 224], yet in
the absence of rigorous theoretical analyses for most of schemes.

For solving time fractional partial differential equations, there have been
two leading finite difference schemesone is based on G-algorithms [92, 226]
and the other on L-algorithms [129].

For solving time-space fractional equations, G- and L- algorithms are
usually combined to form the finite difference schemes [140,141,231].

Besides, special care has still been taken of solving high-dimensional prob-
lems. Meerschaert et al [156] have presented finite difference scheme for solv-
ing two-dimensional fractional diffusion equations with variable coefficients
based on alternating direction implicit method, along with the stability and
convergence analyses. Chen and Liu [43] considered the two-dimensional
fractional advection-diffusion equation and proposed the alternating direc-
tional Euler method. Matrix eigenvalue method is employed to analyze the
stability of the method and the Richardson extrapolation to increase the
accuracy to the second-order. Liu has investigated the two- and three- di-
mensional fractional advection-diffusion equations in the dissertation, where
several modified alternating direction methods are developed and where the
Richardson extrapolation is considered as well.

Apart from the foregoing numerical methods, a finite element scheme
given by Roop in 2006 is used for solving space fractional differential equa-
tions [193]. In 2005, Adomian decomposition method has been applied to
solving time-space fractional telegraph equation [166] as well as fractional
diffusion-wave equations [6]. In 2006, Rawashdeh [187] combined collocation
method with polynomial spline in solving a type of fractional integral equa-
tion, but in the absence of the numerical analysis. In 2007, Zhang used the
finite element method in his dissertation to solve fractional partial differential
equation, which achieves high-order approximation accuracy. Additionally,
Lin and Xu [134] applied spectral method for solving time fractional diffusion
equation.

In principle, for fractional partial differential equations, the researches on
their numerical methods are still on the early stage, and the corresponding
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theoretical analyses and the potential improvements on the methods seems
somewhat inadequate. Emphatically, the nonlocality of fractional differential
and integral operators leads to high computational cost as well as large mem-
ory requirements in the solution of fractional partial differential equations.

Finite difference schemes for fractional partial differential equations gen-
erally originate from the Griinwald-Letnikov approximation schemes, and
the approximation accuracy is of the first-order for most cases. At present,
in the literature regarding numerical methods, Fourier analysis, eigenvalue
methods, mathematical induction and energy methods are commonly used
to prove the stability and convergence of the numerical methods. In what
follows, we elaborate on the basics of some typical finite difference schemes.

On the other hand, fractional diffusion equations are widely utilized to
model problems in physics [161], finance [96] and hydrology [19,20]. In partic-
ular, fractional advection-diffusion equations are claimed to better simulate
the solute transport process which characterizes long-tail phenomenon.

In addition, Liu et al [138] considered the time fractional advection-
diffusion equation, and derived the fundamental solution using Mellin and
Laplace transforms. This fundament solution is a Fox function comprised
of a probability density function and of a complete error function. Huang
and Liu [116] further derived the fundamental solutions for problems in
n—dimensional space and half space. They also obtained the analytical so-
lution of time-space fractional advection-diffusion equations [115].

In the succeeding three sections, we respectively introduce the finite dif-
ference schemes [43,129, 141,157,199, 226] for solving space, time and time-
space fractional advection-diffusion equations. Consider the following equa-
tion with variable coefficients:

0%u(x,t)

o = —v(@ /D u(w, )+ d(w, )Du(z,t) + f(2,1),

0<t<T,L<x<R,

(6.0.1)

where 0 < a, f < 1,1 <y < 2, and v,d > 0 (i.e. the fluid moves from the
0%u(x,t)
ot

fractional derivative and the Riemann-Liouville space fractional derivative,

left to the right). = “D¢u(x,t) and DFu(w,t) are the Caputo time

respectively. The existence and uniqueness of the (6.0.1) can be seen in [82].

6.1 Space fractional advection-diffusion equation

Consider the space fractional advection-diffusion equation below (namely,
letting o, 8 = 1,v = v(x),d = d(z) in (6.0.1)):
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5 = V(@) —+d@)Dyule,t) + f(z,1), (6.1.1)
0<t<T,L<z<R,

with initial-boundary value conditions:

u(z,t =0)=v¢(z),L <z < R;

u(z = L,t) = 0,u(x = R,t) = 0. (6.1.2)

Space fractional derivative can be discretized by using G- or L- algorithms,
thus resulting in the finite difference schemes based these two type of algo-
rithms. Without loss of generality, we consider the finite difference scheme
based on G-algorithm.

The first-order temporal and spatial derivatives in (6.1.1) can be approx-
imated by first-order difference quotient, while the space fractional deriva-
tive is discretized by using the G-algorithm, i.e., using the equivalence of
Riemann-Liouville and Griinwald-Letnikov fractional derivatives. Meerschaert
et al [157] has proven that explicit, implicit and C-N finite difference schemes
based on standard Griinwald-Letnikov approximation schemes are instable.
They suggested shifted Griinwald-Letnikov approximation schemes in place
of the original schemes. Since 1 < v < 2, the optimal shift number p should
be 1 (see Theorem 4.2.1 and its remark). We thus have the following approx-
imation:

[e—L/h]
Dlu(x,t) Z w(v)u (x — (k—1)h,t). (6.1.3)

We denote 0 < t,, =nt < T,z; = L+ih,h=(R—L)/M,i=0,1,--- , M.
u (i, tn), vi = v(x;), di = d(z;), fI' = f(2i,tn).

Theorem 6.1.1 [157] The implicit finite difference scheme for solving space
fractional advection-diffusion equation (6.1.1)

un+1 n unJrl n+1 i+1 )
4 % (v), n+1 n+1
= *Uii E wp w1, (6.1.4)

which is based on modified Grinwald-Letnikov approzimation scheme (6.1.3),
is continuous, unconditionally stable and thus convergent.

Proof Considering the boundary condition (u(L,t) = 0) and using the Collo-
rary 4.2.1, we see that the approximation accuracy of the shifted Griinwald-
Letnikov approximation scheme (6.1.3) can reach O(h). So that the accuracy
of the scheme (6.1.4) is O(h) + O(7), i.e., the scheme is continuous.
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Denote E; = v;7/h, B; = d;7/h7, then the scheme (6.1.4) can be repre-
sented as

i+1
uptt —uf = —Ei(uf*t —ut ) + B; ZWI(CV)U?*EH +7fi* (6.15)

K2

or

_Bzw(()’Y) Zjll + (1—|—E Bzwp)) ;LJrl _ (Ez'“rBiwg/))U?jll
i+1

6.1.6
By iy =l s (010

Consideration of the column vector notation

n+1 __ n+1 n+1 n+1
U *[ul yUg Tyt Upp 1] )
Fn+1 _ [ n+1 n+1 L n+1 }T
- - 1 yJ2 9 vJ M—1 )

rewrites (6.1.6) in a matrix-vector form , i.e., AU ™! = U™ + 7F"*! where
A = [A; ;] is coefficient matrix, the entry of which A;; is defined by (note
that uf ™ = ut =0)

0, j=i+2,
— By j=i+1,

Ai;={ 14+E-Bw" j=i (6.1.7)
—E - Bw  j=i-1,
~Biw\ j<i—1

fori,j=1,2,--- , M — 1. Let X be the eignevalue of the matrix A, X be the
corresponding eigenvector and thus we have AX = AX. Find some i, such

M—-1
that||z;|| = max{|z;| : j = 1,---,M — 1}. So that from Z Az = Aay,
j=1
we have
M—1
A=A+ Z A,jx , (6.1.8)
Jj=1,j#i

substituting (6.1.7) into (6.1.8) leads to

i—2
— ™) (v) Lit1 (1yFi-1 M Zj
)\—1+Ei—BZW1’Y Biwo’y :C—Z—(EZ—FBle’Y ):C—Z—Blzlwlz]+1x_l
- , i= (6.1.9)
:1+E1'(1—$1'_1/$¢) [wl + Z wl j+1 :|

J=1,j#i
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oo
It follows from waj) = 0,1 < v < 2, that there only exists one negative
k=0

J
Grunwald weighting coefficient wY’) = —~, along with —wp) > Z w,(cw,

k=1,k#1
j =0,1,2,--. Moreover, since |z;/z;| <1 and w{) > 0,j = 2,3,4,---, it
thus holds that
i+1 i+1
Z Wz(z)j-s-ﬂxj/xi‘ < Z %(PY)3+1 < *WP)-
J=1,j#i Jj=1,j#i

From the above inequalities, we have

1+1

W+ N W/ <

J=1,j#1

From the fact that the parameters B;, E; are both non-negative real numbers,
one can see that the eigenvalues of coefficient matrix A satisfy ||A|| > 1. It
follows that the coefficient matrix is invertible and that the eigenvalues 1 of
the inverse matrix A~" satisfy ||| < 1 (namely, the spectral radius of A~
does not exceed one). By letting the error of U ¥ be ¥, the recursive formula of
error reads g! = A1, Tt is straightforward to see that ||g'|| < ||€°|| and thus
the approximation scheme (6.1.4) is unconditionally stable. The convergence
of the scheme can be proved by using the Lax equivalence theorem.

Remark 6.1.1 1. Local truncated error of the scheme (6.1.4) is O(7)+O(h).
2. For time-dependent coefficients, namely, v = v(x,t) = 0,d = d(z,t) >
0, the conclusion of the theorem still holds.
3. The theorem is still valid for other types of right boundary value con-
dition, e. g.

w(R,t) = br(t), or u(R.t)+ V%U(R t) = o(t),v > 0.

4. For v =2, the finite difference scheme (6.1.4) reduces to the classical
second-order central difference quotient which is used for approximating sec-
ond derivative. In such case, the shifted Grinwald-Letnikov scheme (6.1.3)
reduces to the classical central quotient: (i.e., w(()z) =l,w (2) -2 wéz)

wi = w? =0)

Pulr ) _ iy — iy
0x? - h?

5. The scheme (6.1.4) can be extended to solving other types of equations.
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Meerschaert et al applied the scheme to solving two-dimensional [156] and
two-sided [158] space fractional partial differential equations. They proved
that the resulting explicit finite difference scheme is conditionally stable, while
the implicit one is unconditionally stable. Moreover, these stable conditions
can be seen as the extensions of those of the explicit finite difference schemes
that are used for solving classical parabolic and hyperbolic equations.

6. Applications of other types of finite difference schemes based on shifted
Grimwald-Letnikov approrimation.

(a) Advection term can be discretized by central difference quotient as is
shown in Lax-Wendroff scheme (conditionally stable) [202]. (b) Weighted
average methods. The corresponding finite difference scheme for (6.1.1) is
given by [208].

auél‘t, t) |(Ij7tn+%) = (1 — /\) [ — ’U(g;) 8ug§; t) + d(x)Dgu(x, t)} o
+A[—v(m)M+d(m)D7u(x t)} +f(xj,t,.1)
Ox T @ tn) 1 ints
(6.1.10)

where 0 < A < 1 is the weighting coefficient. Second-order central differ-
ence quotient, first-order backward difference quotient and shifted Grinwald-
Letnikov approximation are employed to discretize the time derivative, first-
order space derivative and space fractional derivative, respectively. In partic-
ular, for X\ = 1/2, the scheme (6.1.10) is called fractional Crank-Nicholson
scheme. Similar to the proof of the theorem, it can also be proved that the
scheme (6.1.10) is stable and convergent [209]. Furthermore, using Richard-
son extrapolation can increase both the spatial and temporal accuracy to the
second-order. The weighted average methods can still be used to solve two-
sided space fractional advection-diffusion equation [75].

7. Applications of the finite difference schemes based on L-algorithms.

L-algorithms can also formulate the fractional Euler schemes for approxi-
mating space fractional derivative, but most of which have not been given sta-
bility and convergence analyses. For instance, the L2-algorithm has been used
to discretize Riemann-Liouville fractional derivative [81], the two-sided space
fractional derivative [137] and Riesz space fractional derivative [46,22/]. Be-
sides, Shen [199] has given a theoretical analysis to L1-algorithm-based finite
difference scheme for fractional diffusion equation having Caputo fractional
derivative.

6.2 Time fractional partial differential equation

Time fractional diffusion equations are widely considered in physical applica-
tions, which can describe the anomalous transport processes with long-time
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memory.
Consider the following time fractional diffusion equation:

ou(x,t) 15 0%u(z, t)
o KDy Ox?

with the initial-boundary value conditions:

0<z<L,t>0, (6.2.1)

u(z,t =0) =g(z),0 <z < L. (6.2.2)

u(r =0,t) = ), u(r=L,t)= () (6.2.3)

Before proceeding further, we denote z; = ih,i = 0,1,--- ,M;h = L/N;
ty=kr,k=0,1,--- M;7=T/M.

6.2.1 Finite difference schemes

Respectively using first-order forward difference quotient and second-order
central difference quotient for approximating the temporal first-order deriva-
tive and spatial second-order derivative in (6.2.1) leads to the Forward time
and centered space method (FTCS method) :

u i — [u]k
2 ul¥_, — ulk
%uww _ 2([h)]2 b oge), (6.2.5)

Substituting the above schemes into the (6.2.1) leads to

[wlf 1 — 2[ulf + [u]}

B 1y,
fuly ™"~ [y L4 T(x,t),  (6.2.6)

J =KD"

T (h)?

where the truncated error is T'(x, t).
To discretize the fractional derivative, high-order linear multi-step method
(4.7.16) is considered, namely

[t/R]
DA = 0 S W (= )+ O), (6.2.7)

7=0

where h = 7 is the approximation step, and the coefficient w§a)

is derived
from the corresponding generating function WISQ) (z) (the functions for p =

1,2,...,6 have been given in Chapter 4). For p = 1, Wla) = (1 —2)%, which
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corresponds to Gl-algorithm, also called fractional first-order backward dif-
a 3 1L\
ference formula (BDF1 for short). For p = 2, WQ( ) = (5 — 2z + §x2) is
called fractional second-order backward difference formula (BDF2).
Substituting all the approximation formulas afore-mentioned in the equa-

tion (6.2.1) and omitting the truncated error yield

k
k+1 k — k—m k—m k—m
uj+ =uj + 5, Z wi=#) (u];l = 2u; " ufy ), (6.2.8)
m=0
Th
whereS,, = K“ﬁ'

6.2.2 Stability analysis: Fourier-von Neumann method

Let uf = (e'Y" where q is the wave number, and substitute them into (6.2.8)

to obtain
gh\ ¥
Cht1 = Cr — 45, sin? (7> Z wg_“)(jk_m, (6.2.9)
m=0
which is the discrete form of the following fractional differential equation:
dip(t h
% = —4C'sin? (%) DI (), (6.2.10)

where C' = S, 7 and the solution of which can be represented in terms of
Mittag-Leffler function [179]. Let

Cet1 = §Cks (6.2.11)

assume £ = £(q) to be time-independent, and then substitute £ into (6.2.9)
to obtain

k
€ =1-48,sin’ (%) > wlimmem, (6.2.12)
m=0

If there exists some ¢ such that || > 1, then the finite difference scheme is
instable.
Considering the extreme case £ = —1, we have

1/2 _
S, sin’ (%) < — / k- (6.2.13)
Z(—l)mwﬁi’“)

m=0
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The right-hand side of inequality (6.2.13) weakly depends on the iteration
number k. Let S, = klim S,.k, which can be determined by inequality
— 00

k
(6.2.13) as well as the generating function W,Sﬁ)(z) =(1-2)%= Z wB) zm
m=0

(let z = —1, 8 = 1—p and see the definition of generating function in Chapter
4).
Hence, the prerequisite for a stable scheme is to satisfy (sufficient condi-

tion)

S, sin® (qh) T 6.2.14
e () < 8= o (62.14)

The reference [226] conclude through numerical investigation that the
above inequality is still the necessary condition for a stable scheme. We
thus have obtained the sufficient and necessary condition for a stable finite
difference scheme (6.2.6):

S, < O (6.2.15)
sin? ah
2
Noting this, we can see that the scheme is stable if
TH _
6.2.3 Error analysis
From (6.2.6), we see that the truncated error term is
s — 20t + [l
T(z,t) = —2 - I _K,D} hzf L (6.2.17)
Since
k+1 k
(P (T 1
4 45 = us + FuteT +0(7)?, (6.2.18)
-
and
Dy ([ult -y = 2fulf + [}
k
1 1 _ (6.2.19)
e Z wg_“) (ux:c + Eumﬁ(h) +- ) + O(h"),
m=0
we have
. 1 K, h?
— P - _ K 1—p A
T(z,t)= O(hP) + 5 Ut 9 D, Muzras + (6.2.20)

= O(h?) + O(1) + O(h?).
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Hence, (i) assuming the initial-boundary conditions of u are consistent
(also assumed for the classical FTCS method) and (ii) assuming that w is
sufficiently smooth in the neighbourhood of ¢ = 0 (namely, the prerequisite
of linear multi-step method (6.2.7)), then FTCS method is unconditionally
continuous, namely,

T(x,t) — 0 ash,7,h— 0.

Remark 6.2.1 1. In particular, for p =1, Wl(a) = (1-2)%, so that S, =

o 3 L \Y - 1
%;forp =2, W, )(z) = (5 —2z+ 522> , which leads to S,, = CETEE
1

2. Note that for p < 1 , which implies that the stability of

P S
BDF2(p = 2) method is somewhat lower than that of BDF1(p = 1) method.

3. In practical computations, we usually let h = 7. It follows from
(6.2.20) that the higher-order linear multi-step method (p = 2) for fractional
derivative cannot authentically improve the accuracy of FTCS method. In
terms of stability, as mentioned above, the stability of the higher-order method
(p > 1) is worse than that of the lower-order method (p = 1). Noting this,
we usually let p =1, 1. e., use the FTCS method based on G1-algorithm.

4. Global error analysis can be found in [43], where the implicit finite dif-
ference scheme is given, together with its stability and convergence analyses.

5. FTCS method based on L1-algorithm

0%u(z,t o
85&04 ) - CDt u(

Caputo time fractional derivative

cretized by L1-algorithm (4.5.2):

x,t) can be dis-

0%u(x;, tp+1) T b ()
e =T o) j;) by (u(ws, te—j1) —u(zis th—j)) +O(7) (6.2.21)

where b;a) =+ 1)l —jl-e,

Using first-order backward difference quotient and second-order central
difference quotient to respectively approximate first-order time derivative and
second-order space derivative yield [129]

(1+2p)uf ™ — pulifl — pult) = (a+ 2p)uf — pul,

1 (1— (6.2.22)
—pu?,l + p(k F1)i- # uo + pr " (A2, H'l Aiué),
K,
where p = m’ A%u;? = U§+1 - 2u§ + “§_1

Langlands and Henry gave a brief but not very rigorous stability and con-
vergence analyses for this implicit finite difference scheme. They derived the
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local truncated error being O((1)*~*) + O((h)?), but without further giving
the global error.

6.3 Time-space fractional partial differential equation

Consider the fractional advection-diffusion equation (6.0.1) with variable co-
efficients, of which the initial-boundary conditions are

u(z,t =0) =g(z),0 <2 < L. (6.3.1)

u(z=0,t) =0, ulz=L,t)= ). (6.3.2)
6.3.1 Finite difference schemes

Take time-space grid with time step 7 and space step h and let x; = ih,i =
0,1,--- ,NJh=L/N; tp, =kr,k=0,1,--- ,M;7=T/M.
Using L1-algorithm (4.5.2) to approximate Caputo time fractional deriva-

tive % = “Dgu(x, t) produces:
0°u(wi tyrr) T K (@)
ate = 1_\(2 — O[) zz:o b] (U(Z‘“ tk—j+1) - ’U,(l'“ tk—])) + O(T) (633)

where bga) =(j+ 1) — 517 and we write b;a) =b;.

Riemann-Liouville space fractional derivative is discretized by G-algorithm.
According to the remarks below Theorem 4.2.1, since 0 < S < 1,1 < v < 2,
when using G-algorithm to evaluate DPu(z,t) and DJu(z,t), the optimal
shift number should take p = 0 and p = 1, respectively. That is, to use G1-
and Gg(1)— algorithms for discretization:

Diu(zs tpr) =h " Zw(ﬂ)u i — jh tes1) + O(h)), (6.3.4)
7=0
Diu(z,t) = b7y W u(w; — (j — Dh, tier) + O(R)), (6.3.5)
j=0

where W/ = (—1)/ plp—1)- ']:!(N -+ 1).

y So that, we have the following
implicit finite difference scheme:

k 1+1
k—jdl  h—j 1 2 _
ij(ui Ty 1(k)+1 Zw(ﬁ) f+11+7”7(k)+1zw(ﬂ{) 5:11 I A
=0
(6.3.6)
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which can be further rearranged to

1+1 k—1
k+1 B) k+1 wktl —J
+Tz k+1 E :wl Uiy Ty k+1§ :w Uip1-1= E : J+1 (6 3 7)
= 0.

+bu?+ff+1,':1,2, ,M,kfo,l, N,
where

_ . k _ . R S——
=wv(ith,k7), di =d(ih, k7), ik = B )

1 _ vErT(2 - a)

2 dfT“T(Q —a)

Similarly, we can also derive the following explicit scheme:

fF= flihkr), fF=7°T(2—a)fF.

k—1

k— (8
Ufﬂzbk“?‘FZ(bj_ij)“i - zk:Jrl sz ) ug g

=0
i1 (6.3.8)

zk+1zwl 7,+1l+f‘k+lai:172a"'aM;k:Oa17"'aNa

with the initial-boundary conditions:
=g(ih), ub =0, uk, =@(kr),i=0,1,---, M, k=0,1,---,N.(6.3.9)
Lemma 6.3.1 The coefficients bj,w§’8),w§7) satisfy

bo =1, bj>07 bj+1>bj,j:0,1,2,~-~

w(()ﬁ) =1, wgﬂ) = -3, wj(-ﬂ) <0(j>1),
9] K
Zw§ﬁ):0, VK,Zw§6)>O;
§=0 j=0

wi’ =1, W=y, W >0(#1),

o] K
Y w =0, VK> W <o
§=0 j=0

For convenience of analysis, we assume that v, d are constants irrespective

of z,t, and denote r( k) = rm,m = 1,2. In fact, this assumption will not affect

the analyses of the stability and convergence of the scheme.
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6.3.2 Stability and convergence analysis

1. Implicit finite difference scheme and its stability
Define two difference operators L; and Lo as

1+1
L1Ui +1 _ k+1+r Zw(ﬂ) kjl ro Zwm) fill l (6.3.10)
k-1 '
L2ui‘C = bku? + Z(b] — bj+1)uf_37 (6311)
7=0

then the implicit finite difference scheme (6.3.6) can be written by
Ly = Loul + fi1. (6.3.12)

Let ﬂf be the approximant derived from the finite difference schemes
(6.3.7) and (6.3.9), and ] = @] — u] be the numerical error, such that

Lieft = Lok, (6.3.13)
and E* = (ef, ek, .-+ ek, )T be the error vector.

Theorem 6.3.1 The numerical errors induced by initial-value conditions
in finite difference schemes (6.3.7) and (6.5.9) satisfy

B g < [ E s k= 0,1,2,--- (6.3.14)
namely, the schemes are unconditionally stable.

Proof Consider the mathematical deduction.
When k = 0, letting |} | = max le}| and from the lemma 6.3.1, we have
X

1+1
lef|< |14+ m Zw(ﬁ) 7’22&1 ) |
I+1
B
e+ Z Pl il = ra Wi ledn ]
=0 i=0
! “ I+1 o) (6.3.15)
=(14+r+ 7“2’Y)|€ll| + 71 ij |511,j| — T2 Z wj’Y |511+17j|
J=0 J=0,5#1

l +1
<let Y we =y wVely

j= =0
= Lae}] = [Loel] = 6] < [ B
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Thus, ||E1||oo < ||E0||00~

Now assuming [|E7||eo < |E®os, § = 1,2,---,k, and letting |eFT!] =
| max ek, it follows from the lemma 6.3.1 that
M=
1 I+1
lef T < 1+rlzw§5)—r22w§"’) leF
I+1
|El+1|+r1 Zwﬂ)|€k+1 T2Zw(7 |€;cJ-r|-11 j
) I+1 o) (6.3.16)
= (U471 + o)l Zw et l=ra 3wl
j=0 j=0,5#1
I+1
e P - S
= [L1 ngrl| = |L2€z|
Thus,
k—1
i
IE*+ oo < |Logf| = [bael + D (b; —bjs1)e) ™|
=0 (6.3.17)
< (b + Z b1 Elloo = 1Bl oo

That is, the implicit finite difference scheme is unconditionally stable for
arbitrary initial value conditions.

2. Convergence of the implicit finite difference scheme

Let u(x;, ty)(@ = 1,2,--- .M — 1;k = 1,2,--- , N) be the exact solution
of equations (6.0.1),(6.3.1) and (6.3.2)) at grid points, deﬁne the error be-
LWk=12---

tween exact and numerical solutions by n* = wu(z;,tx) — u¥, i,

and denote Y* = (n¥, 05, 0%, )T. Obviously, Y° = 0. It follows from
equations (6.3.3)~(6.3.5) that the error satisfy

k+1 _ k k+1
{Lm = Loy AR o M1:k=0,1,2, ,N—1,(6.3.18)

771 = 0)
where |R¥| < C7%(7 + h) derived from (6.3.3)~(6.3.5).

Lemma 6.3.2 The errors between exact solutions and numerical solutions
derived from implicit finite difference scheme (6.3.7) and( 6.5.9) satisfy

”Yrk—i_1 ||oo < Cblgl('rl—i_a + Tah)a k=1,2,---,n. (6319)
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Proof Consider the mathematical deduction.
When k = 0, letting [|[Y'||coc = [n/| = max |n}|, and from the lemma

1<i<M—1
6.3.1, we have

Int| < 1+rlzw —TQZW ") |
1+1
\Th|+7”12w Il — Tzzw -y
I+1 (6.3.20)

= (L +71 + o)t + 71 Zw§’3’|n}_j| > ookl
7=0 J=0,j#1
I+1

‘77[ + 7 Zw(ﬂ)nl - T2 ZUJ 771+1 ]|
Jj=0 J=0
= [Lun | = |Lonff + Cr(r + h)| = |0 + Cr(r + B)| <OT* (7 + D).

Thus, ||V e < Cby '7% (T + h).
Now assuming [|Y7]|o < Cb]lllTO‘(T +h), j=1,2,--- k. and letting

k+1 k+1) —1 .
I = 1<?5\)4{—1 Inf*1|, it follows from lemma 6.3.1 that b, ' > by (J =
0,1,---,k), which leads to

||Y ||00 (T+h) 3277k

Similarly, use 7Y = 0 to obtain

l 1+1
k k
‘771+1|< 1+T1ZW§B) _Tzzw](d) |771H|
: =
I+1
Iyt 4 Zw D) - Zw” nf]
I+1
= (L+r+r2y) [+ |+T12w(6)|nk“| 2 Y W
j=0 j=0,j#1
+1
k+1 (B), k+1 (7)), k+1
T ZW M-y — T2 Z“ﬂ”lfl ~j (6.3.21)
= |Lin, +1| = |L2nl + Cre (T + h)|
= |bgn + Z bir1)n )+ Cr(1 + )
k—1 )
< (b; — bj+1)771k_] + CtY(T 4+ h)
7=0

< (b + Y (bj —bjy1)by 'CT¥(T 4+ h) = Cb; '7%(T + h).
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That is, [|[Y*+!]| . < Cby 7% (7 + h).

Theorem 6.3.2 The errors between the exact solutions and numerical so-
lutions derived from implicit finite difference schemes (6.3.7) and (6.3.9)
satisfy

luf —u(xi, ty)| < C(r+h),i=1,2,--- , M —1;k=1,2,--- ,N.
That is, the schemes are convergent.
Proof Since
bt ke ko
lim £ = lim = lim —M
oo ko 00 11—« 11— 00 ENl—a _
k—oo k k— (k—l—})l —k k— (1-|— 1) 1 (6.3.22)
= lim i _
_k—><>o (1 —Oz)k_l a 1—04’
there exists a constant C' such that
bt < Ok~ (6.3.23)

As kT < T is finite, it follows from the proof of the preceding lemma that
Jul —u(zi, ty)| < [nf| < 71 + h) < CCk*r% (1 + h) < C(t + h).

That is, the schemes are convergent.

3. Convergence of the explicit finite difference scheme

Similarly, let ﬁz be the approximant derived from the finite difference
schemes (6.3.8) and (6.3.9), and €/ = @ — ] be the numerical error such
that

k—1

bt el +Z bj—bji1)e 7j—rlzw(6) KA Zwl z+1 ;- (6.3.24)
=0

Here, k = 0,1,--- ,N —1;i=1,2,--- M — 1 and E* = (e}, e},--- &k, )T
be the error vector.

Theorem 6.3.3 If
i+ rf <2 — ol-—a _ 1 _ by, (6325)

then the errors induced by initial-value conditions in explicit finite difference
schemes (6.3.8) and (6.5.9) satisfy

I1E* o < [|E®| 0, k& =0,1,2,- (6.3.26)

That is, the schemes are conditionally stable for arbitrary initial-value con-
ditions.
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Proof Consider the mathematical deduction.
When k = 0, letting |} | =  max let| and from the lemma 6.3.1 and the

condition (6.3.25), we have
bo—r1—128>by—1+by =0b1 >0. (6.3.27)

Thus,

+1

B
et < bo|el|—r12w< ed. j|—r22w B

(6.3.28)
= 1412%@ +r22w§7> 1E o0 < |1 B0
Jj=0 Jj=0
Further we have ||E'||o < || E°||co-
Now assuming ||/ || < [[E%oos j = 1,2,---,k and letting |ef ™! =
max [e¥1|, it follows from(6.3.25) that
1<i<M -1

bp —by—m1 — 12 >bog—b1 —14+b; =0.

Using lemma 6.3.1 yields

I+1

|5f+1|<bk|5 |+Z bj—bji1)e 73—7"12(,‘) e i+ Zw z+1 .

“ . (6.3.29)
< bk+z bis1 frlzw e Zw 1EY| oo
<IIE°Hoo.

Hence, ||[E*! < ||E°||oo. That is, the explicit finite difference schemes
are conditionally stable for arbitrary initial-value conditions.

Remark 6.3.1 When the equation coefficients v,b are expressed in form of
the function of x,t, the stable condition is replaced by

A= max (Z(k)—l—r(z),@)} —2-—2l7@ <.
1<i<M—-1
1<k<N

4. Convergence of the explicit finite difference scheme

Let u(x;, tg)(i=1,2,--- ,M — 1;k =1,2,--- ,N) be the exact solutions
of the equations (6.0.1), (6.3.1) and (6.3.2)) at grid points, deﬁne the errors
between exact and numerical solutions as ¥ = u(x;,tx) — L,k=1,2,---,

7,77
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and denote Y* = (¥, nk,--- 0k, _)T. Obviously, Y° = 0. The errors satisfy
the following equation:

et =byn? +Z (bj—bj1)ni 7 —r1 Zw(ﬁ)mkz
i1 . . - (6.3.30)
+72 szv N TR T
1=0

nd =0, i=12,--- , M—-1,k=0,1,2,--- ,N —1,
where |RF| < CT%(1 + h).
Lemma 6.3.3 If the condition (6.5.25) holds, then the errors of the exact
solutions and the numerical solutions derived from the explicit finite difference
schemes (6.3.8) and (6.3.9) satisfy
VAo < COL (T +7%h), k= 1,2, -+ . (6.3.31)

Proof Consider the mathematical deduction.

Fi ive th f of th =0. i Yl = |nl| = 1
irst give the proof of the case k = 0. Letting ||Y"||oc = |1/] 1523‘\?_1 Intl,
we have
el = |R}| < CT%(7 + h). (6.3.32)

Thus, [[Y!]|ee < Cby '7%(7 + h).
NOWSHPPOSG [Y7]loo < Cb; 1 7(T+h), §=1,2,- -, k. Letting g+ =

1 _1 ) — ...
1<?£\)4<—1| ¥+1| and considering b, 2b;(j=0, 1, ,k) and (6.3.25), lead

to
k-1
e <bk‘nl|+z (bj = bjr1)n; —lew -
I+1 =0
+r2§w§”)n§+” +IRC (6.3.33)

I I+1
< 1+Z(bj—bj+1)—7"1 Zw;ﬂ)+7’2 Zw](-w+bk b, 'OT(1 + h)
<b 'Cr (T + h).

It further follows from (6.3.23) that || Y**+!(|o < Ob, '7%(7+h) < C(k7)*(T+
h).
Since kT < T is finite, we have the following theorem.
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Theorem 6.3.4 If the condition (6.3.25) holds, then the explicit schemes
(6.3.8) and (6.8.9) are convergentand the errors satisfy

luf —u(z; ty) < O(r+h),i=1,2,--- ,M—1;k=1,2,--- , N.

K3
That is, the schemes are convergent.

Remark 6.3.2 It has been proven that the convergence of implicit and
explicit schemes are both of the order O(T+h), where O(T) is the error order
of the LI1-algorithm and O(h) is that of D-algorithm. But Langlands and
Henry [129] proved, u(t) can be expressed in terms of the following Taylor
expansion:

u(t) = u(0) + tu'(0) + /Ot u’(t — s)ds, (6.3.34)

from which we see that the accuracy of L1-algorithm (6.5.3) can reach O(72~%),
which is higher than O(T) (it should be noted that, the numerical results show,

even though u(t) has no Taylor expansion (6.3.84), L1-algorithm can still

achieve the accuracy of the order O(t>~%)). In such case, it can be shown

that the convergence of both implicit and explicit finite difference schemes

should be of the order O(T>~% + h).

6.4 Numerical methods for non-linear fractional partial
differential equations

6.4.1 Adomina decomposition method

In the 1980s, G. Adomian presented a decomposition method for deriving the
semi-analytical solutions of the non-linear differential equations. This method
gives the semi-analytical solutions in form of series and can be applied to
solving mathematical, physical, linear, and non-linear ordinary/partial dif-
ferential equations [4,5]. During recent years, the method has been used
to solve fractional differential equations. Momani et al applied Adomian
decomposition method for solving non-linear fractional ordinary differen-
tial system as well as multi-term fractional linear ordinary differential equa-
tion [4,5,168]. Ray and Beral used the method to solve fractional Bayley-Trvk
equation [188]. Jafari and Daftardar-Gjji solved the fractional non-linear
two-point boundary-value problem [117]. Momani [167] derived the solution
of space-time fractional telegraph equation having specific initial-boundary
value conditions. Al-khaled and Momani have solved fractional diffusion-wave
equation [6]. Odibat and Momani employed the modified Adomian decom-
position method, namely, the matrix method, to solve space-time fractional
diffusion-wave equation [174].
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Consider the following generic time fractional partial differential equaiton:
CDYu(x,t) + Lu(z,t) + Nu(z,t) = g(z,t), m—1 <a<m, (6.4.1)

which is equivalent to

" o k
u(z,t) = Z %% +J%(z,t) — T Lu(z,t) + Nu(z,t)]. (6.4.2)
k=0

Let

u(z,t) = Z un(x,t), (6.4.3)
n=0

Nu(z,t) = i An, (6.4.4)
n=0

where A,, is the so-called Adomian polynomials. Substituting (6.4.3) and
(6.4.4) into (6.4.2) gives

e8] m—1 .
OFu(z,0) t* o
n=0 k=0 (6.4.5)

~7e[2(Dunle,t) + 3 4],
n=0 n=0
Then iteratively solving the equation via the following basic relations yields:

iy oFu(x,0) tF

ug(x,t) = 2 aiF E + \7@9(5870
ui(x,t) = —J*(Luo + Ao),
ug(x,t) = —J*“(Luy + A1), (6.4.6)

un+1(a:, t) = —Ja(ﬁun + An)7

Adomian polynomial A,, can be derived from
v = Z /\iui,
=0 - (6.4.7)

N@w) =N (i A%) =) A4,
1=0

n=0

Differentiating the above equation with respect to A for n times leads to the
general form of the Adomian polynomial:
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A, = n'dAn[ (Z,\uﬂ . (6.4.8)
A=0

Hence, the solution of equation (6.4.1) can be given by

N-1
u(z,t) = Jim_ (Z un(x,t)> : (6.4.9)

n=0

Adomian decomposition method possesses the similar convergence to that
of Taylor series, and its convergence and truncated error analyses can be
found in [1,45]. In addition, Adomian decomposition method can also be used
for space-time fractional reaction-diffusion equation with variable coefficients
[225] and for other non-linear equations [117].

The merits of Adomian decomposition method is that, in addition to
avoiding the discretization of equation, the method gives semi-analytical solu-
tions that are fast convergent to exact solution, and enjoys low computational
cost. The method also embraces a broad field of applications. Nevertheless,
the method usually requires the fractional integral of a given function, which
may not be easily obtained sometimes.

6.4.2 Variational iteration method

Variational iteration method [112] is somewhat similar to the Adomian de-
composition method. It is originally developed for quantum mechanics and
is subsequently applied to solving non-linear equations.

Consider the following generic time fractional partial differential equation

CD?U(:CJ) = f(u, uxvuxa:) + g(x,t), (6410)

where f is a non-linear function, g is the source term, m — 1 < a < m, and
the initial-boundary value conditions read:
for 0 < a <1,

{ u(z,0) = p1(x), (6.4.11)

u(z,t) = 0, as |z| — oo;
while for 1 < o < 2,

{ u(@,0) = p1(x),  du(x,0) = a(2), (6.4.12)

u(z ,t)—)O as x| = .
The modified functional of equation (6.4.10) is
¢
e (o) =) + [ MEEDLu(z,8)
0
—f (g, (g )z, (k) ea) — 9(2,§))dE (6.4.13)
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where uy, is the k-th approximation solution and uy is the constrain variation
satisfying dur = 0. A is the generalized Lagrange multiplier which can be
derived by imposing variation operation on both sides of (6.4.13):
t
Suugsr () = Su(z,t) + 0 / NG
(a7 0 ~ ~ ~
(D, €) = f(tk, (r)z, (Ar)za) — 9(2,8)) A€ (6.4.14)

= du(a,t) + 6 Jy ME) (CDgule,€) — g(w,€) ) de

=0.
It follows that

A=—1, form=1; A=&—t, form=2.

In practical computations, we usually use integration by part to first extract
the A from the integrand, and then by comparing the coefficients in the
resulting equation and realizing the arbitrariness of wu,(t), we obtain the
value of A.

Ultimately, we derive the following variation iteration scheme:

when m = 1,

t

g1 (z, t) = ug(z,t) —/ (CD?uk(x,g)

— f(ug, (uk)oz, (up)zz) + g(,€))dE, (6.4.15)

w1 () = w2, 1) — / (€ - (D un(2,€)

- f(uk7 (ukﬁ):ra (Uk):z::r) + g(xa 5))d€> <6416)
uo(x,t) = () + tpa(x).
The solution of (6.4.10) is given by

u(z,t) = klir{; ug(z,t). (6.4.17)

It can be seen that, the basic principle behind the variational iteration
method is to first derive the Lagrange multiplier via variation principle, and
then to rapidly obtain the approximation solution by arbitrarily selecting ini-
tial iteration value ug. The advantage of the method over Adomian decom-
position method is to avoid obtaining Adomian polynomial, whereas, similar
to Adomian decomposition method, the variational iteration method needs
the fractional derivative of a given function, which may not be obtainable
sometimes. The comparison of these two methods for fractional differential
equations can be found in [170,174].
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