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Preface

 

The title of this book, 

 

Drug Synergism and Dose-Effect Data Analysis

 

,
could just as well be reversed to, 

 

Dose-Effect Data Analysis and Drug
Synergism

 

. The two topics are inextricably woven and both are covered
in this book. I decided on the first title because synergism, as a quan-
titative topic, has been neglected in mainstream textbooks of pharma-
cology, though the term and its synonyms, 

 

potentiation

 

 and 

 

super-
additivity,

 

 are mentioned frequently

 

.

 

 As used here, these terms refer
to a phenomenon characterized by drug combinations that produce
exaggerated effects. These effects can be the intended effects or the
adverse effects of a combination of drugs or other chemicals. In some
sense, all pharmacologists, physicians, and most other scientists know
what synergism is, yet, it seems, few are familiar with the quantitative
methodology that is needed to differentiate synergistic responses from
the simply additive responses that are the “expected” effects of drug
combinations. The distinction is a quantitative one, and this book deals
with the quantitative methodology that is needed to make this distinc-
tion. Even when a single drug is administered it enters a system
containing myriads of other chemicals and, therefore, interaction with
one or more of these compounds is possible. Thus, in a very real sense,
this topic has broad applications.

The mathematical foundation for studying the effects of chemical
combinations was laid in the first half of the twentieth century, mainly
through the works of Fisher, Gaddum, Bliss, and Finney. Much of
that early work was directed toward the joint action of various toxins,
insecticides, and fungicides. Probit analysis, a powerful method for
analyzing quantal dose-effect data, grew out of that early work which
almost always used models that constrained the (log) dose-effect data
of the individual drugs to yield parallel regression lines. That con-
straint, the intrinsic complexity of the probit method, and the absence
of computers in that era probably contributed to the present-day
neglect of this old literature and, thus, its exclusion in the curricula
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of today’s students of pharmacology and toxicology. The current wide-
spread availability of computers, a broadening of the theory, and a
general recognition of the importance of combinations in modern
pharmacology have restored interest in this subject. This expanded
theory and the many old and new calculation algorithms it uses
constitute the main subject of this book, and numerous examples
illustrate these calculations.

When experiments are planned, the investigator must have some
expectation of the kind of data that may result and, hence, a famil-
iarity with the methodology needed to analyze the data. This is an
important part of experimental design. In drug experiments these
methods must take into account the variability that is expressed in
the data collected. Indeed, the abundance of experimental designs,
the many ways of measuring effects, and the never-ending appearance
of new drugs and chemicals underscore the need to deal with this
variability. Hence, much of the material of this book draws on statis-
tics. Statistical methods, and the theory that underlies these statis-
tics, come from observations of dose-response data and the model
curves and equations that describe these data. Therefore, many topics
in this book deal with dose-effect data, starting with observations
from a single drug and expanding the concepts to more than one drug
and the effects that result from such combinations. 

Our emphasis is always quantitative since the problem of distin-
guishing a super-additive response from an additive (expected)
response is intrinsically quantitative. When synergism is observed, is
it dependent on the 

 

doses

 

 of the respective drugs, or on the 

 

ratio of
doses

 

 in the combination, or on the 

 

measurement system

 

 that describes
the effect? All of these questions must be ultimately answered, even
though in most cases the mechanism responsible for the synergism
may still remain unknown. But identifying synergism is, in itself, a
valuable first step in illuminating the mechanism.

This book’s first three chapters deal mainly with dose-response
relations, the statistical analysis of the data that come from these
relations, and the models that describe them. Linear regression theory
is an important part of this analysis. That topic, though well repre-
sented in many textbooks, is treated here with the special needs of
the pharmacologist in mind. These include calculations of 

 

D

 

50

 

 (and

 

ED50

 

) values and their standard errors, relative potency determina-
tions, and the common transformations of drug data that allow these
estimates. In Chapter 4 we put this all together in calculations of
synergism for 

 

graded 

 

data. Those calculations allow a distinction
between synergism and additivity at one particular effect level. This
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idea is broadened in Chapter 5 where we discuss a newer concept,
the 

 

composite additive line

 

, that extends the analysis to other effect
levels. Of special importance in pharmacology is the use of probit
analysis, a subject that is absent in most statistics books. Probit
analysis is a useful and powerful weighted regression technique that
is ideally suited to drug experiments that produce binary outcomes
(quantal effects) as opposed to effects on a continuous scale. Logit
analysis, also applicable to quantal data, is also presented, and the
pros and cons of both methods are discussed. Synergism, and the
methodology that distinguishes it from simple additivity, has been
traditionally tied to the 

 

isobologram.

 

 This historical plot, while useful
for graphical display, does not lead to precise statistical conclusions.
In that regard we have introduced an alternate graphical method
(Chapter 7) that is more useful.

Much of the content of Chapters 7–11 is new. Especially notewor-
thy is the use of a single compound administered at two different
anatomical sites. Site-site synergism represents a novel way of study-
ing drug mechanisms and some of its benefits are discussed in Chapter
9. Also noteworthy is the 

 

response surface

 

 approach. In contrast to
the isobolar approach that is tied to one effect level, this method
examines interactions over a range of effects and doses. 

As previously mentioned computer technology has had an impor-
tant impact on the analysis of drug data. Some topics, such as probit
analysis and nonlinear regression, admittedly require tedious calcu-
lations; prior to the widespread availability of computers these calcu-
lations taxed the ability and time of most scientists. Today, these
calculations are readily performed with the aid of computers. However,
the concepts behind these calculations still remain hidden. For that
reason we have included material on nonlinear regression that is
applicable to dose-response curves (in Chapter 11) and the details of
probit analysis (in Chapter 6). With the exception of these two topics,
virtually all the other calculations described in this book can be readily
performed with the aid of a calculator and the Appendix tables, though
many will still want the convenience of the computer. For that reason,
a companion software package that performs the calculations is cur-
rently in preparation (see page 204). 

 

Illustrations of calculations in
the text use fewer figures than those retained by the computer. Accord-
ingly, some intermediate results in the text may differ slightly from
computer values due to rounding.

 

While our focus is on drug data, the methods presented are equally
applicable to a wider class of chemicals, as is evident in the historical
development of this subject. The works of many scientists inspired me
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to write this book. Most notable are those “giants” of pharmacology
and statistics, previously mentioned, who paved the way over 50 years
ago. But a special thanks is also due to all those scientists whose works
are cited throughout this book, especially Martin Adler, Alan Cowan,
Donna Hammond, Frank Porreca, Robert Raffa, Sandra Roerig, and
George Wilcox. I am also much indebted to Jeffrey McCary who wrote
the companion computer programs and my editor, Bob Stern, who
encouraged me to undertake this work and Helena Redshaw who kept
things running smoothly. Steve Menke deserves special thanks for his
excellent work in production. Finally, I would like to thank my family
for excusing me from many family functions, basketball games, and
track meets while I worked on this book.

R.J. Tallarida
Philadelphia

 2000
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CHAPTER 1

 

Combinations of Chemicals

 

I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when you
cannot express it in numbers, your knowledge is of a meagre and
unsatisfactory kind; it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to that stage of Science, whatever
the matter my be.

 

Lord Kelvin (1824–1907)

 

1.1  Introduction

 

A drug or other chemical may produce multiple effects in the system
with which it interacts. A system is a set of interconnected components
that has some purpose. In biology the system is often an entire organ-
ism. But other systems may be considered, such as an organ, a part
of an organ, a cell, or a cellular component. An effect is a change in
some attribute of the system. If the chemical is a fertilizer an obvious
effect is the change in crop yield. If the chemical is a pesticide the
effect might be the destruction or inhibition of the invading pest. In
a biomedical context the chemicals of most interest in this book are
drugs and endogenous compounds, and the effects are changes in the
organism or part thereof. Familiar effects of drugs include changes in
blood pressure, body temperature, heart rate, pain perception, etc.
These are overt effects; other drug effects are intimate and not easily
observed, such as the opening or closing of an ion channel in the cell
membrane or the release of some other chemical substance from the
cell. Drug effects can be desirable or undesirable (adverse effects). The
main concern of this book is the study of two or more chemicals present
together. Specifically, the interest is in drugs or other chemicals that
act together to produce overtly similar effects, e.g., two analgesics or
two antihypertensives.
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When compounds with similar overt actions are present together,
the combined effect may be predictable from knowledge of the individ-
ual drug potencies, i.e., there is simple additivity. In contrast, the
effect of the combination may be either exaggerated or even attenu-
ated. The exaggerated effect is termed 

 

super-additive 

 

or 

 

synergistic

 

whereas the blunted effect is termed 

 

sub-additive

 

. In each of these
cases the individual compounds are contributing to the effect, but
something occurs with their joint presence that either enhances or
diminishes the effect expected from the pair.

Whether the pair of compounds consists of drugs, fertilizers, pes-
ticides, or any other chemical types that act similarly, the methods of
analysis presented here will apply. Our focus is on the relation between
concentrations and effects and the methodology that distinguishes
between additive and non-additive interactions, but, in some cases,
this distinction may also help us better understand the intimate
actions of the compounds. Several methods of analysis for distinguish-
ing between simple additivity and the other non-additive outcomes
will be discussed. These involve the use of quantitative information
regarding the dose (or concentration) and the magnitude of the effect.
The data contributing to this information are analyzed in a variety of
different ways, very often from graphs of the relation between concen-
tration and effect or from suitable mathematical transformations of
these quantities. Accordingly, the dose-response relation is a key topic
that is applied throughout this book. 

Drug effects are often highly variable and the variability exhib-
ited in this kind of data necessitates the use of statistical method-
ology. Thus, much of the material we discuss will consist of dose-
effect curves and the statistical analysis of these curves, often with
the aim of distinguishing simple additivity from sub-additivity and
synergism for compounds acting together. Synergism is especially
important in clinical situations with drugs, for it allows the use of
smaller amounts of the constituent drugs. An adverse effect may
also synergize, a phenomenon of special importance in clinical sit-
uations. The detection of synergism may also be useful in illumi-
nating mechanisms of drug action and in the development of new
theories. The same applies to synergistic combinations of other
classes of chemicals. Although observational results are the primary
material of pharmacology, the use of theory allows a correlation of
these results, places them into the regularities of experience that
we call principles, and uses these principles to predict the results
of new experiments. 
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1.2  Independent joint action of drugs

 

If the dose-response relation is known for each of two chemicals used
individually, how can the expected response for some combination of
the two be calculated? This is a key question that was first systemat-
ically addressed by Bliss (1939) and subsequently expanded by Finney
(1942) in connection with insecticides. An important consideration is
whether the two chemicals act independently. Bliss referred to three
types of joint action that he termed 

 

independent joint action, similar
joint action 

 

and

 

 synergistic action

 

. An important concept contained in
the first two of these is the idea of independent action. Similar and
independent action are useful for our future discussion of drug com-
binations. By this we mean that each drug produces overtly similar
effects (for example, each lowers blood pressure) such that all or part
of one component may be substituted for the other in some proportion
that is based on the dose-response relations of the two.

For example, an antihypertensive drug that lowers blood pressure
by blocking angiotensin II receptors and one that exerts its antihyper-
tensive effect through diuresis would fit this definition of similar inde-
pendent joint action. Their individual potencies allow a calculation of
how much of one is equivalent to the other in the production of this
effect, a calculation that is discussed in the next section. In contrast,
two antihypertensive drugs that have general 

 

beta

 

 adrenoceptor block
as components of their action would not fit this definition because of
competition of the two for the common 

 

beta

 

 receptor. 
In general, if two overtly similar drugs (either two antagonists or

two agonists) act on the same cellular receptor, their actions are not
independent because the effect of their combination depends on the
bound concentrations of the two (and their intrinsic activities if they
are agonists). One could not substitute an amount of one for the other
in a combination based solely on their individual dose-response rela-
tions because a change in the concentration of one affects the bound
concentrations of both. (Competition is discussed in Chapter 9.) The
importance of independent action is further illustrated in our discus-
sion of additivity as it is commonly defined in pharmacology.

 

1.3  Additivity

 

Drugs or other chemicals that produce overtly similar effects will
generally do so with different doses. The dose-response relation of each
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agent provides this information and allows one to focus on a specific
magnitude of the effect. For example, two drugs that are each capable
of increasing the heart rate may differ in the respective doses needed
to increase the rate. To distinguish these quantitatively one can choose
an effect level, for example a rate increase of 10 beats per minute. The
first drug might achieve this with a dose of 100 mg whereas the second
requires only 25 mg. These are indicators of drug 

 

potency. 

 

The drug
that requires the lower dose is said to have a greater potency than the
other. The dose ratio, in this case 100/25 = 4, called the 

 

relative potency

 

,
is a convenient indicator of this quantitative attribute of the drug pair.
This same relative potency may or may not apply to all levels of effect
for these two drugs, a concept that is discussed in some detail in
Chapter 2. For now we will assume a constant relative potency, i.e.,
one drug is four times more potent than the other at 

 

all levels of effect

 

achieved by each drug. Further, we now introduce notations that will
be convenient in this and in subsequent discussions. 

For drug A, the lower potency drug, its dose when it acts alone is
denoted by the italicized symbol, 

 

A

 

; for drug B, the corresponding
quantity is denoted 

 

B

 

. The relative potency 

 

R

 

 is then 

 

A

 

/

 

B

 

, a value
greater than one.

 

 

 

We now consider the situation in which both drugs
are present together. In this situation lower case symbols are used,
i.e., we denote by 

 

a

 

 and 

 

b

 

 the doses of the respective constituents when
given as a combination. Because these drugs are assumed to have a
constant relative potency (

 

R

 

) the combination (

 

a, b

 

) can be expressed
as an equivalent quantity of either drug. If drug A is the reference
drug then the combination dose satisfies the relation

 

a

 

 + 

 

Rb

 

 = 

 

A.

 

(1.1)

In words, Equation 1.1 means that one can use respective amounts

 

a

 

 and 

 

b

 

 calculated from the above in order to achieve the effect of
dose 

 

A

 

 of drug A acting alone. Implicit in Equation 1.1 is the concept
of independent joint action, i.e., the presence of B is like the addition
of a more concentrated form of A. The same combination (

 

a, b

 

) can
also be expressed in terms of an equivalent of drug B and is given by
the equation

 

a

 

/

 

R

 

 + 

 

b

 

 = 

 

B.

 

(1.2)

Here the less potent drug (A) acts like a dilute version of the other
and adds to B. The relations expressed by Equations 1.1 and 1.2 mean
that the doses in the combination contribute to the effect in accord
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with the individual drug potencies, a situation that is termed 

 

additive

 

.
Rearrangement of these gives a more familiar form:

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 = 1. (1.3)

In each of the above equations, the doses 

 

A

 

 and 

 

B

 

 are equieffective
doses of the individual agents when each is present alone, 

 

R

 

 is the
ratio 

 

A

 

/

 

B

 

, and the quantities 

 

a

 

 and 

 

b

 

 are the respective doses in the
combination that give the effect level achieved by dose 

 

A

 

 alone or dose

 

B

 

 alone. When the relative potency 

 

R

 

 is the same at all effect levels
the first two forms are convenient; however, when 

 

R

 

 varies with the
effect level, the more explicit relation of Equation 1.3 is convenient
because it uses the values of 

 

A

 

 and 

 

B

 

 that apply to that effect. Equief-
fective dose pairs are termed 

 

isoboles

 

; thus, (

 

A

 

, 0), (0, 

 

B

 

) and the pair
(

 

a, b

 

) given by the above relations are isoboles. Additivity as defined
here is a most important concept. Departure from additivity means
that some kind of interaction occurs when both substances are present
together. Hence, calculating quantities that are additive is the basis
for determining these departures when actual pairs are studied. Non-
additive pairs may be a useful first step in illuminating mechanisms.

 

1.4  Isobologram

 

Equation 1.3 provides a simple graph of equieffective dose pairs (

 

a, b

 

).
If 

 

A

 

 and 

 

B

 

 are known to be the respective doses that give a specified
effect, e.g., 50% of the maximum effect, when each agent acts alone
then these are constants that are used to identify the doses 

 

a

 

 and 

 

b

 

in a combination that produces this same effect. These combination
doses must satisfy Equation 1.3. For example, if 

 

A

 

 = 500 mg and 

 

B

 

 =
100 mg, then the equation, 

 

a

 

/500 + 

 

b

 

/100 = 1, gives additive dose
combinations such as (100, 80), (250, 50), etc. The totality of pairs
(

 

a, b

 

) graph as the straight line shown in Figure 1.1. This 

 

line of
additivity

 

 has Cartesian coordinates that represent all possible com-
binations that are equivalent in producing the effect of either 500 mg
of drug A or 100 mg of drug B. A graph of this kind is useful for
displaying the results of actual tests with combinations. Such testing
may reveal departures from additivity. Suppose, for example, that the
combination 

 

a

 

 = 100 mg, 

 

b

 

 = 50 mg produced the specified effect level.
This point (100, 50) lies below the line of additivity as shown in
Figure 1.2 as point P, meaning that lesser quantities of drugs A and
B are needed in the combination. Some interaction has taken place,
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either between the drugs or the systems on which they jointly act, and
therefore quantities less than those predicted by additivity are needed.
This is called a super-additive or 

 

synergistic

 

 combination. In contrast,
some combinations may require doses that are greater than the addi-
tive amounts of Equation 1.3 in which case the point representing the
combination will lie above the line of additivity as shown in Figure 1.2
as point Q. This phenomenon means sub-additivity, i.e., the constitu-
ents are somewhat antagonistic for some reason. This graph, consisting
of the additive line and the actual dose pairs needed to attain the
specific effect level is called an 

 

isobologram

 

. It was introduced by
Loewe who conducted a number of studies of combinations that used
this kind of graph. (See Loewe, 1927, 1928, 1953, 1957.) These non-
additive cases are expressed as inequality relations that contrast with
Equation 1.3 as follows:

 

a

 

/

 

A 

 

+ 

 

b

 

/

 

B 

 

< 1. (1.4)

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 > 1. (1.5)

 

Relation 1.4 indicates synergism or super-additivity whereas Relation
1.5 means sub-additivity.

 

Figure 1.1.  

 

Line of additivity of the isobologram.  Intercepts are doses of each when
present alone.
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Testing two drugs together may reveal many synergistic combina-
tions, and, thus, their graphical representation suggests a smooth
curve that is concave upward as shown in Figure 1.3 (curve I) or a
curve that is concave downward, indicative of sub-additive combina-
tions, shown as curve II in the figure. Curves, or sets of discrete points
(doses) that give the same effect, are termed 

 

isoboles

 

; these are curves
of constant effect and have termini (axial points) that indicate the
individual doses, 

 

A

 

 of drug A and 

 

B

 

 of drug B when each is present
alone. Although smooth curves such as these indicate either synergism
or sub-additivity over all dose combinations, there is no reason why
such patterns must occur when actual combinations of chemicals are
tested. In other words, some dose pairs may be synergistic while others
are additive, or even sub-additive. Accordingly, the isoboles of
Figure 1.3 should be regarded only as models that could describe the
combined action of two active drugs. 

An interesting case is that in which one of the drugs (drug A) is
inactive when given alone. Here the isobole of additivity is a hori-
zontal line (Figure 1.4) so that synergism and sub-additivity are
indicated by dose pairs giving points P and Q below and above this
line, respectively.

 

Figure 1.2.  

 

Isobologram showing line of additivity and dose combination P that is
synergistic and dose combination Q that is sub-additive.

0 100 200 300 400 500 600

A

a

b

B

P

Q

120

100

80

60

40

20

0

 

C0457_frame_C1  Page 7  Friday, May 19, 2000  12:05 AM



 

8 COMBINATIONS OF CHEMICALS

 

Figure 1.3.  

 

Isobologram showing line of additivity and curves for combinations that
are synergistic (curve I) and sub-additive (curve II).

 

Figure 1.4.  

 

Isobologram when one drug (A) is inactive.  The active drug (B) produces
the desired effect with dose 

 

b

 

 and this effect is independent of the dose of A in a
theoretically additive combination.  If actual dose combinations, indicated by points P
and Q, produce the specified effect, these are synergistic and sub-additive, respectively.
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1.5  Chloral hydrate and ethyl alcohol

 

The isobologram seems to have attracted little attention until it was used
in a well-publicized study of the combined action of chloral hydrate and
alcohol by Gessner and Cabana (1970). Both agents are hypnotics; that
is, they are capable of inducing sleep, and this study was aimed at
answering the question of whether the combination of the two was syn-
ergistic. The experiment was carried out in mice that received intraperi-
toneal doses of the individual drugs and combinations. An indicator of
hypnosis was the loss of the righting reflex and that could be quantitated
for each dose or dose combination as the proportion of animals that
displayed this endpoint. The effect level used was hypnosis in 50% of the
mice tested (

 

p

 

 = 0.5). The dose of either drug (acting alone) that gives
this level is the 

 

ED50

 

. For ethanol (horizontal axis) the 

 

ED50

 

 was found
to be 2666 mg/kg, and for chloral hydrate the value was 244 mg/kg
(vertical axis). These are the respective mean values obtained from anal-
ysis of the individual dose-effect curves of the agents. For our current
purpose, we will postpone discussions of dose-effect data analysis and
the methods that gave these estimates of the means and thus concentrate
only on the display of data points shown on the isobologram of Figure 1.5. 

 

Figure 1.5.  

 

Isobologram for the hypnotic effect of a combination of ethyl alcohol and chloral
hydrate.  (From Gessner and Cabana, A study of the hypnotic and of the toxic effects of
chloral hydrate and ethanol, 

 

J. Pharmacol. Exp. Ther., 1970, with permission.)
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This figure shows a solid line having vertical intercept 244 and
horizontal intercept 2666, these being the individual drug ED50 val-
ues. This is the line of additivity. Individual dose pairs that gave 50%
effects are also plotted, and these points show either horizontal or
vertical error bars whose meaning is related to the way these were
obtained. In some cases the chloral hydrate dose was fixed, and the
amount of ethanol used concurrently to produce the 50% response was
estimated (from regression analysis). Accordingly, this estimate of the
ethanol mean dose has statistical confidence limits that are displayed
as horizontal bars through the points. In cases in which ethanol was
fixed and chloral hydrate varied until the 50% response was attained,
we get estimates of the latter’s dose and the confidence limits of this
mean are indicated by vertical bars. 

The main idea here is that some of the data points appear to be
well off the line of additivity, while others are close to the line and
have error bars that intersect it. As a purely visual conclusion this
means that some combinations are synergistic whereas others are
simply additive. In other words, synergism is not only a property of
the drug pair but also depends on the relative amounts in the combi-
nation tested. Another observation is that a plot of this kind may not
be adequate for a rigorous conclusion since terms like “on” and “off”
the line are loose constructs, as is the location of the “line” itself, since
its vertical and horizontal intercepts (the individual ED50s) are also
estimates and, thus, have error. 

In this same article the authors report the results of toxicity exper-
iments with the same two drugs. In those tests the incidence of fatality
was determined; thus, the important determination is the dose (or dose
combination) that is lethal in 50% of the animals. The isobologram in
this case was based on LD50 values and therefore is different from
the isobologram for hypnosis. In the lethality isobologram (not shown
here), there was synergism for only one of the dose pairs tested (highest
ratio of chloral hydrate), simple additivity in combinations containing
lower proportions of chloral hydrate, and apparent sub-additivity in
combinations containing larger amounts of alcohol. This finding points
out that the isobologram for one endpoint is not necessarily the same
as that for some other endpoint. 

1.6  The need for statistics

The distinction between additive and nonadditive actions uses dose
values that produce a specified level of effect. Up to now our discus-

C0457_frame_C1  Page 10  Friday, May 19, 2000  12:05 AM



THE NEED FOR STATISTICS 11

sion has treated these doses as exact quantities. These are displayed
as points on the isobologram, and the basis of this plot is the additivity
equation given by Equation 1.3 and the inequalities given in expres-
sions 1.4 and 1.5. But in each of these expressions the quantities,
a, b, A, and B that denote doses, represent values that are known
only in a probabilistic sense. In other words the values for these
quantities are only estimates made from dose-effect data. This is so
because of the inherent variability of the dose-effect data so that the
quantities are dose (or concentration) values that are derived from
modeling these data. 

In practice, dose-effect data are displayed as points on a graph.
For any given drug or chemical, the administration of even a precise
dose leads to different measures of the effect, whether in the same
animal (or system) or in different animals treated identically. These
different outcomes may be due in part to problems in the metric
used to define the effect, but, even in the absence of metric problems,
there is inherent biological variability. How, then, are the doses a,
b, etc., obtained? Most often these come from the mathematical
models that are used to describe the underlying relation between
dose and effect. Thus, a precisely controlled dose leads to a variable
response and some method (such as “least squares”) is used to obtain
the mean effect. Commonly, regression methods are used to esti-
mate the mean effect. The techniques of regression analysis (linear
and nonlinear) require that the dose (independent variable) be error
free and that the effect values obey some statistical distribution.
In practical terms there is error in the dependent variable (the
effect); it follows, therefore, that the use of models carries with it
some uncertainty.

Since the true effect of a dose is unknown and merely estimated
from the dose-response curve, the assignment of a value to it, e.g., 50%
of the animals tested, means that the dose is also an estimate from
the model equation. A theoretical effect level is used in the derived
model equation, and the dose is calculated from this equation. In short,
these calculated doses also have errors, even though the actual doses
used as data in the model are presumed to be error free. Thus, every
ED50 or LD50 is an estimate, a number with confidence limits. When
these values are used for the individual drugs as intercept numbers
defining the line of additivity in an isobologram, it becomes clear that
the precise location of this line is unknown, i.e., the values of A and
B used to anchor the line are random variables that often have wide
confidence limits. This is also true for the combination doses (a, b) so
that all constituents of the isobologram have errors. 
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If modeling is done on the isobolar points (a, b), there is the addi-
tional theoretical problem of dealing with uncertainty in both vari-
ables. For example, the common linear regression procedure (discussed
in Chapters 2 and 3) would not apply to this situation of dual uncer-
tainty. The isobologram is thus a visual display that has some utility
in approximate analysis but is not very useful as a sole device for
making precise conclusions about the nature of the interaction, i.e.,
distinguishing between additive and nonadditive joint action. 

Special caution is needed in situations in which the points appear
somewhat close to the “line” of additivity. Much of the material of this
book deals with methods of analysis that allow statistical tests to
distinguish departures from simple additivity, and, because the under-
lying theory incorporates doses such as a, b, A, and B, we shall devote
the next two chapters to discussions of how these estimates are made
from dose-effect data analysis. The reader who is sufficiently well
versed in this topic can skip these chapters and go on to Chapter 4,
which deals with methods that distinguish synergism (and sub-addi-
tivity) from additivity in common experimental designs. 

1.7  The emergence of quantitative methods 
for studying drug combinations

Quantitative methodology for studying biologically active chemical
combinations began with applications to poisons. The method of isobo-
les had its earliest application in studies of data from toxicity tests for
the assay of insecticides and fungicides, and that application, in turn,
led to broader pharmacological uses and new statistical developments.
Yet, quantitative methods for studying agonist combinations have not
been prominently featured in mainstream textbooks of pharmacology.
Nevertheless, in recent years the importance of this subject has been
appreciated by more and more pharmacologists, especially those who
study drugs that affect the nervous system to alter pain perception,
behavior, locomotion, and mood. Indeed, these are also the classes of
drugs that tend to be abused, and this recognition probably accounts
for the growing use of isobolographic and related quantitative methods
by investigators in the drug abuse field. It is well known that drug
abusers rarely abuse one drug; most often poly-drug usage is the norm.

Properly used drugs also interact, thereby enhancing both the
desirable and the undesirable effects. Aside from the obvious clinical
importance there is a growing recognition that the quantitative study

C0457_frame_C1  Page 12  Friday, May 19, 2000  12:05 AM



THE EMERGENCE OF QUANTITATIVE METHODS 13

of drug combinations, especially the detection of true drug synergism,
can be a useful first step in illuminating the mechanism. Many recent
drug combination studies, especially those dealing with opioids and
other analgesics, have this as their major goal. This broadened appli-
cation has, in turn, spawned new statistical developments to aid in
this effort.

The reference list at the end of this chapter includes a number of
studies that employed these methods and thus illustrate the use of
theory and statistics. The list also includes works that are primarily
concerned with theory and statistics. These are useful for improving
experimental design and data analysis. While this reference list is not
exhaustive it does provide a guide for investigators who wish to under-
take quantitative studies of drug combinations. Many of these refer-
ences are cited specifically in the detailed subjects contained in sub-
sequent chapters of this book. 

C0457_frame_C1  Page 13  Friday, May 19, 2000  12:05 AM





CHAPTER 1

References and Suggested Reading

S denotes works that are primarily statistical and/or theoretical.

Adams, J.U., Tallarida, R.J., Geller, E.B., and Adler, M.W. Combinations of
PL017 and DPDPE produce simple additivity in an analgesic test in rats:
An isobolographic analysis. In Problems of Drug Dependence, L.S. Harris,
Ed. NIDA Research Monograph 119:301, 1992.

Adams, J.U., Tallarida, R.J., Geller, E.B., and Adler, M.W. Isobolographic
super-additivity between delta and mu opioid agonists in the rat depends
on the ratio of compounds, the mu agonist and the analgesic assay used.
J. Pharmacol. Exp. Ther. 266:1261–1267, 1993.

Aran, S. and Hammond, D.L. Antagonism of baclofen-induced antinociception
by intrathecal administration of phaclofen or 2–hydroxy-saclofen, but not
delta-aminovaleric acid in the rat. J. Pharmacol. Exp. Ther. 257:360–368,
1991.

Berenbaum, M.C. What is Synergy? Pharmacol. Rev. 41:93–144, 1989. (S)
Bian, D., Ossipov, M.H., Ibrahim, M., Raffa, R.B., Tallarida, R.J., Malan, T.P.,

Lai, J., and Porreca, F. Loss of antiallodynic and antinociceptive spinal-
supraspinal morphine synergy in nerve-injured rats: Restoration by MK-
801 or dynorphin antiserum. Brain Res. 831:55–63, 1999.

Bliss, C.I. The method of probits. Science, 79: 38–39, 1934. (S)
Bliss, C.I. The method of probits — a correction. Science, 79: 409–410, 1934. (S)
Bliss, C.I. The determination of dosage-mortality curves for small numbers.

Quart. J. Pharmacol. 11:192–216, 1938. (S)
Bliss, C.I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26:585–615,

1939.(S)
Busby, R.C and Tallarida, R.J. On the analysis of straight line data in phar-

macology and biochemistry. J. Theor. Biol. 93:867–879, 1981. (S)
Carter, W.H., Gennings, C., Staniswalis, J.G., Campbell, E.D., and White,

K.L., Jr. A statistical approach to the construction and analysis of isobo-
lograms. J. Am. Coll. Toxicol. 7:963–973, 1988. (S)

Draper, N. and Smith, H. Applied Regression Analysis, 2nd ed. Wiley, New
York, 1981. (S)

C0457_frame_C1  Page 15  Friday, May 19, 2000  12:05 AM



16 COMBINATIONS OF CHEMICALS

Eisenstein, T.K., Meissler, J.J., Tallarida, R.J., Rogers, T.J., Geller, E., and
Adler M.W. Combination of opioids with selectivity for mu or delta recep-
tors exhibit dose-dependent super- and sub-additive effects on splenic
plaque-forming cell responses. (Abstract) Soc. Leukocyte Biol., Baltimore,
Dec., 1997.

Fairbanks, C.A. and Wilcox, G.L. Spinal antinociceptive synergism between
morphine and clonidine persists in mice made acutely or chronically tol-
erant to morphine. J. Pharmacol. Exp. Ther. 288:1107–1116, 1999.

Fieller, E.C. A fundamental formula in the statistics of biological assay and
some applications. Quart. J. Pharmacy and Pharmacol. 17:117–123, 1944.
(S)

Finney, D.J. The analysis of toxicity tests on mixtures of poisons. Ann. Appl.
Biol. 29:82–94, 1942. (S)

Finney, D.J. Probit Analysis, 3rd ed. Cambridge, 1971. (S)
Fisher, R.A. Appendix to Bliss, C.I. The case of zero survivors. Ann. Appl. Biol.

22: 164–165, 1935. (S)
Freeman, K.A., Bove, A.A., and Tallarida, R.J. Additive and super-additive

combinations of diltiazem and glyceryl trinitrate in isolated rabbit aorta.
Drug Dev. Res. 25: 171–179, 1992.

Gaddum, J. H. Reports on biological standards, III. Methods of biological assay
depending on a quantal response. Spec. Rep. Ser. Med. Res. Council,
London, no. 183, 1933. (S)

Gennings, C, Carter, W.H., Jr., Campbell, E.D., Staniswalis, J.G., Martin, T.J.,
Martin, B.R., and White, K.L., Jr., Isobolographic characterization of drug
interactions incorporating biological variability. J. Pharmacol. Exp. Ther.
252:208–217, 1990. (S)

Gentili, M., Houssel, P., Osman, M., Henel, D., Juhel, A., and Bonnet, F. Intra-
articular morphine and clonidine produce comparable analgesia but the
combination is not more effective. Br. J. Anaesth. 79:660–661, 1997.

Gessner, P.K. The isobolographic method applied to drug interactions. In Drug
Interactions, Morselli, P.L., Garattini, S., and Cohen, S.N., Eds. Raven
Press, New York, 1974.

Gessner, P.K. and Cabana, B.E. A study of the hypnotic and of the toxic effects
of chloral hydrate and ethanol. J. Pharmacol. Exp. Ther. 174: 247–259,
1970.

Hammond, D.L., Donahue, B.B., and Stewart, P.E. Role of spinal delta-1 and
delta-2 opioid receptors in the antinociception produced by microinjection
of L-glutamate in the ventromedial medulla of the rat. Brain Res.
765:177–181, 1997.

Hammond, D.L., Hurley, R.W., Glabow, T.S., and Tallarida, R.J. Character-
ization of the interaction between supraspinal and spinal delta-1 and delta-
2 opioid receptors in the production of antinociception in the rat. (Abstract)
Soc. Neurosci. 1998.

Hewlett, P.S. and Plackett, R.L. The Interpretation of Quantal Responses in
Biology. University Park Press, Baltimore, 1979. (S)

C0457_frame_C1  Page 16  Friday, May 19, 2000  12:05 AM



REFERENCES AND SUGGESTED READING 17

Horan, P., Tallarida, R.J., Haaseth, R.C., Matsunaga, T.O., Hruby, V.J., and
Porreca, F. Antinociceptive interactions of opioid delta receptor agonists
with morphine in mice: Supra- and sub-additivity. Life Sci. 50: 1535–1541,
1992.

Hurley, R.W., Grabow, T.S. Tallarida, R.J., and Hammond, D.L. Interaction
between medullary and spinal delta-1 and delta-2 opioid receptors in the
production of antinociception in the rat. J. Pharmacol. Exp. Ther.
289:993–999, 1999. 

Kimmel, H.L., Tallarida, R.J., and Holtzman, S.G. Synergism between
buprenorphine and cocaine on the rotational behavior of the nigrally-
lesioned rat. Psychopharmacology. 133:372–377, 1997.

Lashbrook, J., Ossipov, M.H., Hunter, J.C., Raffa, R.B., Tallarida, R.J., and
Porreca, F. Synergistic antiallodynic effects of spinal morphine with ketor-
ollac and selective COX-1 and COX-2 inhibitors in nerve-injured rats. Pain
82:65–72, 1999.

Lee, N.M., Leybin, L., Chang, J.K., and Loh, H.H. Opiate and peptide inter-
action: Effect of enkephalins on morphine analgesia. Eur. J. Pharmacol.
68: 181, 1980.

Loewe, S. Die Mischiarnei. Klin. Wochenschr. 6:1077–1085, 1927. (S)
Loewe, S. Die quantitativen Probleme der Pharmakologie. Ergebn. Physiol.

27:47–187, 1928. (S)
Loewe, S. The problem of synergism and antagonism of combined drugs.

Arzneimittelforschung 3:285–290, 1953. (S)
Loewe, S. Antagonism and antagonists. Pharmacol. Rev. 9:237–242, 1957. (S)
Mattia, A., Vanderah, T., Raffa, R.B., Vaught, J.L., Tallarida, R.J., and

Porreca, F. Characterization of the unusual antinociceptive profile of tra-
madol in mice. Drug Dev. Res. 28:176–182, 1992.

McCary, J.D. and Tallarida, R.J. A program for analyzing synergistic inter-
actions from dose-effect data. Analgesia 3:297–305, 1998. (S)

McGowan, M.K. and Hammond, D.L. Intrathecal GABA-B antagonists atten-
uate the antinociception produced by microinjection of L-glutamate into
the ventromedial medulla of the rat. Brain Res. 607:39–46, 1993.

Ossipov, M.H., Harris, S., Lloyd, P., and Messineo, E. An isobolographic anal-
ysis of the antinociceptive effect of systemically and intrathecally admin-
istered combinations of clonidine and opiates. J. Pharmacol. Exp. Ther.
255:1107–1116, 1990.

Ossipov, M.H., Lozito, R., Messineo, E., Green, J., Harris, S., and Lloyd, P.
Spinal antinociceptive synergy between clonidine and morphine, U69593,
and DPDPE: Isobolographic analysis. Life Sci. 46:PL71–76, 1990.

Pircio, A.W., Buyniski, J.P., and Roebel, L.E. Pharmacological effects of a
combination of butorphanol and acetaminophen. Arch. Int. Pharmacodyn.
235:116–123, 1978.

Plummer, J.L. and Short, T.G. Statistical modeling of the effects of drug
combinations. J. Pharmacol. Methods. 23:297–309, 1990. (S)

C0457_frame_C1  Page 17  Friday, May 19, 2000  12:05 AM



18 COMBINATIONS OF CHEMICALS

Porreca, F., Jiang, Qi, and Tallarida, R.J. Modulation of morphine antinoci-
ception by peripheral [Leu5]-enkephalin: A synergistic interaction. Eur. J.
Pharmacol. 179: 463–468, 1990.

Porreca, F., Mosberg, H.I., Hurst, R., Hruby, V.J., and Burks, T.J. Roles of
mu, delta and kappa opioid receptors in spinal and supraspinal mediation
of gastrointestinal transit effects and hot plate analgesia in the mouse. J.
Pharmacol. Exp. Ther. 230: 341–348, 1984.

Price, D.D., Mao, J., Juan, L., Caruso, F.S., Frenk, H., and Mayer, D.J. Effects
of the combined oral administration of NSAIDS and dextromethorphan on
behavioral symptoms indicative of arthritic pain in rats. Pain 68:119–127,
1996.

Raffa, R.B., Friderichs, E., Reimann, W., Shank, R.P., Codd, E.E., Vaught,
J.L., Jacoby, H.I., and Selve, N. Complementary and synergistic antinoci-
ceptive interaction between the enantiomers of tramadol. J. Pharmacol.
Exp. Ther. 267:331–340, 1993.

Raffa, R.B., Stone, D.J., and Tallarida, R.J. Antinociceptive self synergy
between spinal and supraspinal acetaminophen (Paracetamol). Interna-
tional Pain Conference Austria, 1999.

Roerig, S.C., Hoffman, R.G., Takemori, A.E., Wilcox, G.L., and Fujimoto, J.M.
Isobolographic analysis of analgesic interactions between intrathecally and
intracerebroventricularly administered fentanyl, morphine and D-Ala2–D-
Leu-Enkephalin in morphine-tolerant and nontolerant mice. J. Pharmacol.
Exp. Ther. 257:1091–1099, 1991.

Sofuoglo, M., Portoghese, P.S., and Takemori, A.E. Differential antagonism of
delta opioid agonists by naltrindole and its benzofuran analog (NTB) in
mice: Evidence for delta receptor subtypes. J. Pharmacol. Exp. Ther.
257:676–680, 1991.

Tallarida, R.J. Statistical analysis of drug combinations for synergism. Pain
49:93–97, 1992. (S)

Tallarida, R.J. and Murray, R.B. Manual of Pharmacologic Calculation with
Computer Programs, 2nd ed. Springer Verlag, New York, 1987. (S)

Tallarida, R.J. and Raffa, R.B. Testing for synergism over a range of fixed
ratio drug combinations: Replacing the isobologram. Life Sci. 58:PL23–28,
1996. (S)

Tallarida, R.J., Kimmel, H.L and Holtzman, S.G. Theory and statistics of
detecting synergism between two active drugs: Cocaine and buprenor-
phine. Psychopharmacology 133:378–382, 1997. (S)

Tallarida, R.J., Porreca, F., and Cowan, A. Statistical analysis of drug-drug
and site-site interactions with isobolograms. Life Sci. 45:947–961, 1989. (S)

Tallarida, R.J., Stone, D.J., and Raffa, R.B. Efficient designs for studying
synergistic drug combinations. Life Sci. 61:PL417–425, 1997. (S)

Tallarida, R.J., Stone, D.J., McCary, J.D., and Raffa, R.B. A response surface
analysis of synergism between morphine and clonidine. J. Pharmacol. Exp.
Ther. 289:8–13, 1999. (S)

Wessinger, W.D. Approaches to the study of drug interactions in behavioral
pharmacology. Neurosci. Biobehav. Rev. 10:103–113, 1986.

C0457_frame_C1  Page 18  Friday, May 19, 2000  12:05 AM



REFERENCES AND SUGGESTED READING 19

Wilcox, G.L., Carlsson, K.H., Jochim, A., and Jurna, I. Mutual potentiation of
antinociceptive effects of morphine and clonidine on motor and sensory
responses in rat spinal cord. Brain Res. 405:84–93, 1987. 

Woolverton, W.L. Analysis of drug interactions in behavioral pharmacology.
In Neurobehavioral Pharmacology, Thompson, T., Dews, P.B., and Barrett,
J.E. Eds. Lawrence Erlbaum Assoc., Hillsdale, NJ 275–302, 1987.

Yeung, J.C. and Rudy, T.A. Multiplicative interactions between narcotic ago-
nisms expressed at spinal and supraspinal sites of antinociceptive action
as revealed by concurrent intrathecal and intracerebroventricular injec-
tions of morphine. J. Pharmacol. Exp. Ther. 215:633–642, 1980.

C0457_frame_C1  Page 19  Friday, May 19, 2000  12:05 AM





 

CHAPTER 2

 

Dose-Response Analysis

 

A drug-induced effect may be expressed on a continuous scale or on a
binary scale. In many isolated tissue experiments, e.g., isolated muscle
preparations, the effect is measured as the developed force, a contin-
uous variable. In certain animal experiments the effect is the latency
to display some endpoint and, thus, is measured as time. Both force
and time are effects measured on a continuous scale. Examples of
binary effects are hypnosis in an animal exhibited by the loss of the
righting reflex, some well-defined motion, such as writhing, or death
produced by some dose of the drug. In other words the event either
occurs or does not occur. Both continuous and binary effects are used
in the study of drug action and in describing the relation between the
dose and the magnitude of the effect. Many theories have been pro-
posed that attempt to explain how dose-effect data can be related to
receptor events, and discussions of these theories may be found in
several monographs (Ariens et al., 1964; Goldstein et al., 1974; Tal-
larida and Jacob, 1979; Tallarida et al., 1987; Kenakin, 1987; Lauffen-
burger and Linderman, 1993.) For our current purpose, the emphasis
will be on the analysis of the data and not on the underlying receptor
theory. In this regard, we shall begin with dose-effect data from effects
measured on a continuous scale (such as time and force) as well as
effects that can be reasonably approximated as continuous, such as
the heart rate. When such effects are plotted against the dose or
concentration of the drug (or chemical), a curve of some kind is used
to model the data points, thereby producing a “graded” dose-effect
curve. Chapter 6 is devoted to all-or-none (quantal) responses.

 

2.1  Efficacy and potency

 

Graded dose-effect data often exhibit certain features that allow sta-
tistical analysis and also provide concepts leading to definitions and
notations that are useful in describing and analyzing data. In
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Table 2.1, the drug is methoxamine HCl, and the effect is the change
in isometric force that occurred in isolated aortic strips of the rabbit.
The points are plotted in rectangular coordinates in Figure 2.1, and
the graph shows several features that are common to many dose-effect
curves. Effect increases as the dose is increased; hence, the effect is
dose-related. Also, the effect is zero at the zero dose and rises to what
appears to be a maximum; i.e., the effect is bounded from above by
some value (in this case, 19.6 mn). This upper bound (or maximum)
is a measure of the drug’s 

 

efficacy

 

. The efficacy of a particular drug
or chemical, indicated by the maximum of its dose-effect curve, may
be related to the maximum effect that can be attained by any known
drug or other stimulus in this same preparation (the system maxi-
mum). The ratio of the drug maximum to the system maximum is
thus a measure of the relative efficacy, a number that ranges from 0
to 1. 

 

Agonists

 

 are compounds with relative efficacy significantly
greater than zero, and these are said to be 

 

full

 

 agonists or 

 

strong

 

agonists if this measure is unity. Other chemicals that produce the
same effect, but have lesser values of relative efficacy are termed

 

partial

 

 agonists. 

 

Table 2.1.  

 

Dose-Response Data for Methoxamine HCl in 
Rabbit Aortic Strips

 

Conc. (M) Force (mn)
1.40e-07 0.196
2.30e-07 0.588
4.10e-07 1.96
5.70e-07 3.33
8.00e-07 5.48
1.10e-06 7.84
1.50e-06 9.60
2.30e-06 12.5
3.90e-06 15.3
5.30e-06 16.8
8.00e-06 18.0
1.70e-05 19.2
4.20e-05 19.4

 

Strips of rabbit thoracic aorta, anchored to a force transducer, were
placed in a Krebs bicarbonate muscle bath that was aerated with
95% O

 

2

 

 + 5% CO

 

2

 

. The drug was added with a pipette, allowed
time to mix, and the equilibrium developed force (millinewtons)
was recorded for each molar concentration. Data extracted from
Raffa et al. (1979) and replotted in Figure 2.1.
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While the measure of a drug’s relative efficacy tells us something
about its maximum effect, it gives no indication of how much of the
drug is needed to attain this maximum or any other effect level. That
kind of information is contained in the drug’s dose-effect curve and
is most conveniently summarized by a single number — a single dose
that indicates the left-to-right position of the dose-effect curve. For
this purpose, some effect level is needed as a reference. A common
reference choice is an effect of magnitude equal to one half the sys-
tem’s maximum effect. With this choice of effect the dose is obtained
from the smooth curve at the indicated half-maximal effect. This dose,
taken from the curve, is a common measure of 

 

potency

 

. 
For two different drugs that attain the same maximum, such as

two full agonists, these measures of potency provide a quantitative
distinction. The drug that requires the lower dose to achieve the half-
maximal effect is said to be more potent than the other. Equieffective
doses (isoboles discussed in Chapter 1) are used in the analysis of drug
combination data as previously described, and, very often, these are
taken as the doses of the respective drugs that are required to attain
the half maximal effect if both drugs attain the same maximum, such
as two full agonists. When two drugs produce significantly different

 

Figure 2.1.  

 

Methoxamine dose-response curve.  (Redrawn from Raffa et al., 1979.)
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maximum effects, i.e., differ in efficacy, then equieffective doses can
still be obtained from the dose-effect curve of each (as required in
isobolar analysis), but clearly these will not be their respective half-
maximal doses. Sometimes the effect of a drug or chemical is divided
by its own maximum, thereby plotting a relative effect or percent of
its own maximum. If this is done for each of two drugs with 

 

different
maxima, 

 

one cannot easily obtain absolute equally effective doses from
these curves alone since each would show a 100% response, but they
are not indicative of the equal absolute effects that are needed in
combination studies. 

 

2.2  Doses and concentrations

 

Although we speak of dose-effect or dose-response data (and dose-
response curves) the literature frequently reports and uses concentra-
tion units, rather than absolute dose amounts, as the independent
variable in these relations. There are both practical and theoretical
reasons for using concentration. Clearly, an experiment 

 

in vitro

 

, e.g.,
a muscle bath study, would use the amounts of drug that are required
in the solution volume containing the tissue. Accordingly, concentra-
tions in units of mg/ml or 

 

µ

 

g/ml should be used to compare effects and
obtain equieffective data. In many systems studied in animals, the
volume can only be estimated since it is often not well defined. Com-
monly we use blood or plasma volume, but intra- or extracellular water
might be used — or even total body water. When pharmacokinetic
information is adequate to do so, it is preferable to express concentra-
tions in one of these ways when extracting information on equal effects.
In whole animal studies, as in analgesic testing, the 

 

apparent volume
of distribution

 

 has been used to convert drug doses (amounts) into
plasma concentrations; in other studies the doses are expressed in
terms of animal body mass, using units such as mg/kg or 

 

µ

 

g/kg, etc. 
Besides these practical reasons there are also other reasons based

on theory for using concentrations instead of dose amounts. For exam-
ple, the law of mass action is usually used as a model of the binding
of drugs and chemicals to cellular receptors. This law relates the rate
of reaction to the product of the 

 

concentrations

 

 of the reactants (drug
and receptor); therefore, studies of the intimate actions of drugs and
chemicals require the precision afforded by units of concentration or
some other measure used to normalize. Experiments with radioligands
often use receptor concentration expressed as pmol per gram of tissue
and bound concentrations expressed as fmol per mg of protein. The
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level of study provides some guidance as to the appropriate ways of
expressing concentrations and other dose-related metrics when two or
more agents are being studied in a combination experiment. In many
descriptions the literature uses the word “dose” (e.g., equieffective
dose) in this broader context which includes actual or estimated con-
centrations or amounts per kg of body weight, per cell, per mg of
protein, etc. All of these are used in this book, although some formulas
will use notations that distinguish amounts from concentrations. It is
therefore necessary to understand the context of these descriptions
and formulas. 

 

2.3  Notation

 

In contrast to the simple symbols 

 

x 

 

and 

 

y 

 

that are commonly used in
algebra and other mathematical fields, the literature in pharmacology
and toxicology usually uses notation that is more suggestive of the
meanings of the terms. For example, 

 

C

 

 is often used for a concentra-
tion, 

 

V

 

 for volume, 

 

D

 

 for dose, and 

 

E

 

 for effect. Modifiers with sub-
scripts are frequently used, such as 

 

E

 

max

 

 for the system maximum
effect and 

 

E

 

maxA

 

 and 

 

E

 

maxB

 

 for the maximum effects of drugs A and B,
respectively. In brief descriptions, that is, in literature sources con-
taining only a few equations, it matters little whether a straight line
is described by 

 

y

 

 = 

 

a

 

 + 

 

bx

 

 (as in algebra) or 

 

E

 

 = 

 

a

 

 + 

 

b

 

 (log 

 

C

 

), in
pharmacological discussions of the effect (

 

E

 

) of some concentration (

 

C

 

)
of a drug. However, when one has to incorporate large chunks of
mathematical or statistical theory into some dose-effect analysis, e.g.,
the equations of weighted linear regression, it is convenient to use
notations closer to the mathematical field. 

In this book, context has guided the choice of symbols to denote
pharmacologic quantities. For example, the notation, 

 

ED50 

 

is so deeply
rooted in the pharmacologic description of quantal experiments (as the
dose that is effective in 50% of the subjects) that we shall use that
term in descriptions even when it is denoted by some other symbol in
an equation. In such cases, it will be made clear that the symbol used,
for example 

 

A

 

, denotes the 

 

ED50

 

 of drug A. The term “EC50” is also
used in pharmacology, denoting the concentration of the drug that
gives an effect that is half maximal in graded dose-effect relations, but
this usage is less well established. In this book, the notation 

 

A

 

50

 

 is
most often used for that concentration and 

 

D

 

50

 

 for the corresponding
dose as a mole, milligram, or microgram quantity. For example, in
Figure 2.1, the 

 

A

 

50

 

 is 1.56 

 

×

 

 10

 

–6

 

 M for methoxamine HCl.
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2.4  Logarithmic transformation

 

Dose-effect data that exhibit the hyperbolic shape shown in
Figure 2.2a take on a different appearance if the effect is plotted
against the logarithm of the dose as shown in Figure 2.2b. Logarithms
are usually taken to the base ten in such a plot. The transformed
plot is sigmoidal or S-shaped, yet it conveys the same kind of infor-
mation. If there are sufficient data points in the mid range, (say
between 20 and 80% of the maximum effect) this subset of points
displays a nearly linear trend as shown. In graded dose-effect data,
plotted as effect against log(dose) or log(concentration), this subset
of points is often used to get the drug’s 

 

A

 

50

 

 

 

value. This is accomplished
by the use of a linear equation that best describes the subset of points.
When this equation is derived, as described below, it is used to
calculate the log 

 

A

 

50 

 

(or log 

 

D

 

50

 

) from the equation of the line and
thereby yields the 

 

A

 

50

 

 as the antilog. This is a quite common way of
obtaining the 

 

A

 

50

 

 values for drugs that are to be studied in combi-
nation and is therefore central to our goal. If some other level of
effect is used the logarithm of its concentration can also be calculated
from the derived linear equation. When the original concentration
unit is transformed by a logarithmic transformation the mean value
of this logarithmic concentration will subsequently be transformed
back to the original unit, thereby yielding the geometric mean con-
centration. The logarithmic transformation, however, is assumed to
normalize the original measurements of concentration and, thus, the
reversed mean is an estimate of the median in the original concen-
tration unit. Accordingly, the 

 

A

 

50

 

 

 

found after a regression analysis
that gives log (

 

A

 

50

 

) is termed a 

 

median effective dose

 

. This topic is
further discussed in the appendix to this chapter. 

 

2.5  Linear regression

 

As previously mentioned, the relation between the effect of a drug or
chemical and the dose is often transformed to a relation between the
effect and the logarithm of the dose. We denote the effect by 

 

y

 

 and the
logarithm of the dose (or concentration) by 

 

x.

 

 The use of the logarithm
produces a plot in Cartesian coordinates that often displays linearity
over some range of 

 

x-y

 

 values. We now consider how such data produce
an equation for this line. The model, known as the linear regression
model, assumes that there is some true linear relation between the
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Figure 2.2.  

 

A representative hyperbolic dose-response curve (upper graph) that is often
used to model pharmacological data.  These curves are frequently needed over extensive
dose ranges and, therefore, may not clearly accommodate the range of doses and larger
effects. Lower graph: Illustration of a transformation of the abscissa to the logarithm of
the dose, thereby accommodating a larger dose range and providing a better indication
of the maximum effect.  The logarithmic transformation results in an S-shaped curve
that is approximately linear in the mid-range.
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effect 

 

y 

 

and the controlled 

 

x

 

 variable (log(dose)). The following discus-
sion, though here aimed at the analysis of dose-effect pairs, is applicable
to numerous other situations in which 

 

x-y

 

 data are to be represented
by a straight line relation. The 

 

x 

 

values which are discrete, 

 

x

 

1

 

, x

 

2

 

, …
x

 

i

 

, … x

 

N

 

, in our application represent the logarithms of the 

 

N

 

 doses
tested and are assumed to be error free. The mathematical model is 

 

y

 

 = 

 

α

 

 + 

 

β

 

x

 

(2.1)

where 

 

α

 

 is the y-intercept and 

 

β 

 

is the slope of the line. The observed
effect at any 

 

x

 

i

 

 is denoted by 

 

y

 

i

 

. At any 

 

x

 

i

 

 

 

we have 

 

y

 

i

 

 = 

 

α

 

 + 

 

β

 

 x

 

i

 

 + 

 

ε

 

i

 

,

 

where 

 

ε

 

i

 

 

 

is the random error of the ith point and has mean = 0 and a
variance = 

 

σ

 

2 

 

which does not depend on 

 

x

 

. The (

 

x, y

 

) data allow an
estimation of 

 

α

 

, 

 

β

 

, and

 

 σ

 

2. The procedure used for obtaining these
estimates uses the N data points (xi, yi) to obtain an estimated regres-
sion line y = a + bx. Thus a is an estimate of α and b is an estimate
of β. This estimated line is the one that minimizes the sum of the
squared differences of the observed and estimated values of yi. Thus,
we minimize the quantity 

. (2.2)

This least squares method is known to be equivalent to the
method of maximum likelihood for finding estimators of the needed
parameters. These estimates, denoted a and b, are given by the
following equation:

(2.3)

where  and  are the sample means of the respective x and y values
and 

. (2.4)

Equation 2.4 shows that the estimated regression line passes
through the point having the mean x, mean y as coordinates. The
residual sum of squares, Q, when divided by (N – 2), is an unbiased
estimator of σ2 and is usually denoted s2: 

Q yi a– bxi–( )2

i 1=

N

∑=

b
xiyi∑ Nxy–

xi
2 Nx2–∑

---------------------------------=

x y

a y bx–=
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s2 = Q/(N – 2) (2.5)

The square root of the above, s, is known as the standard error of
estimate. With a and b determined, the regression line is represented
by the equation Y = a + bx. In order to distinguish between the y-value
of the line and the y-value of a data point, we have used the notation
Y for the line value. It represents the mean effect corresponding to
x = log(dose). Since a, b and Y are estimated quantities, each has a
variance. These are given by the following equations:

(2.6)

(2.7)

. (2.8)

It is convenient to represent the denominator, , by the
symbol Sxx. 

From Equation 2.6 it is seen that . Most important
for our purpose is the variance of the x value that is predicted from
the regression line for a given value of Y. For example, Y will be some
specified effect level, such as 50% of the maximum, and the corre-
sponding x-value, denoted here by x′, is computed from x′ = (Y – a)/b
with (approximate) variance given by

. (2.9)

When confidence limits are desired, they are computed from the
standard error (SE), the latter computed as the square root of the
variance. The half width of the confidence interval is the product,
t(SE), where t is a value from Student’s distribution for the desired
significance level (e.g., p < 0.05) and t is based on (N – 2) degrees of
freedom. Confidence limits computed this way are the true values

V Y( ) s2 1
N
---- x x–( )2

xi x–( )2∑
--------------------------+=

V a( ) s2 1
N
---- x2

xi x–( )2∑
--------------------------+=

V b( ) s2

xi x–( )2∑
--------------------------=

xi x–( )2∑

V y( ) s2 N⁄=

V x′( )
s2

b2
----- 1

N
---- x′ x–( )2

Sxx
--------------------+=
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for the Ys and are symmetric above and below the regression line
(Figure 2.3). These confidence bands are hyperbolas (Busby and Tal-
larida, 1981). It is seen that the confidence limits are a minimum at

 and widen as the x-values move from the mean. It is noteworthy
that the confidence limits of x′, computed as x′ ± tSE(x′) from Equation
2.9, are also symmetric about x′. But these are approximate confi-
dence limits of x′ since the bands are hyperbolas with symmetry in
the vertical direction. This approximation is usually acceptable when
applied to values of x′ = log(A50) used in pharmacological and certain
other biological applications. The corresponding A50 values, however,
would not have symmetric confidence limits since these are obtained
as antilogs. 

In applications where true confidence limits of x′ are needed, these
may be computed from the formula below which is equivalent to that
given by Bliss (1967, p. 439; in the Bliss formula, the symbol C is used
and is related to g by C – 1 = g/(1 – g)):

Figure 2.3.  Regression line with upper and lower 95% confidence limits (broken lines).
The confidence limits are symmetric above and below the line and are minimum at the
mean x (in this case x = 3).
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(2.10)

where

. (2.11)

There are many other topics in linear regression that should be
included in a more complete discussion, and some of these are covered
in the next chapter. Our current objective, however, is to demonstrate
the use of linear regression in obtaining concentrations, such as A50

or (D50), for a drug in order to have these and their variance estimates
that will be used in drug interaction studies. The material presented
thus far in this chapter is sufficient for this purpose; the following
section illustrates the regression computation. 

Determination of D50 and its variance from linear regression: example

Studies of the analgesic action of morphine sulfate were conducted in
rats in an experiment in which cold water was used as the nociceptive
stimulus and the analgesic effect was computed from tail flick latency.
This choice of metric produces a continuous measure of analgesia
(antinociception) that spans the range 0–100%. Three animals were
tested at each dose and produced the data that are given in Table 2.2.
A subset of these plotted points, those that exclude doses less than 4.0
mg/kg and greater than 16.0 mg/kg, display a linear trend when the
effect is plotted against log(dose) as shown in Figure 2.4. This subset
of 5 doses, each tested in 3 animals, was used in a linear regression
analysis from which the D50, its variance, and other quantities were
calculated. The pertinent calculations are given at the bottom of the
table. (The values were modified slightly in order to provide a com-
prehensive example that illustrates the calculation.) 

From the calculated values given in Table 2.2, it follows that the
equation of the line is Y = 108.3x – 47.04, from which the effect, Y =
50, yields x = logD50 = 0.8960 and D50 = 7.870. The variance of log
(D50), calculated from Equation 2.9, is V(logD50) = (3.1632/108.32) [1/15
+ (0.8960 – 0.9028)2/0.6796] = 0.00005696 and thus, SE = 0.007547.
Multiplication of this SE by t = 2.160 (95% and d.f.= 13) gives 0.01630,

x′
g

1 g–
------------ x′ x–( )

ts
b 1 g–( )
--------------------- 1 g–

N
------------ x′ x–( )2

Sxx
--------------------+

1 2⁄

±+

g t2V b( )

b2
----------------- t2s2

b2Sxx

--------------= =
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a value added and subtracted from 0.8960 to give the confidence
interval (0.8797 to 0.9123). Because g is so small, this confidence
interval is virtually identical to the true value computed from Equation
2.11. This is an interval for log (D50); antilogs give the 95% confidence
interval of the D50: 7.580 to 8.171 mg/kg.

In many applications one needs the standard error of D50. The
results of regression analysis, which are usually on log(dose) as in this

Table 2.2.  Dose-Effect Data for Morphine Sulfate in Rat 
Cold-Water Test

Dose Log(dose) Effect
x y

2.00 0.301 4.00
2.00 0.301 9.00
2.00 0.301 16.0
4.00 0.602 16.0
4.00 0.602 18.0
4.00 0.602 21.0
5.65 0.752 32.0
5.65 0.752 36.0
5.65 0.752 39.0
8.00 0.903 45.0
8.00 0.903 51.0
8.00 0.903 52.0

11.3 1.05 62.0
11.3 1.05 66.0
11.3 1.05 68.0
16.0 1.20 82.0
16.0 1.20 85.0
16.0 1.20 88.0
32.0 1.50 99.0
32.0 1.50 100
32.0 1.50 100

Summary of regression calculations

Σx = 13.54, Σy = 761, N = 15,  = 0.9028,  = 50.73

Σx2 = 12.91, Σxy = 760.6, b = 108.3, a = –47.04, Q = 130.1

s = 3.163, Sxx = 0.6796, g = 0.00586, V(b) = 14.72, t = 2.160

Data supplied by M.W. Adler from a preliminary study that was
subsequently used in a larger investigation (Chen et al., 1996).

x y
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example, give the SE of this logarithm. In such cases an approximation
that is often acceptable (see appendix) is given below: 

SE(D50) = 2.30 × D50 × SE(logD50). (2.12)

In the current example this standard error is 2.30 × 7.870 ×
0.007547 = 0.1366.

2.6  Nonlinear models

The previous example used the logarithm of the dose and the subset
of data points showing a somewhat linear trend. When all the points
are used and the effect (E) is plotted against the dose (D), rather than
its logarithm, the points are often modeled as a hyperbola

E = EmaxD/(D + C) (2.13)

Figure 2.4.  Analgesia in rats plotted against log(dose) of morphine sulfate (mg/kg,
s.c.).  The nociceptive stimulus was cold water; the effect, antinociception, was deter-
mined from tail flick latency as described by Chen et al., 1996.
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where Emax is the maximum effect produced by the drug and C is a
constant. In this model it is seen that C is numerically equal to the
dose that gives E = 1/2 Emax, i.e., C is the D50. The graph (see Figure 2.5)
passes through the origin and is bounded from above in accord with
the notion that the effect of any drug has some practical maximum
value. This drug maximum may not be attained in realistic experi-
ments since large doses may be impractical for any number of reasons.
Thus, the maximum effect may have to be estimated from analysis of
the smooth curve derived from the available data points. In other
words, there are two parameters to be estimated: Emax and C. A least
squares method can be used to obtain best estimates of these param-
eters, but, in contrast to the linear least squares method, this compu-
tation is not so easily accomplished.

Prior to the widespread availability of computers, various lineariz-
ing transformations were used, a popular one being the model that
reciprocates the data, i.e., 1/E = 1/Emax + (C/Emax) 1/D. In other words,
one plots 1/E against 1/D, which is theoretically a straight line with
intercept, 1/Emax, and slope C/Emax. If the data had no variability and
the model applied perfectly, this kind of plot would be a convenient and

Figure 2.5.  In the hyperbolic model, the constant C is the value of the dose (or
concentration) that corresponds to an effect level on the curve equal to half the
maximum effect.
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simple way to determine both C and Emax. Because neither of these
assumptions is true, the reciprocated points show scatter. It may there-
fore seem reasonable to use the linear least squares method (regression)
to fit the points to a line derived this way, and, indeed, this has been
done in many pharmacologic and biochemical analyses. The results are
often incorrect because the 1/E values display unequal variances over
the range of values, a phenomenon that is not in accord with the
underlying regression theory. This may be practically appreciated when
one considers the small effects produced by small doses. Even slight
errors in E produce extreme variations in the reciprocals. At the upper
end, near the maximum, there is a huge variation in dose for any effect
as the curve “flattens,” and this large variability is reflected in the
reciprocated dose values. A possible remedy is to employ weights that
equalize the variance; a practical approach is to use a nonlinear curve
fitting program on the actual D, E data pairs. (See Chapter 11.)

If properly fitted hyperbolas are obtained for two full agonists
(thus, each attains the same maximum), for example, E = Emax

D/(D + C1) and E = EmaxD/(D + C2), the equieffective doses have the
relative potency R = C1/C2, a constant equal to the ratio of their
respective D50 values. In other words the relative potency is a constant,
independent of the effect level in this case, a fact that greatly simplifies
analysis of the combined action to be discussed in Chapter 4. Some
dose-effect data that are approximately described by a hyperbola
(Equation 2.13) are sometimes better modeled from

(2.14)

where p has a value other than one. For example, the methoxamine
data of Table 2.1 was modeled with the curve-fitting parameter,
p = 1.4. A discussion of this procedure is given in Chapter 11.

E
EmaxD

p

Dp Cp+
--------------------=
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CHAPTER 2

Appendix

The expected value (mean value) of the random variable x is here
denoted by E(x) and its variance by σ2. We are concerned in our
applications with logarithms of some specified dose, e.g, log D50, the
variance, Var (log D50), and the relation of these to D50 and Var(D50).
The mean value of log (D50) and its variance are obtained from linear
regression of effect on log(dose) and therefore one cannot get the true
standard error of the D50. An approximation is obtained if the follow-
ing apply: 

If

(i) µ = E{log D50}

(ii) σ2 = Var{log D50}

and

(iii) log {D50} is normally distributed, 

then

(A2.1)

and

. (A2.2)

Equation A2.1 points out that the mean D50 is not the antilog of log D50.

E D50{ } e
10ln( )µ

1
2
--- 10ln( )2σ2

+

=

10µe
1
2
--- 10ln( )2σ2

=

Var D50{ } 102µe 10ln( )2σ2

e 10ln( )2σ2

1–[ ]=
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What one gets from the antilog is the geometric mean which, in
the effectively normalized transformation, is an estimate of the median
D50. In pharmacologic work this median D50, rather than the true mean
(expected value), is the quantity usually used and quoted. 

For sufficiently small σ2 the above bracketed term in Equation A2.2
≈ (ln 10)2σ2; thus

Var{D50} ≈ [E{D50}]2 (2.30)2σ2, 

from which the more familiar standard error formula (Finney, 1971,
p.36) follows by taking square roots:

SE{D50} ≈ 2.30E{D50}SE{log D50} (A2.3)

which is also Equation 2.12. Bliss (1967, p.128) gives a slightly differ-
ent (but equivalent form) of Equation A2.1:

which he writes as the antilog (log D50 + 1.1513 s2), where s2 denotes
the sample variance. A heuristic approach using differentials to
approximate standard errors on original and logarithmic scales leads
to Equation 2.12 more directly. In familiar symbols, 

if  y = log10x ≈ (ln x)/2.30

dy ≈ (1/2.30) dx/x; 

hence, 

dx ≈ (2.30) x dy

In words, the error in D50 is approximately 2.30 × D50 × error of log (D50).

E D50{ } 10
µ

1
2
--- 10σ2

ln+ 
 

=
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CHAPTER 3 

 

Linear Regression: 

 

A Further Discussion

 

Linear regression was introduced in the previous chapter. We now
provide a more detailed discussion of this topic. Our aim is to calculate
potency values (such as 

 

D

 

50

 

) from regression lines that are modeled
on a logarithmic scale, i.e., as effect vs. log dose. These potencies are
needed in isobolar combination analysis discussed in the next chapter.
Here we will be especially concerned with tests of the parallelism of
the regression lines of effect on log dose and the importance of this in
combination drug analysis. The concepts and methods presented here
will have many other applications also. When it is necessary to dis-
tinguish between an observed 

 

y

 

-value, 

 

y

 

i

 

, and the corresponding value
on the line, the latter will be denoted with a capital letter, 

 

Y

 

i

 

, as we
did in the previous chapter. Thus, the regression line is written, 

 

Y

 

 =

 

a

 

 + 

 

bx

 

, and at any 

 

x

 

-value, 

 

x

 

i

 

, we have 

 

Y

 

i

 

 = 

 

a

 

 + 

 

bx

 

i

 

 . 

 

A first objective
is to test the hypothesis that the slope

 

 

 

β

 

, which is estimated as 

 

b

 

, is
significantly different from zero. (For log(dose)-effect data this is a test
to determine whether the effect is dose dependent.) We shall present
two different tests for this purpose. The first uses an analysis of
variance (ANOVA).

 

3.1  ANOVA in linear regression

 

The 

 

N

 

 observed values 

 

y

 

i

 

 have a mean value that we have denoted .
The sum of squared differences, , is calculated and is denoted
here 

 

SS

 

t

 

 

 

. (3.1)

y
yi y–( )2∑

SSt yi y–( )2∑=
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The quantity 

 

SS

 

t

 

 is a measure of the overall variability of the

 

 y 

 

values;
it includes a part due to the regression and a part due to the deviations
about the line. The part due to regression is denoted 

 

SS

 

reg

 

 and is given by

. (3.2)

 

SS

 

reg 

 

is a measure of the deviation of the 

 

y 

 

value

 

s

 

 of the line from the
sample mean. The part due to deviation about the line is called the
residual sum of squares 

 

SS

 

res

 

 (denoted 

 

Q

 

 in Chapter 2) and is given by

. (3.3)

These sums of squares are related as follows:

. (3.4)

 

SS

 

t

 

 

 

has degrees of freedom = 

 

N

 

 – 1, whereas that due to regression
has 1 degree of freedom and that due to 

 

SS

 

res

 

 

 

has (

 

N – 

 

2) degrees of
freedom. Division of each 

 

SS

 

 by its degrees of freedom gives the mean
square (

 

MS

 

). It is common to display these relations in a table such
as Table 3.1. It should be noted that 

 

MS

 

res

 

 

 

is the quantity previously
denoted by 

 

s

 

2

 

 

 

in Equation 2.5, i.e., the square of the standard error of
estimate. A test of the hypothesis that 

 

β

 

 = 0 (slope = 0) is made from
the 

 

F

 

-distribution (Table A.9) by first calculating the ratio

 

F

 

 = 

 

MS

 

reg

 

 /

 

 MS

 

res

 

(3.5)

and comparing it with the critical 

 

F

 

 for degrees of freedom 1 (across)
and 

 

N

 

 – 2 (down) at the level of significance desired (e.g., 

 

p

 

 < 0.05). If
the calculated value exceeds the tabular value of 

 

F

 

 then 

 

β

 

 is significantly
different from 0. The calculated sum of squares terms

 

 

 

allow a calculation

 

Table 3.1.  

 

ANOVA Summary in Simple Linear Regression

 

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom

Mean 
Square

(SS) (DF) (MS)
Total

 

SS

 

t

 

N – 

 

1 

 

MS

 

reg

 

 = 

 

SS

 

reg

 

 / 1
Regression

 

SS

 

reg

 

1

 

MS

 

res

 

 = 

 

SS

 

res

 

 / (

 

N

 

 – 2)
Residual

 

SS

 

res

 

N

 

 – 2

 

F

 

 = 

 

MS

 

reg

 

 / 

 

MS

 

res

SSreg Yi y–( )2∑=

SSres yi Yi–( )2∑=

SSt SSreg SSres+=
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of the 

 

coefficient of determination

 

, denoted

 

 r

 

2

 

, and given by the following
equation:

 

r

 

2

 

 = 

 

SS

 

reg

 

 / 

 

SS

 

t

 

. (3.6)

This value is an indicator of the proportion of the total variation that
is accounted for by the regression line. (Its square root, 

 

r, 

 

is the
correlation coefficient used in correlation analysis.) A value of

 

 r

 

2

 

 near
1 indicates that the variation in the 

 

y

 

-values is mainly due to regres-
sion while a value near zero indicates that this variation is not well
accounted for by the regression line.

 

Example

 

. The data used in Table 2.2 were fitted to a line given by the
equation, 

 

Y

 

 = 108.307 

 

x 

 

– 47.046. A summary of the analysis of variance
is shown in Table 3.2. The calculated 

 

F

 

 = 796.527, whereas the critical
value, based on degrees of freedom 1 and 13 for p < 0.05 (95% level), is
4.67, and for p < 0.01 (99% level) it is 9.07. Because the calculated F
greatly exceeds the tabular 9.07, this result indicates that the slope is
significantly different from zero, and well beyond the 99% level, that is,
the effect is clearly dose dependent. The coefficient of determination, r2,
is 0.984 so scatter about the line is rather small. Stated differently,
98.4% of the variation in effect is due to regression. The detailed regres-
sion calculations are summarized in Table 2.2 and its accompanying text.

The t-Test in Linear Regression. The hypothesis tested with the
F-statistic can also be tested with the t-distribution. This calculation
uses the estimated slope b and its variance V(b) to calculate t as follows:

t = b/{V(b)}1/2. (3.7) 

The value calculated from the above is compared to the critical t, for
N – 2 degrees of freedom at the significance level desired, e.g., 95%.

Table 3.2.  ANOVA for Linear Regression of Analgesia on Log (Morphine Sulfate)

Source of 
Variation

Sum of 
Squares

Degrees of 
Freedom Mean Square

(SS) (DF) (MS)
Total 8100.934 14 
Regression 7970.846 1 7970.846
Residual 130.088 13 10.007

F = 796.527

See Table 2.2.
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(See Table A.6). If the calculated t exceeds the critical value from the
table, we reject the hypothesis that the slope is zero. In other words,
the slope is significantly different from 0. In the above example the
calculated t = 28.223 and the tabular value (for 95% and d.f. = 13) is
2.160; for 99% the tabular value is 3.012. Therefore, in this example,
the result is highly significant. Of course, the same conclusion was
reached with the calculation of F; in fact, it may be noted that the
calculated t and F values are related as t2 = F in these tests. 

3.2  Parallel line analysis

Sometimes the chemical properties or known mechanisms of two dif-
ferent drugs suggest that their regression lines, for the same effect on
log(dose), should be parallel. Statistical methods exist for testing
whether two regression lines are parallel. 

Parallel regression lines of effect on log(dose) mean that the relative
potency of the compounds is constant over the range of effects. (When
the difference, log(A) – log(B), is constant, it follows that R = A/B is
constant.) Considerable attention has been given to such cases in the
pharmacological literature so that some discussion here is appropriate.
When the regression line is probit against log(dose), discussed later in
Chapter 6 on quantal responses, the slope of the line is 1/σ, the recip-
rocal of the standard deviation of log(ED50).  Thus, if the standard
deviations for the two different compounds are equal, it follows that
their probit regression lines are parallel. Besides this very important
property in probit analysis, the use of parallel regression lines is impor-
tant enough to include in this discussion of simple linear regression.

Test for parallelism

Two regression lines, lines (1) and (2), with respective estimated slopes
b1 and b2, will have been determined along with the quantities expressed
in an analysis of variance of each. The numbers of points in the regres-
sions are N1 and N2, respectively. The hypothesis to be tested is that
the difference, b1 – b2 = 0, and the test utilizes the t-distribution. The
residual sum of squares values from each line are used in a calculation
of a pooled standard error of estimate, s, from the relation

. (3.8)s2 SSres 1( ) SSres 2( )+
N1 2–( ) N2 2–( )+

-------------------------------------------------=
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In pooling for this application it is assumed that the values of s2 of
each line are equal. Next, the value of t is calculated and compared to
the critical t for degrees of freedom, d.f. = N1 + N2 – 4 at the specified
level of significance, e.g., p < 0.05, according to

. (3.9)

If the t calculated from Equation 3.9 exceeds the critical value (Table
A.6) then we reject the hypothesis of equality of slopes; otherwise, we
accept the hypothesis that the difference in slopes is not significant.
The following example illustrates these computations. 

Example. Cocaine and Buprenorphine. The psychomotor stimulating
effects of cocaine are well known and have prompted studies aimed at
quantitating these effects as a function of dose. The data below, from
the laboratory of S.G. Holtzman (Emory University), compared rota-
tional behavior in the rat induced by graded doses of cocaine with the
same behavior induced by buprenorphine, a partial mu-opioid thought
to enhance some of the behavioral and neurochemical actions of cocaine
(Kimmel et al., 1997). The effect metric is based on rotational behavior
in animals with surgically induced unilateral nigral lesions that subse-
quently received the drug treatments. Figure 3.1 shows the regression
lines. The data are given in Table 3.3 and show the number of turns
(over control) in a specified time interval that were observed at each

Figure 3.1.  Regression of effect on log dose for cocaine (right curve) and buprenorphine
(left curve).  The effect is the increase in turns over control values.

t
b1 b2–

s 1 Sxx 1( )⁄ 1 Sxx 2( )⁄+( )1 2⁄
--------------------------------------------------------------=
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46 LINEAR REGRESSION: A FURTHER DISCUSSION

dose (mg/kg) for each drug and the results of the regression analysis
needed to compare the slopes. It is notable that the estimated slopes,
302.80 and 201.92, differ, but it is also evident that the large standard
errors (SE(b)) suggest that a statistical test is needed. Application of
Equation 3.8 to the regression outputs gives s2 = (7953.65 + 16857.17)/10
= 2481.08, so that s = 49.81, while 1/Sxx(1) + 1/Sxx(2) = 2.094. Use of these
values in Equation 3.9 yields t = (302.80 – 201.92)/[(49.81)(2.094)1/2 ] =
1.40, a value whose magnitude does not exceed the critical value of
t10, 0.05 = 2.228 given in Table A.6. Because the slopes could not be shown
to differ significantly, we proceed to estimate a common slope as dis-
cussed in the next section. 

3.3  The common slope and relative potency

The regression line, Y = a + bx, passes through the point ( , ), and,
therefore, its equation may be written in the form Y =  + b(x – ).
This form is convenient in this section in which we discuss parallel
regression lines. The object is to find the common slope bc from two
lines whose estimated slopes are b1 and b2. In our application these
will be the regression lines of two different drugs, but the method
may be used whenever there is an indication for constraining lines
to parallel.

Table 3.3.  Comparing Slopes of Two Regression Lines: Cocaine and 
Buprenorphine in the Production of Rotation in the Nigrally-Lesioned Rat 

Cocaine Buprenorphine

Dose Log(dose) Turns Dose Log(dose) Turns
3.00 0.477 0 0.003 –2.522 5
5.60 0.748 97 0.0056 –2.252 2
7.50 0.875 121 0.010 –2.000 90
10.0 1.000 78 0.017 –1.770 207
13.3 1.123 208 0.030 –1.523 260
17.5 1.243 198 0.056 –1.252 170
30.0 1.477 326 0.100 –1.000 314
a = –153.48; b = 302.80; SE(b) = 49.32

N = 7; Sxx = 0.654; SSres = 7937; r2 = 0.88

 = 0.9919;  = 146.86

a = 505.09; b = 201.92; SE(b) = 43.60

N = 7; Sxx = 1.77; SSres = 16852; r2 =0.81

 = –1.760;  = 149.71

Doses are in units of mg/kg; cocaine was administered i.p. and buprenorphine s.c.

x y
y x

x y x y
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The individual regression lines for drugs 1 and 2 are given by

and 

.

The common slope bc is determined from the N1 points of drug 1
and the N2 points of drug 2 according to

bc = [Sxy(1) + Sxy(2)] / [Sxx(1) + Sxx(2)] (3.10)

where Sxy = Σ (xi – ) (yi – ), Sxx is defined as previously, and the
subscripted parentheses indicate summation over the respective data
sets. (The common slope was derived as the weighted mean of the
individual regression slopes, using as weights the reciprocal of V(b)
and a pooled estimate of s2, given below as Equation 3.13.) The cross
term sums in the above may be computed more conveniently from the
relation for each line: 

(3.11)

The parallel regression lines are given by

The common slope allows an estimation of the horizontal distance M
between lines 1 and 2 (Figure 3.2). M is given by 

. (3.12)

In our application x is the logarithm of dose (or concentration), so the
quantity M is the logarithm of the relative potency R; thus R = 10M.

We now want to get confidence limits for M and, thus, for the
relative potency R. For this purpose we need the sum of squares of
residuals from each regression line in order to get a pooled estimate
of the error variance  which is given by 

Y y 1( ) b1 x x 1( )–( )+=

Y y 2( ) b2 x x 2( )–( )+=

x y

xi x–( ) yi y–( )∑ xiyi∑ Nxy–=

Y y 1( ) bc x x 1( )–( )+=

Y y 2( ) bc x x 2( )–( ).+=

M x 1( ) x 2( )– y 1( ) y 2( )–( ) bc⁄–=

sp
2
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48 LINEAR REGRESSION: A FURTHER DISCUSSION

. (3.13)*

This, in turn, is used in calculating the variance of the common slope, 

(3.14)

and from these, V(M) follows as

. (3.15)

The above expression for V(M) is an approximation and therefore
confidence limits based on it, given by M ± t [V(M)]1/2, are symmetric
(and also approximate). In this application t has degrees of freedom =
N1 + N2 – 3. With upper (Mu) and lower (Ml) limits on M calculated it
is possible to get the confidence limits of R:

. (3.16)

Example. The potency ratio and its confidence limits are to be calculated
from the data on cocaine and buprenorphine in Table 3.3 (Tallarida et

Figure 3.2.  Horizontal distance M between parallel regression lines.  When the x-axis
is log dose the value of M is the logarithm of the relative potency.

*Degrees of freedom are now N1 + N2 – 3; see, for example, Draper and Smith,
2nd ed. 1981, (p. 58, Ex. D).  

sp
2 SSres 1( ) SSres 2( )+[ ] N1 N2 3–+( )⁄=

V bc( ) sp
2 Sxx 1( ) Sxx 2( )+( )⁄=

V M( ) 1 bc
2⁄( ) sp

2 N1⁄ sp
2 N2⁄ x 1( ) x 2( )– M–( )2V bc( )+ +[ ]=

Rlower 10
Ml= Rupper; 10

Mu=
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al., 1997). We begin by getting the common slope. For this we need the
sum of cross terms,  for each line. These are most easily
computed from Equation 3.11. For cocaine (drug 1) the sum of cross
terms is 197.9, and for buprenorphine (drug 2) the value is 358.4. The
common slope is

bc = (197.9 + 358.4)/(0.654 + 1.77)

= 229.5.

The parallel regression lines are

Y = 146.86 + 229.5 (x – 0.9919) (cocaine)

Y = 149.7 + 229.5 (x + 1.760) (buprenorphine).

The horizontal distance between them is

M = (0.9919 + 1.760) – (146.86 – 149.71)/(229.5)

= 2.764.

The estimated relative potency R = 10M = 580.8.
The following calculations are directed toward getting the confi-

dence limits of R.
For this we need the pooled error variance, 

and the slope variance, 

V(bc) = 2254/(0.654 + 1.77)

= 929.9.

The variance of M is 

V(M) = 1/(229.5)2[2254/7 + 2254/7 + (–0.0121)2(929.9)]

= 0.01223 ; thus SE(M) = 0.1106.

xi x–( ) yi y–( )∑

sp
2 7937 16852+( ) 11( )⁄=

2254.5=
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50 LINEAR REGRESSION: A FURTHER DISCUSSION

The value of t (df = 11 and p = 0.05) is 2.201 and approximate
confidence limits of M are calculated as M ± t SE(M):

2.764 ± (2.201)(0.1106) = 2.764 ± 0.2434.

Thus,

Ml = 2.521

and Mu = 3.007

so the potency ratio R, estimated as 580.8, has 95% confidence limits.

Rl = 102.521 = 331.9 

and Ru = 103.007 = 1016.

3.4  Confidence limits of the potency ratio

The confidence limits for R, calculated from the variance formula of
Equation 3.15, are often sufficient. The approximation is good if the
quantity g = t2 V(b)/  is small, say less than 0.1. In the preceding
example g = 0.086. When this condition is not met, or when greater
precision is needed, the exact confidence limits for M are first obtained
from the following:

(3.17)

where L is given by

. (3.18)

These limits are then used in Equation 3.16 to get the limits of the
potency ratio.

It should be noted that if g can be neglected, these confidence limits
reduce to 

M ± t{V(M)}1/2. (3.19)

bc
2

x 1( ) x 2( )–[ ] M x 1( )– x 2( )+{ } 1 g–( )⁄[ ]+

tL bc 1 g–( )[ ]⁄{ }±

L M x 1( )– x 2( )+[ ]2V bc( ) 1 g–( ) V y 1( )( ) V y 2( )( )+[ ]+{ }
1 2⁄

=
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3.5  Weighted least square regression 

When simple regression analysis is carried out, it is assumed that the
error variance of εi is constant and equal to σ2. When these variances
are unequal, say , a weighting term wi is used and chosen propor-
tional to , say wi = σ2/ . This has the effect of assigning less
weight to observations yi that have a large variance and more weight
to those observations with less variance. (This idea is especially impor-
tant in discussions of quantal dose-effect data presented in a later
chapter in addition to sufficient importance for discussion here also.)
In the special case that all wi = 1, the simple regression model is
obtained. In weighted linear regression, the computations are made
from the formulas given in the appendix to this chapter. 

σi
2

1 σi
2⁄ σi

2
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CHAPTER 3

Appendix 3

The linear regression model, Y = αx + β, estimated as Y = a + bx in
weighted linear regression, calculates values from the following formulas:

[A3.1]

[A3.2]

[A3.3]

[A3.4]

[A3.5]

[A3.6]

[A3.7]

[A3.8]

x
wixi∑
wi∑

-----------------=  y;
wiyi∑
wi∑

-----------------=

b
wixiyi∑ xy wi∑–

wixi
2∑ x2 wi∑–

-----------------------------------------------=

a y bx–=

s2 wi Yi yi–( )2∑
N 2–

-----------------------------------=

V b( ) s2

wi xi x–( )2∑
---------------------------------=

V a( ) s2 1
wi∑

------------ x2

wi xi x–( )2∑
---------------------------------+=

V Y( ) s2 1
wi∑

------------ x x–( )2

wi xi x–( )2∑
---------------------------------+=

V x′( )
s2

b2
----- 1

wi∑
------------ x′ x–( )2

wi xi x–( )2∑
---------------------------------+≈
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CHAPTER 4

 

Calculations for Combination 

 

Drug Analysis

 

In this chapter we illustrate the calculations that permit a distinction
between additive and non-additive interactions of drugs. As we saw
earlier, dose-effect data of the constituent compounds are needed for
this purpose. Specifically we need equieffective doses (or concentra-
tions) 

 

A 

 

and 

 

B

 

 of cxompounds A and B, respectively, that produce the

 

specified effect

 

 and combination doses 

 

a

 

 of compound A and 

 

b

 

 of com-
pound B that give this effect when present together. Additive combi-
nations are those that obey Equation 1.3, 

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 = 1. The estimates

 

A

 

 and 

 

B

 

 will have been determined from the individual dose-effect
data of the compounds, using methods of analysis discussed in the
preceding chapters that also yield variances of these estimated quan-
tities. (Methods of getting these from 

 

quantal 

 

data use probit or logit
analysis discussed in Chapter 6, but, in either case, the following
discussion is applicable.) For graded dose-effect data the values usually
are derived from linear regression of effect on log(dose) or from the
hyperbolic model of effect vs. dose obtained from nonlinear curve anal-
ysis. Whether the data are graded or quantal, the first consideration
is to determine how much of each constituent should be used in a
combination experiment. How does one design an experiment, i.e., test
various dose combinations, and then subsequently analyze the data to
distinguish between additive and nonadditive interactions?

 

4.1  Experimental designs

 

Several different experimental designs have been used for this pur-
pose. One approach was illustrated in the method of analysis used in
the alcohol-chloral hydrate experiments discussed in Chapter 1. In
that study, the investigators constructed the “line of additivity” defined
by the individual drugs’ 

 

ED50

 

 values (quantal data), and then they
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obtained the values of doses 

 

a

 

 and 

 

b

 

 that gave the 50% effect as a
combination. To accomplish that, the dose of one of the drugs (drug
B) was fixed at the value 

 

b, 

 

and the experiment consisted of adding
increasing amounts of drug A so the 50% effect could be determined.
This amount of drug A is, therefore, an estimated quantity which we
shall here denote 

 

a

 

mix

 

 (for mixture); its variance is denoted 

 

V

 

(

 

a

 

mix

 

). The
plotted point (

 

a, b

 

) therefore has error bars in one direction (the “

 

a

 

-
axis”). It is necessary to compare this with the corresponding additive
quantity 

 

a

 

add

 

 calculated from the line of additivity (

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 = 1). Thus

 

a

 

add

 

 is estimated from this equation: 

 

a

 

add

 

 = 

 

A

 

 – 

 

b

 

(

 

A

 

/

 

B

 

). But this too has
a variance, 

 

V

 

(

 

a

 

add

 

). This variance may not be easy to calculate for
several reasons. First, there is the problem of dealing with the ratio,

 

A

 

/

 

B

 

 = 

 

R

 

, of quantities that contain error. There is no simple way to
get the variance of 

 

R

 

 precisely (although approximate methods exist);
further, we need to get additional quantities (such as the covariance)
that are expressed in the formula for 

 

V

 

(

 

a

 

add

 

), 

 

V

 

(
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add

 

) = 

 

V

 

(

 

A

 

) +

 

 b

 

2

 

 

 

V

 

(
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)

 

.

 

Besides the complexity seen in the above formula, there is the
practical reality that 

 

A

 

 and 

 

B

 

 often have large variances and the
variance of

 

 R

 

 = 

 

A

 

/

 

B

 

 and the other terms above are magnified. Accord-
ingly, this design may not be useful for practical purposes, a fact
seemingly recognized by the investigators in the alcohol-chloral
hydrate study who also used an alternate experimental design in which
the components were administered in a 

 

fixed-ratio combination

 

. Few
details of this kind of analysis were provided by the investigators. The
advantages of a fixed-ratio design have been described (Tallarida,
1992; Tallarida et al., 1989, 1997). The following section presents the
main ideas and the calculations needed in this approach.

 

4.2  Fixed-ratio design

 

In a fixed-ratio design the constituents are administered in amounts
that keep the proportions of each constant. This design is desirable
for several reasons. A manufactured combination product would cer-
tainly contain a constant proportion of the ingredients. Also, in exper-
imental work, this design simplifies the analysis of the data. Finally,
it has been found that synergism, when it occurs, is a function of the
proportions in the combination; i.e., one proportion may be markedly
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synergistic while another is simply additive. Analysis of data from this
design is now described.

An effect level that is reached by each constituent should be chosen.
For two full agonists this level is usually 50% of the maximum effect.
The individual effective doses of the constituents (those that produce
the specified effect) are then estimated as doses (or concentrations) 

 

A

 

and 

 

B

 

, along with their variances 

 

V

 

(

 

A

 

) and 

 

V

 

(

 

B

 

), respectively, as
previously described (see Chapter 2). For illustrative purposes, let us
say that these are 

 

D

 

50

 

 

 

doses. These values provide a guide to the
quantities of the respective agents that are to be used in a combination.
The combination doses are taken to be fractions of each compound’s

 

D

 

50

 

 

 

such that the fractions add to unity: 

 

f 

 

and (1 –

 

 f

 

). The 

 

D

 

50 

 

of drug
A is denoted 

 

A, 

 

and that of drug B is denoted 

 

B

 

. If 

 

A

 

 and 

 

B

 

 were known
precisely, then the amounts in an additive combination are 

 

a

 

 = 

 

fA 

 

of
compound A and 

 

b

 

 = (1 – 

 

f

 

)

 

B

 

 of compound B. Amounts chosen in this
way are clearly additive for the production of this level of effect since
they satisfy the equation, 

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 = 1. When these amounts are
expressed in common mass units (e.g., mg or 

 

µ

 

g quantities) the total
amount in the mixture is the sum, here denoted, 

 

Z

 

add

 

: 

 

Z

 

add

 

 = 

 

fA 

 

+ (1 – 

 

f

 

)

 

B

 

. (4.1) 

The quantities 

 

A

 

 and 

 

B

 

 are not known precisely. Their estimated
values from dose-effect analysis are used in determining the fixed ratio
combination to be tested; hence, the precise proportions of each are based
on these estimates and the choice of fraction 

 

f

 

. The proportions are
precise: 

 

ρ

 

A

 

=

 

 fA

 

/

 

Z

 

add

 

 

 

and

 

 ρ

 

B

 

 = (1 – f)B/Zadd. The combination with these
proportions is administered as though it were a new, third compound.
To simplify this discussion, we refer to this combination as a third
compound. (It is a mixture and not a compound, in the chemical sense). 

The third compound is then administered in varying doses in order
to determine the actual amount, denoted Zmix, that is needed to produce
the desired effect. This amount is obtained as an estimate from the
dose-effect data of the third compound using some appropriate method
such as linear regression (or nonlinear curve fitting) along with its
variance V(Zmix). Thus, the combination data provide Zmix and its vari-
ance, and Equation 4.1 gives the calculated total in an additive com-
bination, Zadd. A statistical test on these two totals requires the vari-
ance of Zadd. Whereas the fraction f is assumed to be under precise
control of the investigator (and, thus, error free), there is uncertainty
in Zadd because A and B are uncertain so that this quantity has a
variance given by
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V(Zadd) = f2V(A) + (1 – f)2 V(B). (4.2) 

A statistical test of significance (Zadd – Zmix) is made from the
derived and calculated values. If the difference is not significantly
different from zero we conclude that the combination is simply
additive. In contrast, a significant difference indicates nonadditivity
as follows:

synergism if Zmix < Zadd (4.3)

sub-additivity if Zmix > Zadd. (4.4)

A method for testing the significance of the difference, Zmix – Zadd,
is given in the following section. It should be recalled that the param-
eter estimates, A, B, their variances and all data from the combination
(third compound) are quantities that come from the selection of a
particular effect level. There are practical and theoretical reasons for
selecting an effect in the mid range, such as 50% of the maximum, but
other levels of effect can be used provided all dose-effect curves reach
the specified level and yield estimates Zadd and Zmix whose variances
are not too large. It may sometimes happen that the mixture propor-
tions are chosen without knowledge of the values of A and B. When
these are ultimately estimated, the value of f can be calculated from 

f = ρAB/(A + ρAB – ρAA). 

4.3  Test of significance

The common test for the difference of two means is based on Student’s
t distribution. In the usual application of this test there are two sets
of sample values: a set of observed values, x1, x2 …, xm for the random
variable X and a set of observations, y1, y2, …, yn on another random
variable Y. (Note, unequal numbers, m and n.) It is assumed that X
and Y are normally distributed and have the same variance σ2, an
important aspect of the underlying theory. The true means of X and
Y may be different, and the object of the test is to determine whether
they are different in a probabilistic sense. For this we use the sample
means,  and  and sample variances ,  =

, in a test that computes the value of t, with degrees
of freedom = (m + n – 2), from 

x y sx
2 xi x–( )2∑ m 1–( )⁄= sy

2

yi y–( )2∑ n 1–( )⁄
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. (4.5)

In this formula sp is the pooled standard deviation, calculated from
the sample standard deviations sx and sy as follows:

. (4.6)

When the pooled variance, , assumed to be the common variance
of each random variable, is put under the radical in Equation 4.5, the
denominator is .

In our application, the sample means and sp do not come from
enumerated data, as above. Instead, these are derived from curve-
fitting procedures. For this reason the quantity t′ is calculated from
the following equation

. (4.7)

We have denoted this quantity by t′ in order to distinguish it from
the common form given by Equation 4.5. In the form given by
Equation 4.7, there is allowance for the fact that the respective stan-
dard errors may be different, but this introduces a complication
because t′ determined this way is not a t value (from the Student
distribution) when m and n are small. In other words, some modifica-
tion of the test is needed. (Snedecor and Cochran, 6th ed., 1967, pp.
114–116; 8th ed., 1989, pp. 96–97; Daniel, W.W., 5th ed., 1991, p.212;
Bliss, C.I., 1967, p. 216.)

In this case we need to compare t′ with a quantity that is not
directly from the table, but instead is computed from table values tx

and ty as follows:

(4.8)

where tx is the tabular value of t based on m-2 degrees of freedom and
ty is the tabular value of t based on n-2 degrees of freedom for the level
of significance desired (usually, 95%).

In the application at hand, the values to be compared are the
mixture potency, Zmix, and the additive potency, Zadd (see Relations 4.3

t x y–

sp
1
m
----- 1

n
---+ 

 
1 2⁄

---------------------------------=

sp
2 m 1–( )sx

2 n 1–( )sy
2+[ ] m n 2–+[ ]⁄=

sp
2

SEx
2 SEy

2+[ ]
1 2⁄

t′ x y–

SEx( )2 SEy( )2+[ ]
1 2⁄

-----------------------------------------------------=

T tx SEx( )2 ty SEy( )2+[ ] SEx( )2 SEy( )2+[ ]⁄=
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and 4.4). Because these are lognormally distributed, we actually test
log (Zmix) and log (Zadd) by applying Equations 4.7 and 4.8.

Toward this end, let X = log (Zadd) and Y = log (Zmix), with standard
errors, SEx and SEy on the log scale. The additive data are derived from
(N1 + N2) points (sum of points of the constituents) and thus we use d.f.
= N1 + N2 – 2. The mixture curve has nmix points and its d.f. is nmix – 2.
Using the 95% level we get the t values for these, viz., tadd and tmix, from
the usual tables for their respective degrees of freedom. We then calculate 

(4.9)

and

. (4.10)

If |t′| > T the difference is significant. 

Example: Synergism Between Morphine and Clonidine. Tests of anal-
gesic compounds are frequently conducted in mice whose tails are sub-
jected to a nociceptive stimulus. In one test, hot water provides the
stimulus, and the effect is measured as tail withdrawal latency measured
in seconds, thereby producing a measure of the antinociceptive effect that
is on a continuous scale. Morphine sulfate and clonidine hydrochloride,
each antinociceptive in this test, were tested individually and in combi-
nation. The data in Table 4.1 show the doses and the effects, measured
as percent of the maximum effect. Doses are in µg quantities administered
by injection into the subvertebral space, and the combination doses are
sums of each drug’s dose (Tallarida et al., 1997). Table 4.1 contains the
results of the statistical analysis that began with linear regression of
effect on log10 (dose) for the individual drugs and the combination. The
regression equations of effect on log dose are shown along with the D50

dose and its logarithm for the individual drugs and the combination.

The combination doses shown in Table 4.1 were derived from the
D50 values of the individual drugs, denoted (as usual) by A and B in
the table. The value f = 0.5 was used in calculating the additive total,
and, thus, the combination had amounts in proportion to 0.5 × 5.754
for drug A and 0.5 × 3.755 for drug B. These are 2.877 and 1.8775,
respectively. The sum of these, shown as 4.760, is an additive total
amount, Zadd, for the effect level selected (50%) and would be expected
to give the 50% effect. (Its logarithm, needed later, is 0.678.) In fact,
this dose gave the much higher effect 92.04 shown in the table.

t′ X Y–( ) SEx( )2 SEy( )2+[ ]
1 2⁄

⁄=

T tadd SEx( )2 tmix SEy( )2+[ ] SEx( )2 SEy( )2+[ ]⁄=
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Reduction of this total dose to half determined the other lower total
dose tested, 2.380, and another division by 2 gave 1.190. Each of the
total doses preserved the ratio of drug A to drug B such that pA = 0.605
and pB = 0.395. From the values of SE(log(A)) and SE(log(B)) shown,
the variances of A and B were calculated using Equation 2.12: SE(A)
= 2.30 × 5.754 × 0.0234 = 0.3096, from which V(A) = 0.0959, and SE(B)
= 2.30 × 3.755 × 0.0994 = 0.8585, from which V(B) = 0.7370. Since f =
0.5, the variance of the additive total is calculated from Equation 4.2:
V(Zadd) = (0.5)2 × (0.0959) + (0.5)2 × (0.7370) = 0.2082. Thus, we get
SE(Zadd) = 0.4563 and SE(log(Zadd)) = 0.0417.

With Zadd, Zmix, and their standard errors now known, it is possible
to test the significance of the difference according to Equations 4.9
and 4.10. The test is actually made on the logarithmic values: 0.678
± 0.0417 vs. 0.1989 ± 0.00317. From Equation 4.9 we get

t′ = (0.678 – 0.199)/[0.00174 + 0.00001]1/2 = 0.479/0.0418 = 11.46.

The value of t′ is to be compared with T given by Equation 4.10.
The table values of t for the additive set uses 6 degrees of freedom and
95%; this is 2.447 (see Table A.6). For the combination (3 points) the
degrees of freedom = 1, and thus the table value is 12.706. Hence, 

T = [(0.0417)2 × 2.447 + (0.00317)2 × 12.706]/(0.00174 + 0.00001) 
= 2.505.

Since t′ > T the difference is clearly significant, thereby demonstrat-
ing synergism. 

Table 4.1.  Dose-Effect Data for Morphine SO4 and Clonidine HCl

Clonidine HCl 
(Drug B)

Morphine SO4

(Drug A)
Combination 

(Drug C)
Dose Effect Dose Effect Dose Effect
0.800 19.79 1.138 19.67 1.190 38.96
2.667 31.40 3.793 40.32 2.380 65.98
7.998 74.92 11.38 61.91 4.760 92.04
26.66 92.41 37.93 88.52

Drug A: Y = 15.64 + 45.21 log(dose), log(A) = 0.7600 ± 0.0234, A = 5.754 ± 0.310

Drug B: Y = 20.36 + 51.58 log(dose), log(B) = 0.5746 ± 0.0994, B = 3.755 ± 0.858 

Drug C: Y = 32.46 + 88.16 log(dose), log(Zmix) = 0.1989 ± 0.00317, Zmix = 1.581 ± 0.01151

(See linear regression equations in Chapters 1 and 2.)
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It should be noted that nonoverlapping confidence limits for log
Zadd and log Zmix means that the difference is significant, and this
criterion has been used for this purpose. This is a more strict criterion
than the assessment based on the modified t-test given here.

4.4  Graphical display with standard errors

It has been previously mentioned that the isobologram is not convenient
for statistical analysis. Nevertheless, when a separate statistical anal-
ysis has been conducted, as in the preceding section, it may still be
desirable to display the results on an isobologram. The statistical anal-
ysis leads to the estimated values Zadd and Zmix of the respective totals
and the standard error of each (square root of variance), as illustrated
in the above example. It is therefore possible to display these standard
errors as vertical and horizontal segments through the additive point
and the mixture point of the isobologram. The half width of each seg-
ment indicates the standard error for each constituent and is parallel
to the axis representing that constituent as in Figure 4.1. The calculated
standard error is that for the total: Zadd for the additive and Zmix for the
combination. For each total the proportions of the constituents, denoted
ρA and ρB, are known. Thus, standard errors are ρA SE(Zadd), ρBSE(Zadd)
for the additive point and ρA SE(Zmix), ρB SE(Zmix) for the experimental
point. It is interesting to note that for each point the sum of the standard
errors in each direction is the standard error of the total. This (unusual)
relation follows from the fact that the constituents are in a fixed ratio
mixture. (See this chapter’s appendix for details.) 

It might be supposed that, using Equation 4.1, the standard errors
of the constituents in the additive case could be obtained as f SE(A)
and (1 – f) SE(B) because the additive combination contains amounts
f A and (1 – f)B. That would be incorrect because these are controlled
amounts (although based on estimates of A and B) that define the
combination; as such, fA and (1 – f)B have no error. When these
amounts are put together, the total has a variance because the theo-
retical definition of additivity is based on the true A and B and not
the estimates that are used to make the combination. 

4.5  The additive total dose: a closer look 

Equation 4.1 allows a calculation of the additive total dose in terms of
the fractions, f and 1 – f, and Equation 4.2 calculates its variance. Clearly
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these are needed in a test to distinguish additivity from nonadditivity.
The literature, however, has not addressed this need with a method for
getting these values. As a result, many studies that utilized the isobo-
logram presented the plot with no error estimates. Consequently, the
conclusions reached in these studies were based solely on this graphical
view. The need for estimates of Zadd and its standard error prompted a
derivation (Tallarida et al., 1989) that led to formulas for Zadd, the total
amount (or concentration) in a simply additive combination, and its
standard error. In contrast to the simple formulas given in Equations
4.1 and 4.2, derived more recently, the earlier work started by using
the proportions, ρA and ρB, of the combination and the ratio R = A/B.
This approach led to formulas more complicated than 4.1 and 4.2, espe-
cially that for V(Zadd). We provide the main results of this earlier work

Figure 4.1.  Isobologram for effect level = 50% of the maximum for the combinations
of morphine sulfate and clonidine HCl in a fixed ratio proportion in which the quantities
of the constituents are in proportion to their respective D50 values.  The solid line is the
line of additivity and contains the point Q representing the calculated additivity quan-
tities for this proportional combination.  Point P is the combination point determined
experimentally with this same proportional mix.  The coordinates of point Q are (2.88
± 0.28, 1.88 ± 0.18) and the coordinates of point P are (0.96 ± 0.007, 0.62 ± 0.004).  (Re-
drawn from Tallarida, R.J., Stone, D.J., and Raffa, R.B. Efficient designs for studying
synergistic drug combinations. Life Sci. 61:PL417–425, 1997. Used with permission of
Elsevier Science.) 
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here because some aspects will be useful in subsequent discussion in
Chapter 5. In that approach the total additive amount was expressed
in terms of ρA and ρB (whose sum = 1) as follows:

ρA Zadd/A + ρB Zadd/B = 1 (4.11)

from which Zadd follows as

Zadd = A/(ρA + R ρB) (4.12)

where R = A/B, the ratio of equieffective doses for the effect level.
While Equation 4.12 is not very complicated the estimation of the
variance of Zadd based on this equation is a good deal more complicated
(Tallarida et al., 1989; Tallarida, 1992); it is given by 

V(Zadd) = (ρA + R ρB)–2 [V(A) + C E2 – 2E V(A)/B] (4.13)

where

C = V(A)/B2 + A2 V(B)/B4 (4.14)

and

E = ρB Zadd. (4.15)

The above variance calculation, which required the use of the ratio
R and an estimation of its variance, is seen to be somewhat more
complicated (and probably less accurate) than the expression given in
Equation 4.2. The computing form of Zadd given by Equation 4.12 is,
however, simple enough and gives the same value as that from Equa-
tion 4.1. Figure 4.2, showing three lines derived from linear regression
and the calculated additive line, displays the main ideas in tests for
synergism, additivity, and sub-additivity. The lines represent log dose-
effect data from the individual compounds, the additive line, and the
mixture line. All doses are totals of the constituents. The additive line
is always between the individual compound lines. The position of the
mixture line, however, can be either coincident with the additive line
or on either side of it. The horizontal line represents the specified effect
level, here denoted E*, and its intersection with each of the four lines
provides logarithms of A, B, Zadd and Zmix as shown. The order relation
between Zadd and Zmix classifies the nature of the interaction as previ-
ously discussed. It should be noted that no aspect of this analysis
depends on the lines’ being parallel. 
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4.6  Changing the effect level 

Studies of interactions begin with dose-effect data of each constituent,
and, as we have seen, these data are often modeled with regression
lines. Also, some effect level (such as 50% of the maximum) that is
common to both agents is selected for subsequent analysis. At this
level the values of A and B are estimated, along with their variances,
and these values are used in determining the proportions of the con-
stituents. In some cases it may be desirable to examine the nature of
the interaction at other levels for this same proportioned mixture. If
complete dose-effect data are available this is easy enough, provided
that there is sufficient precision in the regression lines at the new
level. Figure 4.3 illustrates the calculation. Effect vs. dose (on a log
scale) shows the original effect level E1 and a new higher effect level
E2. At the new effect level the equieffective doses (or concentrations)
are denoted by A* and B* and are calculated from the individual
regression equations. The variances of these at the new level, V(A*)
and V(B*) are also calculable from Equation 2.9. The variance of Zadd

Figure 4.2.  The position of the additive line (Add) lies between the individual lines A
and B and depends on the proportions of the fixed-ratio combination.  The position of
the combination line (Mix) determines whether the interaction is super-additive or sub-
additive.  For the specified level of effect (E*) the logarithms of B, A, Zmix and Zadd are
indicated by the vertical arrows.  In this case there is synergism (Zmix <  Zadd).

Log (dose)

Effect

0

E

B Mix Add A

*
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at the new level requires the fraction f at this new level as seen in
Equation 4.2. While the proportions ρA and ρB remain the same, chang-
ing the effect level changes f since it is now the fraction of A* that is
needed. This new fraction, here denoted by f*, is calculated from A*,
B*, and ρA from Equation 4.16:

. (4.16)

With f* now determined from the above, Equations 4.1 and 4.2 can
now be used with starred quantities to get Zadd and its variance at the
new level.

The level that is chosen in this kind of analysis (isobolar, i.e.,
equieffective comparisons of doses) will usually be near the 50% Emax

level. It is desirable to have the variances of all dose estimates as
small as possible, and the value of the variance of logdose (or dose)
in regression analysis depends on how close it is to  (see Equation
2.9). Therefore, the dose values used in testing (hence, in analysis)
should be those that produce effects near the effect level that is to be
used in the analysis. Chapter 5 discusses a method of analysis that

Figure 4.3.  Changing the effect level.
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is based on the complete mixture and calculated additive regression
lines.

4.7  Selecting the drug proportions 
in a combination study

The choice of the constituent proportions or, equivalently, the selection
of f, is somewhat arbitrary. If there is some known reason (mechanistic
or other) to guide this selection, then the choice is made. In the absence
of this kind of guide it is reasonable to make the choice from an
examination of the individual drug data — especially from the vari-
ances of the individual D50 (or ED50) values. In the notation we have
employed, f is the fraction of A and 1 – f is the fraction of B (A and B
are the individual potencies based on the selected effect level — see
Equations 4.1 and 4.2). Since the variance of Zadd should be as small
as possible (to facilitate statistical testing), we can determine the value
of f by finding its value that gives a minimum V(Zadd). This determi-
nation is easily accomplished by differentiating V(Zadd) with respect
to f and equating the derivative to zero. This procedure yields

. (4.17)

In many cases the individual variances, V(A) and V(B) are compa-
rable and, if they are equal, the above equation shows that f = 1/2.
This is a reasonable choice for f even when the variances differ a bit.
But when there is a marked difference in the variances that cannot
be practically reduced (say, by further testing), and if there is no
compelling reason to use some particular proportion, then Equation
4.17 is a rational guide. Figure 4.4 illustrates this for a particular case,
that in which the variance of B is twice that of A. It is seen that f =
2/3 provides the best choice in this situation. 

4.8  Interaction index

When synergism is found Zmix < Zadd; thus, Zmix = α Zadd for some
value of α that is less than one. The value of α is the interaction
index. It is a number that provides a measure of the degree of
synergism; i.e., it is an indicator of the dosage reduction that is

f V B( )
V A( ) V B( )+
---------------------------------=
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associated with the particular fixed-ratio combination of the drugs.
(It is also an estimate since both Zmix and Zadd are estimates.) The
interaction index is useful in characterizing the synergism and also
when it is desired to use the reduced dosages in some situation. For
example, in the morphine-clonidine experiment (Table 4.1), we found
Zmix = 1.58 and Zadd = 4.76; thus α = 0.332 which was obtained with
a combination containing 60.5% morphine sulfate. We also saw that
the potency ratio of the drugs is 5.754/3.755 = 1.532 in this test of
antinociception. These values can be used to find the reduction in
doses as we now illustrate.

Suppose that some experimental situation requires 10 µg of mor-
phine SO4. We can calculate the needed combination of the constitu-
ents that (theoretically) are equivalent to this dose of the opioid. First,
we use Equation 4.12 to obtain the additive equivalent of 10 µg of
morphine sulfate:

.

Figure 4.4.  The variance of the calculated additive dose depends on the individual
variances, V(A) and V(B).  In this illustration, V(B) = 2 V(A), so that the minimum
variance of Zadd occurs at a proportional combination for which f = 2/3.
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C0457_frame_C4  Page 70  Friday, May 19, 2000  6:40 AM



INTERACTION INDEX 71

Because of the synergism, we multiply this additive total by the
index, 0.332 × 8.263 = 2.743 µg. This reduced quantity is the total
amount in the synergistic combination of which the morphine compo-
nent is 1.660 and the clonidine component is 1.083. In these calcula-
tions all the values used, and hence the result obtained, are based on
the 50% effect level (an isobolar analysis). In Chapter 10 (response
surface methods) the analysis is extended to other dose combination
ratios and a range of effects, thereby providing a more detailed picture
of the synergism. 
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CHAPTER 4

Appendix

We wish to show that if two random variables, X and Y, are in a fixed
proportion, their sum, Z = X + Y, has SE given by SE(Z) = SE(X) +
SE(Y). To prove this, we square both sides : SE2(Z) = SE2(X) + SE2(Y)
+ 2 SE(X) SE(Y). But, in general, SE2(X + Y) = SE2(X) + SE2(Y) + 2
cov(X, Y), for normally distributed variables. Accordingly, we must
show that SE(X) SE(Y) = cov (X, Y). Since X and Y are in a fixed
proportion, Y = α X. Thus, cov (X, Y) = cov (X, αX) = α cov (X, X) =
α V(X) = α SE2(X). Also, SE(X) SE(Y) = SE(X) SE(αX) = α SE2(X), =
a V(X), thereby demonstrating the equality.
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CHAPTER 5 

 

The Composite Additive Curve

 

When dose-effect data from two drugs have been obtained, and each
is fitted to a linear regression line, the relative potency 

 

R

 

 at any effect
level can be estimated. We now consider how the two data sets and 

 

R

 

values can be used to obtain a third curve that represents a simply
additive combination for any fixed-ratio combination of the two. The
procedure produces a curve that is a composite of the two.

 

5.1  Construction of the additive curve

 

The less potent drug is denoted by 

 

drug 

 

1 and the more potent by 

 

drug 2

 

.
Consider a dose-effect point of drug 1 that has coordinates (log 

 

z

 

1

 

, y

 

) as
in Figure 5.1. The effect level 

 

y

 

 is common to both drugs, and, thus, there
is a relative potency 

 

R

 

 calculable from the curves. 

 

R 

 

is the ratio of the
equivalent doses (drug 1:drug 2) from the curves, as shown in the figure.
The combination has proportions, 

 

ρ

 

1

 

 of drug 1 and 

 

ρ

 

2

 

 of drug 2. An
additive combination is given by the following (see Equations 4.11, 4.12):

. (5.1)

Thus, 

 

Z

 

add

 

 is the sum of both constituents in an 

 

additive combination

 

with relative potency 

 

R

 

, having proportions 

 

ρ

 

1

 

 and 

 

ρ

 

2

 

, and producing
the same effect level as the dose of 

 

z

 

1

 

 of drug 1 alone. Since the
denominator of Equation 5.1 is greater than 1, 

 

Z

 

add

 

 is less than 

 

z

 

1

 

.
Stated differently, 

 

Z

 

add

 

 is less than 

 

z

 

1

 

 because the more potent drug
(2) is present in the combination. Thus, for all the effect levels produced
by drug 1, the combination’s additive total is less than the dose of drug
1 acting alone. If the points (log 

 

Z

 

add

 

,

 

 y

 

) are plotted, the resulting graph
is a translation to the left of the original plot because each point is
translated by an amount, log (

 

ρ

 

1

 

 + 

 

R

 

ρ

 

2

 

)

 

.

 

 

Zadd
z1

ρ1 Rρ2+
----------------------=
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Now consider drug 2. When it is present in an additive combination
with the less potent drug 1, the total in an additive combination is
greater than the dose 

 

z

 

2

 

 of drug 2 acting alone that gives the same
effect. We have in this case

. (5.2)

When compared to the points of drug 2, log 

 

Z

 

add

 

 lies to the right of
log 

 

z

 

2

 

. (See Figure 5.1). The translated points of both drugs result
in a set of points that are the composite of both. It has been shown
that the translated points are theoretically not linear, but the depar-
ture from linearity is only very slight in most cases studied (Tallar-
ida et al., 1997). Further, the shifted amounts contain a relative
potency term (

 

R

 

) that is not known precisely, because it is estimated
from the two regression lines. Accordingly a regression line derived
from the additive set of points is based on 

 

x

 

-values that are not
known precisely.

 

Figure 5.1.  

 

Dose-effect data from drug 1 and 2 are plotted.  An additive total dose from
drug 1 is a lesser quantity, shown as a leftward shift.  The more potent drug 2 has an
additive total that is a greater quantity, shown here as a rightward shift.  The set of
shifted points produces an additive composite for the combination in fixed-ratio combi-
nation of the constituents.

Effect

drug #2 drug #1

log (dose)

0

Zadd
z2

ρ1 R⁄( ) ρ2+
------------------------------=
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Methods exist to handle bias associated with cases in which the 

 

x

 

-
values have error (Snedecor and Cochran, 1989; Draper and Smith,
1981), but, as a practical matter (based on numerous tests), there is
no serious error when standard regression is applied to the set of
translated points (Tallarida et al., 1997) and the error is probably less
serious than the common procedure of constraining the lines to par-
allel.

 

*

 

 The composite additive set allows the construction of a regres-
sion line of additivity for the drug pair and the relative proportions of
the constituents of the combination. When an actual combination with
this proportional mix is tested we get a second regression line that
may be directly compared to the additive regression line. 

The following example illustrates the computational details. These
data are from the same experiment illustrated in Table 4.1 of Chapter
4. These are experiments with morphine SO

 

4 

 

and clonidine HCl admin-
istered intrathecally to mice that were then tested for antinociception
in a test based on tail withdrawal latency (Tallarida et al., 1997). The
proportions of the constituents were 0.605 for morphine SO

 

4 

 

and 0.395
for clonidine HCl. The effect is expressed as the percentage of the
maximum effect. 

 

Example.

 

 Doses of clonidine (C) and morphine (M) are shown in the
first column of Table 5.1 and the effects of these are shown in the last

 

*The parallel constraint is a common procedure in pharmacologic data analysis,
a practice that assumes constant relative potency at all effect levels. This practice
has been questioned by Finney (1971) but no practical remedy has been found.   

Table 5.1.  

 

Doses and Additive Equivalent

 

Dose Add Effect
C: 0.800 0.917 19.79 
C: 2.667 3.179 31.4 
C: 7.998 10.916 74.92 
C: 26.66 38.220 92.41 

M: 1.138 1.030 19.67
M: 3.793 3.230 40.32 
M: 11.38 9.052 61.91
M: 37.93 27.569 88.52 

 

Clonidine:

 

 

 

Y

 

 = 51.581 

 

x

 

 + 20.355

 

Morphine

 

: 

 

Y

 

 = 45.215 

 

x

 

 + 15.639

 

D

 

50

 

 = 3.756 ± 0.859

 

D

 

50 

 

= 5.754 ± 0.310
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column. An additive combination consisting of 0.605 morphine and 0.395
clonidine would require the total dose (

 

“Add”

 

) shown to get the same
magnitude of effect. It is seen that the additive totals are greater than
the clonidine doses but less than the morphine doses. The additive
equivalents are calculated from Equations 5.1 for M and 5.2 for C, using
the doses and the values 

 

ρ

 

1

 

 = 0.605, 

 

ρ

 

2

 

 = 0.395, and the appropriate
value of 

 

R

 

 at each effect level. The 

 

R

 

-values were derived from the
individual log dose-effect lines whose equations are given at the bottom
of the table.

For example, at effect level 31.4, achieved with clonidine dose 2.667, the
clonidine line gives 

 

x

 

 = 0.2141 and the morphine line gives 

 

x

 

 = 0.3486.
These are log dose values and their difference is log 

 

R

 

 = 0.1345, from
which 

 

R

 

 = 1.363 (rounded). Using dose 

 

z

 

2

 

 = 2.667 and the values of 

 

ρ

 

1

 

,

 

ρ

 

2

 

 and 

 

R

 

 in Equation 5.2, we get 

as shown in Table 5.1. In other words, a dose of clonidine = 2.667, acting
alone, would require 1.363 times this amount of morphine (acting alone)
= 3.635 to attain this same effect level. The calculated 

 

Z

 

add

 

 

 

= 3.179 is a
total dose of which clonidine is 39.5% = 1.256 and morphine is 60.5% =
1.923. (Note that 1.256/2.667 + 1.923/3.635 = 1) . For the morphine doses
and each effect a similar calculation of 

 

R

 

 is made at the specified effect
level and Equation 5.1 is used in computing each of the additive dose
equivalents given in Table 5.1.

 

When all points are translated the set is the additive equivalent.
The regression line that is determined from this set is therefore the
additive equivalent line for this fixed-ratio combination (Figure 5.2).
For each combination ratio that is to be used, there is a different
additive line. Accordingly, when an experiment with an actual fixed
ratio combination is conducted, its regression line may be compared
with that of the calculated additive equivalent line for the same com-
bination. The additive line also provides values of log 

 

D

 

50

 

, in this case,
0.676 ± 0.042, which agrees closely with the value 0.678 obtained from
Equation 4.1 (see Chapter 4); thus, the log 

 

D

 

50

 

 values of the actual
combination and the calculated additive log 

 

D

 

50

 

 may be compared. 

 

The
construction and use of the additive equivalent line provides an alter-
nate method of getting the additive log D

 

50 

 

value, 

 

i.e., in addition to
the value determined from Equation 4.1. Tests with numerous drug
pairs have shown that the two methods agree very closely as in this

Zadd
2.667

0.605 1.363⁄( ) 0.395+
------------------------------------------------------------ 3.179= =
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example. Figure 5.3 shows the regression line for the three combina-
tion doses that were actually tested (data in Table 4.1), along with the
additive line calculated for this combination. The composite additive
line provides a view of the (total) log dose-effect relation over the entire
range of doses used and effects attained with the individual drugs.
This composite line allows a comparison with the line derived from an
actual combination experiment with this same fixed-ratio proportion
and is shown for this example in Figure 5.3. 

The importance of the additive line is further illustrated in Figure
5.4 which shows it along with experimental results of a combination
experiment (artificial data used). A combination that is synergistic
may result in the situation shown in Figure 5.4a. This is synergism
over the entire range studied. The graph also illustrates the effect
level = 50% of the maximum effect as a horizontal line that intersects
to give the log 

 

D

 

50

 

 doses of the additive and experimental lines. These

 

Figure 5.2.  

 

The composite regression line (with standard error bands) is calculated
from the individual data sets and is given by the equation 

 

Y

 

 = 17.35 + 48.33 

 

x

 

.  From
this line, log (

 

D

 

50

 

) = 0.676 ± 0.042.  The composite line is based on 60.5% morphine SO

 

4

 

and 39.5% clonidine HCl.

100

90

80

70

60

50

40

30

20

10

0
-0.5 0.0 0.5 1.0 1.5 2.0

E
ffe

ct
 (

M
P

E
%

)

log (Dose)

Composite: Morphine + Clonidine

 

C0457_frame_C5  Page 81  Friday, May 19, 2000  6:47 AM



 

82 THE COMPOSITE ADDITIVE CURVE

 

would be statistically compared as described in Chapter 4, Equations
4.6 to 4.10. Another possible outcome is illustrated in Figure 5.4b. In
this case the synergism may be significant at the 50% effect level but
not at the lesser effect levels. In other words, the synergism is depen-
dent on the total dose in this fixed proportion combination. A third
possibility is shown in Figure 5.4c in which the regression lines are
nearly coincident. This illustrates 

 

additivity over the entire range

 

 of
the tested doses, and Figure 5.4d shows a situation in which the lines
intersect at the mid range doses, a case that can hardly be classified
as synergistic. In practice each of these situations does occur, so a
classification of synergism depends not only on the drugs and the
effect measured, but also on the fixed ratio combination and the total
dose in the combination. 

These illustrations point out the desirability of having additional
methods for determining and classifying combinations that depart
from additivity. The application of the 

 

t

 

-test at the effect level chosen

 

Figure 5.3.  

 

Dose effect line (

 

left

 

) for the combination of morphine SO

 

4

 

 (60.5%) and
clonidine HCl (39.5%) along with the calculated composite additive line (

 

right

 

) shown
for the same combination (with standard error bands).
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(e.g., 50% of the maximum) provides only one indication and is clear
only in situations such as those shown in Figure 5.4a and b. In actual
work, the additive regression line and the line obtained from experi-
ment should be compared to assess whether synergism, if it is found
at some mid range effect, extends to other dose levels. The F-distribu-
tion provides a convenient statistic for distinguishing whether the two
lines differ significantly. 

5.2   Test for distinguishing two regression lines

Our application is to the line of additivity and the actual combination
line. The method, however, is general for any two regression lines.
First, the points from both data sets are used, without distinguishing
between each, to determine the mean values  and . We then calcu-
late terms, denoted SSt and SSp, from the formulas below.

(5.3)

(5.4)

(5.5)

From these we get SSt:

. (5.6)

To get SSp we use the residual sum of squares from each line, SSres(1)

and SSres(2), and add them

SSp = SS res(1) + SS res(2.) (5.7)

From these we calculate F:

(5.8)

x y

Sxx xi x–( )2∑=

Sxy xi x–( ) yi y–( )∑=

Syy yi y–( )2∑=

SSt Syy
Sxy( )2

Sxx
---------------–=

F

SSt SSp–
2

--------------------------

SSp

N1 N2 4–+
------------------------------
------------------------------=
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Degrees of freedom for F are 2 (across) and (N1 + N2 – 4) (down).
In our application, line 1 is the composite additive line, which is
derived from the sum of the points of both drugs; that sum gives N1.
The value of N2 equals the number of data points in the actual com-
bination experiment.

Example.  Comparing Additive and Experimental Regression Lines.
Table 5.2 shows the results of a combination experiment with two sim-
ilarly acting compounds.  In this experiment each compound was first
given alone in five doses and produced mean effects  ( % of maximum)
as shown in the table.  Results of linear regression analysis show that
for drug #1, D50 = 100.0 and for drug #2, D50 = 65.13.  The combination
dose proportions were taken to be the same as the D50 values; thus,
100.0:65.13. Therefore a typical combination dose, based on f = 1/2,
contained 1/2(100) + 1/2 (65.13) = 82.56 (a total that is expected to give
a 50% effect in an additive combination).  All other combination doses
retained this ratio and had total amounts, 10.32, 20.64, … 165.13. (See
“Combination Data” in Table 5.2.) The proportion of drug #1 is 0.6056
and that of drug #2 is 0.3944.  For this choice the additive D50 = 82.56
and is displayed in the table as Zadd(2).

The table also includes as composite parameters the shifted dose and
log dose values corresponding to each effect of the individual drugs,
thereby resulting in 10 points that comprise the additive composite data
set.  Regression on this set gave Zadd = 81.04, shown in the Table as
Zadd(c) , a value that agrees well with Zadd(2)  calculated above.  The agree-
ment is more striking for the logarithmic values, 1.91 and 1.92 on which
the analysis is based. The experiment with the actual combination hav-
ing these proportions produced a D50 = 17.94, a number significantly less
than the additive. This finding suggests super-additivity, and the differ-
ence (based on log values) was significant, as noted by the calculated t′
and tabular T values. The composite line and the experimental line were
compared using Equation 5.8 which requires values for SSt , SSp, N1 and
N2.  The merged data gave the value SSt = 8872.1, while the summed
residuals gave SSp = 637.8.  The value N1 = 10 for the composite line
and N2 = 5 for the experimental line; substitution in Equation 5.8 gives
F = 71.00. This exceeds the table value 3.98 (degrees of freedom 2, 11
of Table A.9 at 0.05 level).  This result means that the additive and
combination lines are significantly different, a conclusion that seems
evident from the equations of these two lines.
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Table 5.2.   Combination Analysis: Comparing the Additive and 
Experimental Regression Lines

Compound 1
Dose Log (dose) Effect ( % )

50 1.699 2.5
75 1.875 18

100 2.000 35
125 2.097 70
150 2.176 95

Eqn: Y = 192.0 x – 334.1
Log D50 = 2.00 ± 0.031

D50 = 100.0 ± 7.19

Compound 2
Dose Log (dose) Effect ( % )

20 1.301 6
40 1.602 24
80 1.903 52

120 2.079 78
160 2.204 92

Eqn: Y = 96.69 x – 125.4
Log D50 = 1.814 ± 0.030

D50 = 65.13 ± 4.55

Composite Data
f = 0.500
P1 = 0.6056
Zadd(C) = 81.04 ± 3.85
Zadd(2) = 82.56 ± 4.25

Dose Log(dose) Effect ( % )
29.992 1.477 2.5 
31.821 1.503 6 
50.355 1.702 18 
58.468 1.767 24 
75.268 1.877 35 
100.252 2.001 52 
115.343 2.062 70 
127.204 2.105 78 
153.514 2.186 92 
156.009 2.193 95 
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Eqn: Y = 127.99 x + –194.30 
 =  1.887 
 =  47.25 

SStot =  11019 
SSres =  555.9 log D50 = 1.909 ± 0.021
SSreg =  10463 D50 = 81.04 ± 3.85

Combination Data 
f   =  0.500 
P1 =  0.6056 

Dose Log(dose) Effect ( % )
10.320 1.014 32 
20.640 1.315 55 
41.280 1.616 75 
82.560 1.917 92 
165.130 2.218 100 

Eqn: Y   =  57.47 x + -22.05 
 =  1.616 
 =  70.80 

SStot = 3074.8 
SSres = 81.91 log D50 = 1.254 ± 0.053 
SSreg = 2993 D50 = 17.94 ± 2.20 

Results
F = 71.00 
t' = 11.44 
T = 3.067 

Table 5.2.   (Continued)Combination Analysis: Comparing the Additive and 
Experimental Regression Lines

x
y

x
y
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CHAPTER 6

 

Quantal Dose-Response Data: 

 

Probit and Logit Analysis 

 

We have seen that the effects of drugs and chemicals are often
expressed on a continuous scale. Muscle tension, blood pressure, and
measures of time duration that are used in analgesic tests are exam-
ples. In other situations a drug dose is given and we look for some
sign or endpoint. For example, did the animal stretch after receiving
an irritating intraperitoneal injection? Did the animal show a response
to some hot or cold stimulus? Did the animal die after receiving the
drug? In these cases, either the subject shows the response or does
not show the response. These are examples of binary outcomes, and
we can record the proportion of the sample that displays the sign and,
thus, the proportion that did not. The proportion data are coupled to
the dose of drug that is intended to inhibit the response (or show the
response). Thus, these are all-or-none, or 

 

quantal

 

, data. The data set
consists of (dose, proportion responding).

Proportion data do not have a uniform variance, i.e., as the pro-
portion (

 

p

 

) changes (with changing dose) the variance changes. For
large numbers (

 

n

 

) this variance is given by 

 

p

 

(1 

 

– p

 

)/

 

n

 

. The probit
method of linear regression adjusts for this non-constant variance
through the application of weights, as we will describe in this chapter.
Another procedure useful for proportion data is the log odds transfor-
mation, i.e., we convert each 

 

p

 

i 

 

to the quantity, ln [

 

p

 

i

 

/(1

 

 – p

 

i

 

)] called
the “logit.” This, too, has a variance that is not constant; thus weights
are used. This method, known as “logit analysis” is discussed at the
end of this chapter. 

 

6.1  Probit analysis 

 

We now consider test situations in which we divide the population
tested with a specific drug dose into responders and non-responders
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based on a particular endpoint or characteristic. This is a quantal
situation. Thus, if 

 

n 

 

subjects or animals are tested at a specific dose,
then either 0, 1, 2, …, 

 

n

 

, experience the effect. This number of respond-
ers 

 

r

 

 divided by 

 

n

 

 gives the proportion 

 

p

 

 that respond; thus, 

 

p

 

 = 

 

r

 

/

 

n

 

and multiplying 

 

p

 

 by 100 gives the percentage that respond. The asso-
ciation of the proportion of responders with the dose produces quantal
dose-effect data. The proportion (or percentage) is usually plotted
against the dose or the logarithm of the dose, and an appropriate
smooth curve is drawn to fit the data. The sigmoidal curve of Figure
6.1 is an example of a smooth curve that is typical of this plot. It is
desirable to have the data produce a straight line, for then linear
regression can be used to get the best fitting straight line. Toward this
end several transformations have been tried. One that is especially
suitable is embodied in a calculation algorithm called 

 

probit analysis

 

.
In this procedure, the proportion responding to each dose is transformed
into a number called a “probit.” The graph of probit against log(dose)
produces points that often display a linear trend, and, therefore, this
graph is modeled as a straight line using “weighted” linear regression.
Before presenting the details of this linear regression procedure, we
discuss the probit and its relation to the normal distribution. 

The cumulative probability function 

 

P

 

 for a normal distribution
with mean 0 and variance 1 is well known. It represents the probability

 

Figure 6.1.  

 

S-shaped curve representing the proportion plotted against log dose. This
shape is typical of those obtained in quantal experiments and has been modeled in
relation to the standard normal curve and also according to the logistic curve.
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that some random variable has a value that is less than or equal to
some number. This number, denoted here by 

 

Y

 

, is termed the normal
equivalent deviate. 

 

P

 

 is given by the integral

(6.1)

and represents the probability that the random variable is less than
or equal to 

 

Y

 

. The integrand in the above integral is a bell-shaped
curve. Graphically, 

 

P

 

 is the area under this curve from negative infin-
ity to 

 

Y

 

. The area under the total curve, from minus infinity to plus
infinity, is unity. If 

 

P

 

 is plotted against 

 

Y, 

 

the curve is sigmoidal, as
shown in Figure 6.2. This shape is similar to that obtained from
quantal dose-effect curves in which the proportion of respondents is
plotted against the log(dose). To the extent that the quantal dose-effect
curve has the shape of the cumulative probability function, it follows
that the relation between the log(dose) and the normal equivalent
deviate is linear, a concept recognized by Gaddum (1933). Bliss (1934)
replaced the normal equivalent deviate by a quantity that increased
it by 5 and called it a probit. Thus, the probit 

 

Y

 

 is given by 

. (6.2)

From Equation 6.2 it is seen that 

 

Y 

 

= 5 corresponds to 

 

P 

 

= 0.5.
A table of probits for specified values of 

 

P

 

 is given in the appendix
(Table A.8), and a graph of the probit-percentage relation is given in
Figure 6.3. Plotting the probit against the log(dose) is straightfor-
ward, but the regression technique requires weights in order to
stabilize the unequal variances that accompany proportions and,
hence, probits. Accordingly all the summations used in the simple
linear regression formulas are modified to include weights (

 

w

 

i

 

) that
must be computed in this regression procedure. (Weighted regression
is discussed in Chapter 3.) 

The first step in probit analysis is the conversion of each proportion
(or percentage) to a probit, using Table A.8. It is worth noting 

 

there
are no probits for 0 and 100%.

 

 Thus, these values of response, if they
occur, are not used initially. The proportion (

 

p

 

i

 

) of responder among
the 

 

n

 

i

 

 

 

tested at each log dose value (

 

x

 

i

 

) is calculated as the number of
responders divided by the number 

 

n

 

i

 

 

 

of subjects tested at this dose.

P 1
2π( )

---------------- u2– 2⁄( )exp ud
∞–

Y

∫=

P 1
2π( )

---------------- u2– 2⁄( )exp ud
∞–

Y 5–

∫=
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Each proportion is converted to a probit value. Some notation is
needed. We shall denote the probit of proportion 

 

p

 

i

 

 by the symbol 

 

y

 

i

 

′

 

and the log dose value that produced this by 

 

x

 

i

 

. The set of points (

 

x

 

i

 

,
y

 

I

 

′

 

) are then first used in a simple regression procedure (see Equations
2.3 and 2.4) to produce the initial regression line. Note that the index

 

Figure 6.2.  

 

Upper graph is the standard normal distribution curve; the area under the
total curve is one.  The area under the curve and lying to the left of the vertical line at
abscissa = 

 

Y

 

 represents some proportion 

 

P

 

. The lower graph shows 

 

P

 

, plotted as the
ordinate against 

 

Y

 

, which results in the S-shaped (sigmoidal) curve.
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i

 

 refers to the 

 

i

 

th dose, 

 

n

 

i

 

 

 

are tested at that dose, and there are 

 

N

 

distinct doses; thus, 

 

i

 

 = 1, 2, …, 

 

N.

 

 The value of the probit 

 

on the line

 

(the expected probit) is here denoted by 

 

Y

 

i

 

 and the proportion corre-
sponding to it will be denoted 

 

P

 

i

 

. These are used in the calculation of
weighting factors 

 

w

 

i

 

 

 

from the following:

(6.3)

where

. (6.4)

It should be noted that the calculation of weights uses values from
the line.

 

Figure 6.3.  

 

Relation between probits and percentages; 50% corresponds to probit = 5.
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The values of 

 

w

 

i

 

, which involve 

 

f

 

i, are used in the construction of
a second regression line, but this second line no longer uses the probits
of the original proportions. Instead the original set of proportions, pi,

are used to obtain working probits, yi, that are calculated from

. (6.5)

Working probits are used in the subsequent regression procedure. The
use of working probits permits the use of the 0 and 100% response
points that have no probit equivalents but have working probit values.
The 0% point occurs at a value of log(dose) that has a probit value
from the line, denoted Y0, and the 100% point has a probit from this
initial line, denoted Y100. Thus, the working probits for these special
values are

(6.6)

. (6.7)

Because weights are obtained from values on the line, it is seen that
these “special” points have weights, as do all the others. The complete
set of working probits and their weights are used to calculate a second
regression line

. (6.8)

The values of a and b are determined from the following formulas that
incorporate weights with summation over the N values of i:

(6.9)

and

(6.10)

yi Yi
pi Pi–

fi
----------------+=

y0 Y0
P0

f0
------–=

y100 Y100
1 P100–

f100
-------------------+=

Y a bx+=

b
wi xi x–( ) yi y–( )∑

wi xi x–( )2∑
-------------------------------------------------=

a y bx–=
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where 

(6.11)

. (6.12)

This second (improved) regression line is now used to get another set
of weights and another set of working probits for the original xi, pi values,
and these are paired with the xi values to get a third regression line, Y
= a + bx, computed from the above formulas. The process continues as
an iterative procedure. Two or three cycles of calculation usually produce
a satisfactory fit. (Theoretically, the maximum likelihood estimate is the
limit to which these estimated lines tend in an infinite process.)

Prior to the widespread availability of computers the labor involved
in these calculations impeded the use of the probit method. Several
approximate methods were developed that used various graphical pro-
cedures and nomograms. One approximate graphical method was
developed by Litchfield and Wilcoxon (1949) and became routinely
used. The appendix to this chapter contains additional discussion of
this graphical method.

The probit regression line obtained from the iterative method
described here serves the same function as the curve of empirical
proportion responding vs. log(dose), except that the proportions 0 and
1 have no corresponding empirical probits. The working probit values
that are derived from the line for these values permit their incorpo-
ration into the analysis. The probit regression line has the advantage
of being linear and can therefore be analyzed from formulas for
weighted linear regression. The equation is simple, e.g., the log (ED50)
is the x value from the line at which Y = 5. Similarly, the x-value for
any other proportional response can be obtained by substituting its
corresponding probit for Y in the straight line equation and solving
for x. But it is necessary to obtain error estimates of log (ED50), the
other parameters, and the other measures of potency. These are readily
calculated in probit analysis as we now show.

6.2  Precision in probit calculations

The estimated intercept (a) and slope (b) of the probit regression line
have variances (square of standard error) given by

x wixi∑ wi∑⁄=

y wiyi∑ wi∑⁄=
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(6.13)

and

. (6.14)

At any value of x the probit estimate from the regression equation
has a variance

. (6.15)

The mean value, , has a variance given by

. (6.16)

Confidence limits are calculated using values from the normal
distribution; e.g., 1.96 (for 95% confidence limits) multiplies the stan-
dard error (square root of variance) to give a quantity that is added
and subtracted from the estimated parameter values. There is special
interest in the confidence limits for log (ED50) which is estimated from
the final regression line as the x-value for Y = 5, and, thus it is x* =
(5 – a)/b. Because x* is the ratio of estimated quantities, a precise
variance is not available. An approximate value is given by

. (6.17)

The above variance formula is actually applicable to any x* value, e.g.,
log (ED20), or log (ED80). A confidence interval based on this variance
is approximate. A true confidence interval for x*, e.g., the confidence
interval of log (ED50), is computed from 

(6.18)

V a( ) 1
wi∑

------------ x2

wi xi x–( )2∑
---------------------------------+=

V b( ) 1
wi xi x–( )2∑

---------------------------------=

V Y( ) 1
wi∑

------------ x x–( )2

wi x x–( )2∑
-------------------------------+=

y

V y( ) 1
wi∑

------------=

V x*( )
1
b2
----- 1

wi∑
------------ x* x–( )2

wi xi x–( )2∑
---------------------------------+=

x*
g

1 g–( )
----------------- x* x–( )  

st
b 1 g–( )
--------------------- 1 g–

wi∑
------------ x* x–( )2

wi xi x–( )2∑
---------------------------------+

 
 
 

1 2⁄

±+
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where 

. (6.19)

It is seen that these confidence limits are unequally spaced to the
left and right of x*. The theory on which the probit method is based
requires that s = 1 and that t has a value from the normal distribution,
such as 1.96 for the 95% confidence interval. However, heterogeneity
of the data, indicated by too large a value of the residual sum of
squares, requires additional considerations that we now explain. 

In this and other regression procedures, there are uncontrolled and
unknown factors that disperse the points about the line in a random
way. A measure of the dispersion is afforded by the residual sum of
squares, . This is a random variable that has the χ2

distribution with degrees of freedom = N – 2. If testing reveals a value
of SSres that exceeds the tabular entry (Table A.7) then it becomes
necessary to incorporate the factor s2 = SSres/(N – 2) into all variance
estimates; i.e., all the above variances are multiplied by s2. In this
case, it is also necessary to replace the value from the normal distri-
bution (e.g., 1.96) with the appropriate value of t from Student’s dis-
tribution (Table A.6) in the calculation of confidence limits. The num-
ber of degrees of freedom for t is N – 2.

Example. The quantal data (Table 6.1) were obtained in a study of
acetaminophen (Raffa et al., 1999) in which mice received intrathecal
doses (µg) and were studied in the mouse abdominal constriction test.
The table shows the final weights and working probits as well as the
original (empirical probits) corresponding to the proportions that
responded to each dose used. 

6.3  The composite additive probit line 

In the previous chapter we discussed the additive composite regression
line; that line was obtained by translating log dose values. We now
discuss how the composite probit line of additivity is calculated from
quantal data. The calculation begins with the final probit lines of the
individual compounds. These allow a determination of the relative
potency R for every empirical proportion pi. Even though working
probits define the lines, the composite additive line is initially made
up of empirical proportions as we now describe. 

g s2t2

b2 wi xi x–( )2∑
---------------------------------------=

wi yi Yi–( )2∑
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THE COMPOSITE ADDITIVE PROBIT LINE 101

Consider a point from drug 1 (the right-most set). For dose z its
coordinates are (log zi, pi). To determine the magnitude of the leftward
shift, we use relative potency R at the vertical probit level that corre-
sponds to proportion pi. This pi is converted to a probit in order to find
R from the two lines. The leftward shift is a translation from log zi to
[log zi – log (ρ1 + Rρ2)]; the proportion is the same. (Note the difference
between lower case pi and the Greek symbols ρ1 and ρ2 that denote
the proportions of the combination.) In this expression ρ1 is the fraction
of the combination that is drug 1, and ρ2 = 1 – ρ1 is the fraction that
is drug 2. If there is a 0% point or a 100% point, there is no corre-
sponding probit. In such cases the final working probits are used to
get R and, hence, the shift. But once the shift is made, the empirical
proportion, 0% or 100%, is paired with the shifted log dose value. The
result of shifting is to produce the set of (log dose, proportion) points.
This same procedure is applied to the data of drug 2 except that the
points are shifted to the right by an amount log(ρ1/R + ρ2). This final
set of left and right translated points have coordinates (log dose,
proportion) and may contain 0 and 100% proportions.

A completely new probit analysis is made on the translated data
points. This produces a new set of weights in the usual iterative
procedure through several cycles. The final line, along with the final
working probits and final weights, must be retained because these are
needed in comparing the final composite additive probit line with the
mixture’s final probit line.

Example. Acetaminophen, a well-known analgesic, was studied in combi-
nation with an experimental compound that displayed analgesic activity
in the mouse abdominal constriction test. Data for the individual com-
pounds consist of the proportion responding (binary outcome) among the
number tested and were therefore subjected to a probit regression analysis.
The data and the resulting probit equation of each compound are given in
Table 6.2. From these equations it was possible to determine the relative
potency R at each level of probit (Y) corresponding to the observed propor-
tion (p) responding at each dose. It was desired to obtain the additive
composite probit line for a combination containing 87.49% acetaminophen
based on mass; thus ρ1 = 0.8749 and ρ2 = 0.1251. At each effect level, the
additive equivalent log dose was a translation (on the log scale) of the
acetaminophen log(dose) to the left by amount log (ρ1 + Rρ2) and of the
experimental compound to the right by amount log(ρ1/R + ρ2). These trans-
lated quantities allowed a determination of the additive equivalent dose
(Zadd). The resulting nine additive equivalent doses and their proportions
(p) produced the composite probit line given in Table 6.2. From this com-
posite line the additive ED50 (and its logarithm) were determined. 
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6.4  Testing for synergism

When the additive ED50 has been calculated from the composite line
(or is calculated from Equations 4.1 and 4.2 and probit analysis on the
two compounds) this ED50 is tested against the combination ED50 with
the t-test given in Equations 4.9 and 4.10. (The test is on the logarithms
of the ED50s.) This comparison, based on the 50% level, distinguishes
between synergism and additivity. But the composite line, as we pre-
viously saw, allows a comparison over the entire range of effects.

6.5  Comparing the composite additive line 
and the actual combination line

The composite additive regression line is derived from the two indi-
vidual probit regression lines by shifting the data points as previ-
ously described. That line is now compared with the line obtained
from actual combination data in the same fixed ratio combination
used in calculating the additive composite line. (In Chapter 5 a
similar comparison is made on two ordinary regression lines.) In our
example the combination contained 87.49% acetaminophen (ρ1 =
0.8749). The comparison involves the use of the final working probits
and weights of each. Table 6.3 shows these values for the additive
composite line. Table 6.4 shows these values for the combination
data and also gives the raw data for the combination in this fixed

Table 6.3.  Working Probits and Weights for Additive Composite 
Regression

x y w
Composite

1.103 3.937 1.952
1.209 3.751 2.734
1.519 4.163 5.215
1.617 4.192 5.818
1.752 4.747 6.299
1.908 4.741 6.268
2.051 6.401 3.982
2.068 5.523 5.590
2.258 6.255 4.199
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proportion (ρ1 = 0.8749). These combination data have been slightly
modified to enhance this illustration. 

The F-test is used to determine whether the mixture probit line is
different from the composite additive line. The final working probits
of each, and their final weights, are used in this comparison. The test
uses calculated quantities SSt and SSp.

To get SSt: Without distinguishing the two lines, we take every
point from both and determine the mean values

(6.20)

and

(6.21)

where x is log(dose) values and y is the final working probit. Then
calculate

Table 6.4.  Combination Dose-Effect Data and Probit 
Results (for ρ1 = 0.8749)

Data

Total dose No. respond/No. tested
17.49 0/10
26.24 3/10
34.99 5/10
52.48 9/10
69.98 10/10

Probit analysis results

log dose w-probit weight
x y w

1.243 2.542 1.218
1.419 4.498 5.103
1.544 4.999 6.329
1.720 6.272 3.037
1.845 7.674 0.763

Combination Probit Equation: Y = 7.205 x – 5.997; log (ED50)
= 1.526 ± 0.0342; ED50 = 33.605 ± 2.645 

x
wixi∑
wi∑

-----------------=

y
wiyi∑
wi∑

-----------------=
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(6.22)

(6.23)

(6.24)

and

. (6.25)

To get SSp: Add the residual sum of squares of both the additive
and mixture lines

SSp = (add) SSres + (mix) SSres. (6.26)

The quantities SSt and SSp are used to calculate F:

F = [(SSt – SSp)/2] / [SSp/(Nadd + Nmix – 4)]. (6.27)

Degrees of freedom are 2 (across) and Nadd + Nmix – 4 (down). A
significant difference requires that the calculated F exceed the tabular
at the significance level chosen (e.g., 95%). Table 6.3 shows the working
probits (y), log dose (x) and weights (w) for the composite additive
regression and Table 6.4 gives these for the combination regression for
acetaminophen and the experimental analgesic. The probit equation
for the combination is also given, along with ED50 and its logarithm.
A comparison of the additive composite and combination regressions
needs the residual sum of squares for each. These are addSSres= 6.136
and combSSres= 0.846. Thus, SSp = 6.982. Additionally, we calculate the
other terms needed in the comparison using Equations 6.22–6.27:

At = 5.229; Bt = 12.155; Ct = 49.49, from which F is calculated:

F = [(21.235 – 6.982)/2] / (6.982/10) = 10.21.

The tabular value (d.f. 2, 10) at the 0.05 significance level is 4.10. Thus
the regression lines are significantly different. The log ED50 values
of the additive composite and combination lines were also used in the

At wi xi x–( )2∑=

Bt wi xi x–( ) yi y–( )∑=

Ct wi yi y–( )2∑=

SSt Ct
Bt( )2

At
------------–=
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t-test described by Equations 4.7 and 4.8, and gave t′ = 4.07 and T =
2.54, thereby confirming the significance shown by the F-test.

6.6  A closer look at probits

The log(dose) values, denoted xi, have a mean value µ and a standard
deviation σ. The standard normal curve (used in probit analysis) has
an abscissa u = (x – µ)/σ. The probit corresponding the proportion is
u + 5; thus, probit = 5 + (x – µ)/σ. It follows that the plot of probit
against log(dose) is a straight line with slope = 1/σ. This connection
between the slope and the standard deviation has an application in
methods for comparing two compounds with probit lines. The log doses
of both compounds are assumed to be normally distributed and, fre-
quently, with the same (or nearly the same) standard deviation.
Accordingly, the probit lines of effect vs. log(dose) are expected to be
parallel. Many therapeutic (and toxic) effects of two compounds are
compared with parallel lines. 

6.7  Testing two probit regression lines for parallelism

Probit analysis uses weights; thus some of the terms involved in
regression formulas need to have new definitions that incorporate the
weights. For example, Sxx, previously introduced in Chapter 2, now
denotes Σwi(xi – )2. Similarly, in probit analysis we define Sxy =
Σwi(xi – )(yi – ) and Syy = Σwi(yi – )2, where the summation is over
the N points of the line. For two lines there are N1 points for line 1
and N2 points of line 2. Our goal here is to examine two probit regres-
sion lines for parallelism. The two lines will have been determined
from their final working probits (the y values above). The test of
parallelism uses the F-statistic and certain calculations that we now
describe.

The residual sum of squares, SSres, is determined for each line and
these are summed to form the quantity denoted P:

P = 1SSres + 2SSres. (6.28)

We further need the quantities calculated from each data set:

A = 1Sxx + 2Sxx, B = 1Sxy + 2Sxy, C = 1Syy + 2Syy 

x
x y y
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and 

M = C – B2/A.

The value of F is computed from

F = [M – P] / [P/(N1 + N2 – 4)]. (6.29)

This calculated F is compared with the tabular value for d.f. = 1
(across) and N1 + N2 – 4 (down). If the calculated F is less than the
tabular value, the lines do not differ significantly from parallel, and
a common slope bc is calculated from the formula

. (6.30)

The individual probit regression lines are given by

(6.31)

and

. (6.32)

(See example, Table 6.5.) Because these lines are constrained to be
parallel, the residual sum of squares (SSres) should be calculated for
each. If either shows heterogeneity, we calculate the pooled error
variance

. (6.33) 

The quantity  is used to get the following variances that are
needed subsequently:

(6.34)

If testing shows that there is no heterogeneity, then all  terms are
replaced by unity.

bc
S1 xy S2 xy+
S1 xx S2 xx+

--------------------------=

Y1 y1 bc+ x x1–( )=

Y2 y2 bc+ x x2–( )=

sp
2 SSres1 SSres2+( ) N1 N2 3–+( )⁄=

sp
2

V y1( ) sp
2 Σwi1⁄ V y2( ), sp

2 Σwi2⁄= = V bc( ), sp
2 S1 xx S2 xx+( )⁄=

sp
2
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110 QUANTAL DOSE-RESPONSE DATA: PROBIT AND LOGIT ANALYSIS

6.8  Constant relative potency in probit analysis

Parallel regression lines indicate that the relative potency of the two
compounds is a constant; i.e., at all levels of effect the relative potency
is the same. Accordingly, the difference between the equally effective x
values (log dose) is the same. This distance, denoted here by W, is given by

(6.35)

so that the relative potency is given by 

R = 10W. (6.36)

Confidence limits for W are given by the following (Finney, 1971):

(6.37)

In this formula, g = t2V(bc)/  and t is the normal deviate (=1.96 for
95%), but if a heterogeneity factor  is incorporated into the variance
terms, as previously described, then t has a value from Student’s distri-
bution with degrees of freedom N1 + N2 – 3. The lower and upper confi-
dence limits, Wl and Wu, yield the lower and upper confidence limits of R:

. (6.38)

Note that if g is neglected, these confidence limits are

. (6.39)

The term multiplying t in the equation above is seen to be the
square root of the “variance” of W (standard error).

6.9  Parallel line analysis of combined drug action

Comparisons of the potency of two compounds and probit analysis of
the combined action of the two have traditionally been made under

W x1 x2–( ) y1 y2–( ) bc⁄–=

W g
1 g–( )

----------------- W x1– x2+( ) ± +

t
bc 1 g–( )
---------------------- 1 g–( ) V y1( ) V y2( )+{ } W x1– x2+( )2V bc( )+〈 〉

1 2⁄

.

bc
2

sp
2( )

Rl 10
Wl=    and   Ru 10

Wu=

W ± 
t
bc
----- V y1( ) V y2( ) W x1– x2+( )2V bc( )+ +[ ]

1 2⁄
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PARALLEL LINE ANALYSIS OF COMBINED DRUG ACTION 111

the assumption of a constant relative potency. When the individual
dose-effect relations are based on this assumption their linear
log(dose)-effect curves are parallel. The common slope (previously
denoted bc) is here denoted b. 

Under the assumption of parallelism, the dose-effect relation of
drug 1 is

Y1 = a1 + b log (z) (6.40)

and that for drug 2 is

Y2 = a2 + b log (z) (6.41)

Parallelism, indicated by the common slope b, means a constant
relative potency, R; hence, equieffective doses, z1 of drug 1 and z2 of drug
2, are related as z1/z2 = R. If doses z1 and z2 are present together, the
total dose can be expressed as an equivalent of drug 1, viz, z1 + R z2, and
the effect of this combination is then given by the equation for drug 1:

Y = a1 + b log (z1 + R z2). (6.42)

This expression of equivalence defines additivity, i.e., the drugs con-
tribute to the effect in a way that is consistent with their relative
potency. If the individual doses are in a fixed proportion, ρ1 and ρ2 of
the total dose (z), then Equation 6.42 becomes

Y = a1 + b log (z) + b log (ρ1+ R ρ2) (6.43) 

Figure 6.4 shows the dose-effect graph of drug 1 and the additive
graph for the combination plotted on the same axes. It is seen that
the additive curve is elevated in relation to the curve of drug 1.
Alternatively it can be described as a translation (shift) to the left. 

The curve of additivity can also be derived by expressing the com-
bination dose with the use of drug 2 as the reference drug. In this case
the equation of drug 2 is used and the total dose is written, z2 + z1/R.
Thus the equation is given by

Y = a2 + b log (z2 + z1/R). (6.44)

and, in terms of the total dose z, the relation is

Y = a2 + b log (z) + b log (ρ1/R + ρ2). (6.45)
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112 QUANTAL DOSE-RESPONSE DATA: PROBIT AND LOGIT ANALYSIS

The last term in Equation 6.45 is negative, so this form of the
additive curve has less elevation than the curve of drug 2 alone
(Figure 6.4). Alternatively, this curve can be viewed as a translation
to the right of drug 2’s dose-effect curve. (It should be noted that
Equations 6.43 and 6.45 are equivalent; either form describes the line
of additivity.) 

The results of the analysis in this section illustrate how one can view
the regression line of additivity in relation to the individual drug lines.
We showed earlier that the additive total dose–effect relation does not
really depend on parallelism, i.e., one could produce this relation from
lines that are not parallel simply by using the value of R at each level
of effect. Nevertheless, the parallel line analysis is often useful.

6.10  Testing for additivity: parallel constraint 
and probit analysis

The previous section considered the individual drugs under the
assumption of a constant relative potency and showed how one can
calculate the additive regression line of a fixed ratio combination of
the two. That line, given by Equation 6.43, is expressed in terms of
the total dose in the combination. When actual combination data are
available, this third set of values (total dose, effect) is used in the

Figure 6.4.  In analyses in which the constituent curves display parallelism, the line
of additivity is parallel to these and lies between the regression lines of drugs 1 and 2.
The precise location of the additive line depends on the relative proportions of drugs 1
and 2. See Equation 6.43.

(2) (Add) (1)
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calculation of the common slope. The goal is to compare the calculated
additive line with the actual combination line.

The data from the individual drugs and from the fixed ratio com-
bination (proportions ρ1 and ρ2 = (1 – ρ1) of the total) provide the
information needed to detect a departure from additivity. Under the
assumption of parallelism, these have the same slope b calculated from
the data for drug 1, 2, and the combination (3), the latter described by 

Y3 = a3 + b log (z). (6.46)

The common slope is calculated from the three data sets

(6.47)

and the intercept (a) of each line is computed from this common slope
and its own mean values  and  as .

Equations 6.40 and 6.41 apply to the individual drugs. With slope
b now determined, the relative potency R can be computed from 

log (R) = (a2 – a1)/b (6.48)

while Equation 6.43 (or 6.45) gives the additive equation in terms of
the total dose. We shall use the form given by Equation 6.43 for the
additive line. The horizontal distance between the additive line and
the combination line given by Equation 6.46 is a measure of the
departure from additivity. This distance is calculated from quantities
that have error and this fact has to be considered in making this
calculation. From Equations 6.43 and 6.46 this distance is given by
the following:

. (6.49)

Its variance is neatly expressed in a formula given by Finney (1971):

(6.50)

b
S1 xy S2 xy S3 xy+ +
S1 xx S2 xx S3 xx+ +

------------------------------------------=

x y a y bx–=

D a3 a1–( ) b⁄ ρ1 Rρ2+( )log–=

V D( )
λ2

w
1
∑
----------- 1 λ–( )2

w
2
∑

------------------- 1
w

3
∑
----------- λy1 1 λ–( )y2 y3–+{ }2

b2 Sxx∑
----------------------------------------------------------+ + +

˙

b2⁄=
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where

. (6.51)

In this expression, the summation (ΣSxx) in the denominator of the
fourth term in the bracket is over the three, whereas the w terms are
summed from the three individual data sets. In this entire analysis it is
assumed that the three data sets have been tested for parallelism. A
confidence interval based on this variance is D ± 1.96 [V(D)]1/2. An inter-
val that does does not include 0 indicates a departure from additivity. 

6.11  Logit analysis 

We have seen that many quantal dose-response curves have a sigmoid
shape when the proportion is plotted against log dose and that the
transformation of proportions to probits will often be an acceptable
linear model of these data. The probit is based on the area under the
standard normal curve. Other linearizing transformations can be used
to model the same data. One that is in widespread use is based on the
logistic function, which is also sigmoidal and given by

(6.52)

where P is the proportion and x is the log dose. If the proportion P is
transformed to a quantity L = ln [P/(1 – P)] it is seen that Equation
6.52 becomes

L = a + bx. (6.53)

L is called the logit corresponding to P. Figure 6.5 shows the linear
plot that results when a logistic curve is plotted with logits. To the
extent that actual log dose-response data are well fitted to the logistic
curve, the logit plot of the same data will be well fitted to a line
obtained by regression of logit on log dose. 

As in other regression procedures, the values of a and b are
estimates of parameters that are found by a procedure that minimizes
the sum of the squared deviations of the empirical logit values li from

λ
ρ1

ρ1 Rρ2+
----------------------=

P 1
1 e a bx+( )–+
---------------------------=
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the expected logits given by Equation 6.53. The regression procedure
uses weights whose values depend on the empirical proportions, pi,
and the number of objects, ni, in the group on which the proportion
is obtained. As in probit analysis, or in any other weighted linear
regression, the weights are used to stabilize the variances. Unlike

Figure 6.5.  Upper graph is a plot of logit against x (log dose) corresponding to the plot
of proportion against log dose shown in the lower graph.
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probit analysis, however, the algorithm for finding the weights is
simpler in logit analysis. Further, the procedure that calculates the
values of a and b in logit analysis is not iterative. These two facts
make the entire procedure simpler to carry out than is the case in
probit analysis. Both methods give very nearly the same results for
log ED50 and its standard error. Why, then, should we not always
use this method? Because of a limitation of the logit procedure,
namely, that there are no logits corresponding to proportions 0 or 1.
Thus, when much of the data are in groups that have these extreme
responses, the method of logits should not be used.

6.12  Calculations with logits

The empirical proportions, denoted pi, are converted to logits, li =
loge(pi/(1 – pi)), and weighting factors wi are calculated as wi = pi(1 –
pi) to obtain Sxy and Sxx from the following:

(6.54)

(6.55)

from which b is obtained

. (6.56)

The mean values of x and l are calculated as

(6.57)

from which we get the parameter estimate 

. (6.58)

Sxy Σnwxl
Σnwx( ) Σnwl( )

Σnw
-----------------------------------------–=

Sxx Σnwx2 Σnwx( )2

Σnw( )
-----------------------–=

b
Sxy

Sxx
--------=

x Σnwx
Σnw

---------------= l
Σnwl
Σnw
---------------=

a l bx–=
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The log ED50, denoted x′, corresponds to L = 0; thus it is given by
x′ = –a/b, or

. (6.59)

Variances of log ED50 and b are given by

(6.60)

and

(6.61)

from which the standard errors are obtained:

(6.62)

. (6.63)

Table 6.6 shows sample calculation with data on acetaminophen. 

x′ ED50log x l
b
---–= =

V x′( )
1
b2
----- 1

Σnw
------------ x′ x–( )2

Sxx
--------------------+=

V b( ) 1
Sxx
--------=

SE x′( ) V x′( )[ ]1 2⁄=

SE b( ) V b( )[ ]1 2⁄=
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CHAPTER 6

Appendix

Method of Litchfield and Wilcoxon

Because the probit method is lengthy and iterative, it was not used
widely before the availability of computers. Accordingly, Litchfield and
Wilcoxon (1949) developed an approximate graphical procedure that
used nomograms to facilitate the calculation. The main idea of the
method is the construction of the first probit regression line (probit
vs. log dose) by converting proportions, other than 0 or 1, to probits.
This is a standard (unweighted) line that is used to correct for the 0
and 100% points. The needed weights enter in a subtle way. These
are calculated at 3 proportions: 0.16, 0.50 and 0.84. The number of
animals tested that gave responses between 16 and 84% are denoted
by N, and this number is divided by 3 and assigned to 16%, 50%, and
84% for the calculation of weights (see Equations 6.3 and 6.4). With
this choice of ni and proportions,  = 0.7106 N1/2. A function
S, whose common logarithm ≈1/slope, gives an approximate standard
error of log ED50 (see Equation 6.17) as log S/0.7106 N1/2. Confidence
limits (95%) are ±1.96 × the standard error, which here is
±((1.96)/(0.7106 )) log S ≈ ±((2.76 log S)/ ). The antilog = 
is the multiplier of the ED50 to give the upper confidence limit and is
a divisor of ED50 to get the lower confidence limit. A detailed discus-
sion, without the nomogram, is given by Tallarida and Murray (1987).

wi∑( )1 2⁄

N N S2.76 N⁄
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CHAPTER 7

 

Analysis of Drug Combinations 

 

Over a Range of Drug Ratios

 

The combination of two agonist drugs will produce either additive or
nonadditive action in a given test. In most testing situations, the focus
is on the effect at some particular level, such as 50% of the maximum
effect, and a determination of the combination dose that gives this
effect level. Various fixed-ratio combinations are used, and some or all
of these combinations often show simple additivity. Synergism is much
less common. When a departure from additivity is found, however,
there is interest in determining whether this finding also applies to
other fixed ratio combinations. In one of the earliest demonstrations
of the isobologram, that involving chloral hydrate and alcohol (see
Chapter 1), it was shown that some combinations were additive, while
others were super-additive (synergistic). The isobologram was helpful
in visualizing the combinations that gave these results but could not,
in itself, confirm this graphical view.

Figure 7.1 demonstrates the typical situation to which we are
referring. In this idealized isobologram two sets of points (X and Y)
are labeled and these form the basis of our discussion. It is assumed
that all data are combinations of drugs A and B that are found, by
testing, to give the same level of effect (such as 50% of the maximum).
Intercept values are, of course, the quantities of the individual drugs
(each acting alone) that give the effect—in this case, 20 dose units for
drug A and 12 dose units for the more potent drug B.  

The isobologram suggests that combinations 

 

X

 

 are super-additive,
while combinations 

 

Y

 

 are additive or, possibly, sub-additive. Each
point (combination) will have been statistically tested for additivity,
and it is assumed in this example that at least some of the points in
set 

 

X

 

 show departures from additivity; the display of points suggests
continuity. In other words, there would seem to be no abrupt transition
from super-additive to sub-additive. Yet, it is quite likely that the
points that are only slightly off the “line” of additivity would not
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individually differ significantly from additive. In the absence of a
mechanism to explain why the two different fixed-ratio combinations
show these apparently different interactions, or precisely where the
demarcation from additivity to nonadditivity occurs, we can approach
the question with modeling equations that allow parameter estima-
tion: we will use a procedure that fits each of the data sets to an
appropriate equation that applies over some continuous set of dose
ratios. This concept is described using the notation and equations
discussed in Chapter 4.

 

7.1  Fraction plot

 

From Equation 4.1, 

 

Z

 

add

 

 = 

 

f A

 

 + (1 

 

– f

 

)

 

B, 

 

where

 

 

 

the additive total
dose, 

 

Z

 

add

 

, is expressed in terms of the fraction 

 

f

 

 of the 

 

D

 

50

 

 

 

of drug
1, denoted 

 

A

 

, and the fraction (1 – 

 

f

 

) of the 

 

D

 

50

 

 of drug 2, denoted 

 

B

 

.
(Of course, the effect level can be something other than the 50% level,
in which case 

 

A

 

 and 

 

B

 

 are the doses for that particular effect.) Each
fixed-ratio combination gives the value of 

 

f

 

. When the proportion 

 

ρ

 

Figure 7.1.  

 

Combination doses; the arrow points to a dose pair that is referred to Figure 7.2.
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of drug 1 defines the combination ratio, the values of 

 

f 

 

and 

 

ρ 

 

are
related: 

 

f

 

 = 

 

ρ

 

B

 

/(

 

A

 

 + 

 

ρ

 

B

 

 – 

 

ρ

 

A

 

). The

 

 

 

combination’s effective total dose
for this 

 

f

 

 value (corresponding to proportion 

 

ρ

 

) is denoted 

 

Z

 

mix

 

 and

 

Z

 

mix

 

 

 

= 

 

α

 

 Z

 

add

 

, where 

 

α

 

 is the interaction index. If the index value is
less than 1, there is synergism, and if it is greater than 1, there is
sub-additivity. If 

 

α 

 

= 1, then the interaction is additive. 
In our example (Figure 7.1), with 

 

A

 

 = 20 and 

 

B

 

 = 12, the additive
relation is given by 

 

Z

 

add

 

 

 

= 20

 

 f

 

 + 12

 

 

 

(1

 

 – f

 

)

 

.

 

 This relation, plotted in Figure
7.2, is a straight line. This kind of plot, in which the total dose 

 

Z

 

t

 

 is
plotted against fraction 

 

f

 

, provides another way of viewing the additivity
condition and corresponds to the line of additivity of the isobologram.
In contrast to the isobologram, this plot has the controlled variable 

 

f

 

 on
the abscissa and the total combination dose on the ordinate. Actual
combination 

 

total doses

 

 are represented as ordinate values for each fixed
ratio combination that is now defined by the value of fraction 

 

f 

 

which
spans the interval 0 to 1.

 

 

 

Points significantly below the line denote
super-additivity whereas points above denote sub-additivity.  

 

Figure 7.2.  

 

Fraction plot corresponding to the isobologram of Figure 7.1; the line
indicates additivity.  The arrow is for the fraction of drug A corresponding to the
combination identified in Figure 7.1.  (See text for calculation details.)  represents
the total dose in the combination.
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The line of additivity of the isobologram of Figure 7.1 is trans-
formed into the line of Figure 7.2, and the individual dose pairs that
gave the 50% effect

 

 

 

provide the data points, now plotted as total dose,

 

Z

 

t

 

, against fraction 

 

f

 

. The plot of Figure 7.2, referred to here as a

 

fraction plot

 

, conveys the same visual information as the isobologram
and has the added advantage of allowing statistical analysis. For
example, the standard error of the additive line (computed from Equa-
tion 4.2 as the square root) at any value of 

 

f 

 

is easily placed above and
below the line and appears as in Figure 7.3. 

The construction of the fraction plot is straightforward. For any
actual dose pair that is tested in a fixed ratio mixture, the proportion
that is drug A and the proportion that is drug B are known in advance.
If individual doses, not in a fixed proportion, have been used and it is
determined that some combination (

 

a, b

 

) gives the specified effect, then
the combination proportion 

 

ρ

 

 = 

 

a

 

/(

 

a + b

 

). This proportion is used, along
with the individual 

 

D

 

50’s

 

 

 

(or 

 

ED50’s

 

) 

 

A

 

 and 

 

B, 

 

in the formula: 

 

f = 

 

ρ

 

B

 

/(

 

A
+ 

 

ρ

 

B – 

 

ρ

 

A

 

).

 

 

 

The sum of 

 

a

 

 and 

 

b

 

 gives the total 

 

Z

 

t

 

, and the plot is easily
made. For example, the arrow in Figure 7.1 is pointing to the combi-
nation 

 

a

 

 = 13.36, 

 

b 

 

= 3.44, which represents a total 

 

Z

 

t

 

 = 16.8 and
proportion 

 

ρ

 

 = 0.795. We calculate 

 

f

 

 from the above equation, using 

 

A

 

= 20 and 

 

B

 

 = 12, and get 

 

f 

 

= 0.699. The point (0.699, 16.8) is therefore
plotted in the fraction plot (shown with arrow).

 

7.2  Testing for synergism over a range of proportions

 

The combination total dose 

 

Z

 

t

 

 is related to the additive total dose 

 

Z

 

add

 

according to the relation 

 

Z

 

t

 

 = 

 

α

 

 Z

 

add

 

. It is possible, therefore, to test
the set of points (X) for synergism by determining the value of the
index 

 

α.  

 

This test requires

 

 

 

fitting the set of points in a procedure that
produces an estimate of 

 

α

 

. In this illustration it will be assumed that
all but the two end points of set X have been shown to be synergistic
using the test procedures discussed in Chapter 4. Therefore, we use
the other five points (0.324 ≤ 

 

f 

 

≤ 0.600) in this procedure. Since the
additive line is given by 

 

Z

 

add

 

 = 8 f + 12, the equation for Zt is Zt = α
(8 f + 12). The parameter value determined from fitting this equation
to the five data points gave α = 0.876 ± 0.013, a value indicative of
synergism over the continuum of values 0.324 ≤ f ≤ 0.600. The corre-
sponding range of proportions (of drug A) are 0.444 to 0.714. The value
of α in this example is not indicative of pronounced synergism, but
the value is significantly less than unity on this interval. It is inter-
esting to note that when all the proportions of this combination were
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tested (not including the intercept points), the value of α was found
to be 0.964 ± 0.025, a value not significantly different from unity.

Although only a discrete set of combinations were tested, the five
points that are synergistic produce a curve fit over the continuum of
values that are defined by the extreme points of this five-point set.
This is so in regression models in which some smooth curve is used to
represent the data points. This fact has a special relevance in actual
tests for distinguishing nonadditivity from additivity in drug combi-
nation experiments. In these experiments, it is possible to test only
discrete proportions of the combination, yet one would like to be able
to assess the nature of the interaction over all proportions that lie
between those actually tested. Hence, estimating the value of the
interaction index in this kind of curve-fitting is useful and practical.
This determination is possible when the data are transformed to the
fraction plot and is not possible with the isobologram. It is this fact
that motivated the use of the fraction plot.

7.3  Combinations of acetaminophen and tramadol

Acetaminophen and tramadol are analgesics with efficacies evident in
both human and animal studies. It was desired to determine whether
combinations of the two agents would display synergism and, if so, in
what range of fixed-ratio combinations. Tests in mice were conducted
that employed acetaminophen and tramadol hydrochloride that were
assessed for antinociception in the abdominal constriction test (Tal-
larida and Raffa, 1996). In these experiments, the drugs were admin-
istered orally and, 30 min later, the animals were injected (i.p.) with
acetylcholine bromide, a substance that results in abdominal constric-
tion in the nondrugged animal. 

The drug or drug combination efficacy was determined by the
absence of writhing during an observation period following injection.
From these tests, that employed a number of fixed-ratio combinations,
the values of individual ED50s and the combination ED50 were deter-
mined. The latter is based on the sum of the constituent quantities,
thereby providing the values of Zt for each proportion ρ that was
employed. The individual ED50s were 164.93 ± 24.5 mg/kg, p.o., for
acetaminophen (drug A) and 5.52 ± 0.40 mg/kg, p.o. for tramadol HCl.
Thus, A = 164.93 and B = 5.52, and these, along with the proportions
allowed a calculation of f for each proportion. Table 7.1 contains the
pertinent values and includes the calculated additive ED50, denoted
Zadd, for each combination. Each value of Zt was derived from a probit
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regression analysis of the dose-effect data for the particular proportion
and is, therefore, a mean value obtained from that analysis. The stan-
dard errors have been omitted in the table in the interest of clarity.

The entries in Table 7.1 have been divided into two groups. In all
the entries in the bottom group Zt < Zadd. Not all of these were signif-
icantly different due to some scatter in the data that produced larger
standard errors. In the top group there is no clear trend; in fact, most
entries show either additivity or possible sub-additivity. These data
suggest the existence of a trend in which additivity becomes super-
additivity for the larger proportions (larger proportions of acetami-
nophen in the combination). Accordingly, the data in the lower half of
the table were analyzed in a linear regression of Zt on f to determine
the interaction index α. The equation of the additive line is Zadd =
159.4 f + 5.52. Thus the data for Zt were fitted to Zt = α Zadd and gave
α = 0.708 ± 0.056, a value indicative of synergism for the set of
proportions, 0.851 to 0.999. 

Table 7.1.  Values of f and ρ representing various fixed-ratio 
combinations of acetaminophen and tramadol HCl in the mouse 
abdominal constriction test. ρ is the proportion that is 
acetaminophen, and Zt = ED50, the total quantity (mg/kg, p.o.) of 
the drugs that gave a protective response in 50% of the animals. 
The calculated additive ED50, denoted Zadd, is also shown.

f Zt ρ Ζadd

3.7500e-05 6.96 0.001 5.53
0.000345 6.90 0.0099 5.58
0.00165 6.78 0.047 5.79
0.0110 10.4 0.25 7.28
0.0324 7.54 0.5 10.7
0.0912 18.9 0.75 20.1
0.143 29.4 0.833 27.9

0.160 27.5 0.851 31.0
0.389 49.9 0.95 67.5
0.621 62.9 0.98 105
0.768 112 0.99 128
0.869 130 0.995 144
0.930 96.0 0.9975 156
0.963 77.7 0.9987 160
0.982 125 0.9994 160
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CHAPTER 8

 

Analysis of a Single 

 

Dose Combination 

 

When a single dose combination of two agonists is administered it is
possible to calculate the expected additive effect. This calculation
requires that the individual drug dose-response curves be known. This
expected effect may then be compared to the effect that is observed
experimentally. An assessment of this kind, based on a single combi-
nation, is usually not sufficient to classify the drug interaction as
additive or nonadditive. For that we need to employ several doses of
a fixed-ratio combination and use the more extensive procedures dis-
cussed in the previous chapters. The single dose analysis presented
here, however, does provide an estimate of the additive effect of a
single combination, but it should be regarded as merely a guide to a
more complete study. The isobologram is not useful in this determi-
nation because that plot is applicable only to a designated effect and
that is precisely what we are seeking here.

 

8.1  Constant relative potency

 

We denote the two drugs by A and B, the latter being the more potent.
The doses of each when acting alone are denoted 

 

A

 

 and 

 

B

 

, respectively.
The simplest case is that in which the relative potency 

 

R = A

 

/

 

B

 

 is the
same at all levels of effect. In this case a dose combination consisting
of dose 

 

a

 

 of drug A and 

 

b

 

 of drug B is easily expressed as an equivalent
of either drug. 

 

a + R b = A

 

eq

 

(8.1)

or 

 

b + a

 

/

 

R = B

 

eq

 

. (8.2)
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This condition of constant 

 

R

 

 is exemplified in individual dose-effect
relations given by 

 

E

 

 = 

 

E

 

max

 

A

 

/(

 

A

 

 + 

 

C

 

A

 

) and 

 

E 

 

= 

 

E

 

max

 

B

 

/(

 

B

 

 + 

 

C

 

B

 

). These
are hyperbolic dose-effect curves that have the same maximum, 

 

E

 

max

 

.
The constancy of 

 

R

 

 in this case is readily obtained by equating effects,
and this leads to 

 

R = C

 

A

 

/

 

C

 

B

 

. In this case, and in other cases in which

 

R 

 

is constant, the equivalent dose of either drug for combination (

 

a, b

 

)
is obtained from Equation 8.1 or 8.2. This equivalent dose is inserted
into the dose-effect relation of the reference drug. For example, if A is
the reference drug, then Equation 8.1 applies and the effect of the
combination is

 

E

 

comb

 

 

 

= 

 

E

 

max

 

A

 

eq

 

/(

 

A

 

eq

 

 + 

 

C

 

A

 

) (8.3)

 

Example.

 

 Let the dose-effect relations of two drugs be given by the
following:

 

E

 

 = 100 

 

A

 

/(

 

A

 

 + 50) and

 

 E 

 

= 100 

 

B

 

/(

 

B

 

 + 20)

These are hyperbolic curves that have a common maximum = 100 units.
We wish to determine the expected (additive) effect of a combination
consisting of 

 

a 

 

= 40, 

 

b 

 

= 10. 

We first calculate

 

 C

 

A

 

/

 

C

 

B

 

 = 

 

50/20 = 5/2. Thus, the given combination is
equivalent

 

 

 

to 40 + (5/2) (10) = 65 of drug A alone. This value is used to
get the effect level from 

 

E

 

 = (100)(65)/(65 + 50) = 56.52. It is easily
calculated that the dose of B alone that gives this effect is 

 

B

 

 = 26. The
additivity of the combination (40,10) is confirmed from the sum, 40/65
+ 10/26, which is unity. 

 

8.2  Variable relative potency

 

When the relative potency of the two agonists changes with the effect
level, the calculation of the additive equivalent of a combination (

 

a, b

 

)
is more complicated. This would occur, for example, where both drugs
were described by hyperbolic dose-effect relations having different
maxima. Variable potency would also apply if two linear log dose-effect
relations have different slopes. (Of course, if the slopes were the same
the relative potency would be constant.) Each of these cases is illus-
trated here.
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Hyperbolas with different maxima

 

We denote the maximum effect of drug A by 

 

E

 

A

 

 

 

and that of drug B
by 

 

E

 

B

 

. The individual equations are given by 

 

E

 

 = 

 

E

 

A

 

A

 

/(

 

A

 

 + 

 

C

 

A

 

) and

 

E 

 

= 

 

E

 

B

 

B

 

/(

 

B

 

 + 

 

C

 

B

 

). Let us take drug B as the higher efficacy drug,
i.e., 

 

E

 

B

 

 

 

>

 

 E

 

A

 

. Over the 

 

range of effects that are common to both drugs

 

we may equate the effects given by the above equations and solve
simultaneously with the additive relation 

 

a

 

/

 

A 

 

+ 

 

b

 

/

 

B

 

 = 1. We shall
accomplish this by eliminating 

 

A

 

 and solving for 

 

B. 

 

From the addi-
tivity condition, Equation 1.3, 

 

A

 

 = 

 

a B

 

/(

 

B

 

 –

 

 b

 

), and the equality of
effects we get

which simplifies to 

. (8.4)

Equation 8.4 applies to effects up to 

 

E

 

A

 

. We call the dose of B that
gives an effect = 

 

E

 

A

 

 the critical value (Figure 8.1) which is given by 

. (8.5)

For combination doses (

 

a, b

 

) in which 

 

b

 

 

 

is less than the critical
value

 

, both drugs contribute to the effect, and this effect is found by
calculating 

 

B

 

 from Equation 8.4 and using the calculated value in the
dose-effect equation of drug B. As 

 

b

 

 approaches the critical value, the
contribution of drug A becomes vanishingly small; that is, the relative
potency 

 

R

 

 = 

 

A

 

/

 

B

 

 increases without bound, and, thus, 

 

b

 

 + 

 

a

 

/

 

R 

 

is entirely
due to dose 

 

b 

 

of drug B. For values of 

 

b

 

 that are equal to or greater
than the critical value, the effect is calculated as though drug B were
acting alone.

EA
aB

B b–
------------- 

 

aB
B b–
------------- 

  CA+

--------------------------------
EBB

B CB+
-----------------=

B
EBCAb EAaCB+

a EB EA–( ) CAEB+
-------------------------------------------------=

Bcrit
EACB

EB EA–
--------------------=
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Here it is important to recall the concept of independent joint
action (Chapter 1) of the two drugs, the premise on which the above
calculations are made. If the actions were not independent, say
because each competes for a common cellular receptor, then these
calculations would not apply. In that case, the dose of A, the partial
agonist, would continue to contribute to the effect. If dose a became
very large, it would dominate by displacing B molecules from the
receptor. The result would be the maximum effect of drug A. This
kind of interaction was termed “competitive dualism” by Ariens
(1964). In the absence of mechanistic information a priori, the results
of this kind of quantitative analysis are quite helpful in illuminating
the mechanisms. For example, if experiments showed that A’s con-
tribution did vanish for doses b above the critical value, they would
tend to confirm independent action. In contrast, if A’s maximum
effect is achieved when its dose is very large and b is somewhat
above the critical value, then it would reveal itself as a sub-additive

Figure 8.1.  Dose-effect curves for two drugs with variable relative potency.  The max-
imum effect of drug A corresponds to a dose of B denoted Bcrit.  Additive combinations
(a, b) contribute to the effect when b < Bcrit.  When b equals or exceeds Bcrit the additive
effect is entirely due to dose b if the actions of the pair are independent.

EA A

B

Bcrit

C0457_frame_C8  Page 136  Friday, May 19, 2000  7:03 AM



VARIABLE RELATIVE POTENCY 137

interaction in our classification scheme. This example illustrates how
the quantitative approaches we have taken can contribute to under-
standing mechanism.

Nonparallel regression lines

We have seen from numerous examples that dose-effect data are often
expressed by transforming to log dose and modeling the relation with
linear regression analysis. If the regression lines are not parallel, the
relative potency will change with the effect level. Usually regression
lines of effect on log dose apply to effects that are not too near zero or
100% of the maximum effect. Therefore, the following analysis and
illustration should be viewed with this restriction in mind. We shall
denote the linear regression equation of drug A with parameters hav-
ing subscript 1 and the equation of drug B with subscripts 2. The
intercepts of each are then a1 and a2 and the regression coefficients
(slopes) are b1 and b2. Thus,

Drug A: E = a1 + b1 log A (8.6)

Drug B: E = a2 + b2 log B. (8.7)

In this illustration it is assumed that these equations have been
determined from the data for the individual drugs. If the analysis is
based on probits, then E denotes the probit value (which is easily
converted to a proportion from Table A.8 of the appendix). The addi-
tivity relation for the dose pair (a, b) is a/A + b/B = 1. To find the
additive effect of this combination we equate the right hand sides of
Equations 8.6 and 8.7 and solve simultaneously with the additive
relation. Elimination of B from the additive relation leads to 

c + b1 log A – b2 log A + b2 log (A – a) = 0 (8.8)

where c = a1 – a2 – b2 log b. 
The value of A obtained as the solution of Equation 8.8 is used in

Equation 8.6 to give the effect E of the combination. In other words,
we have referred to the dose-effect curve of drug A. Had we eliminated
A from the additivity condition, then a relation corresponding to Equa-
tion 8.8 would have B as the variable. In that case, the value of B
obtained from the solution of the equation would be used in Equation
8.7 to get the additive effect.

C0457_frame_C8  Page 137  Friday, May 19, 2000  7:03 AM



138 ANALYSIS OF A SINGLE DOSE COMBINATION

The solution of Equation 8.8 cannot be obtained by algebraic meth-
ods. An iterative method (Newton-Raphson Method; see Tallarida,
1999) will give the solution to the desired degree of precision. This is
accomplished by making an initial estimate of A, denoted A0, and then
calculating expression 8.8 at A = A0 and the derivative at A = A0. These
are here denoted f(A0) and f ′(A0), respectively, and are given by

(8.9)

and

. (8.10)

From these values an improved estimate is A1 given by

. (8.11)

The value of A1 is next used as the estimate A0 in Equations 8.9
and 8.10 which gives another A1, etc. The process is continued until
the absolute value of the difference between successive iterates is less
than some designated small number, such as 0.01, meaning that no
further improvement is needed. 

Example. The regression lines shown in Figure 8.2 have values: a1 =
–49, b1 = 50; a2 = 5, and b2 = 67.96. It was desired to determine the
additive effect of the combination a = 125 and b = 2. The iterative
procedure began with A0 = 150. (Note from Equation 8.9 that A0 must
be greater than a). Iteration led to A = 173.70 and B = 7.1333 from which
the effect is 62.99. Thus, the combination (125, 2) is expected to yield
the effect 62.99. As a further confirmation of this additivity, note that
125/173.70 + 2/7.1333 = 1. 

f A0( ) c 0.4343( )b1 A0ln 0.4343( )b2 A0ln–+=

 0.4343( )b2 A0 a–( )ln+

f ′ A0( ) 0.4343 b1 A0⁄ b2 A0⁄– b2 A0 a–( )⁄+[ ]=

A1 A0
f A0( )
f ′ A0( )
----------------–=

C0457_frame_C8  Page 138  Friday, May 19, 2000  7:03 AM



VARIABLE RELATIVE POTENCY 139

Figure 8.2.  Regression lines for drug A and drug B.  Values in parentheses along dose
axis are logarithms of the doses (arbitrary units).
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CHAPTER 9

 

Different Experimental Designs 

 

9.1  Combinations of an active and an inactive drug

 

Situations sometimes arise in which one of the two drugs of interest
lacks efficacy or has very minor efficacy in the production of some effect.
This chapter considers this type of combination. A combination of the
agents is to be tested and, unless the inactive drug is a known compet-
itive inhibitor, it is desired to know whether the combination of the two
is additive or nonadditive. Sometimes the presence of the inactive drug
produces an exaggerated effect. This situation occurs, for example, with
[Leu

 

5

 

]enkephalin, a compound that shows no significant antinociception
when administered by the intraperitoneal route in mice, but co-admin-
istration of morphine and [Leu

 

5

 

]enkephalin produces exaggerated anti-
nociception as shown by Porreca et al. (1990). Our interest here is in
quantitating such findings and demonstrating synergism. 

For a fixed ratio combination of two agents A and B, we again
denote by 

 

ρ

 

A

 

 the proportion that is drug A; hence, 1 – 

 

ρ

 

A

 

 

 

is the pro-
portion that is drug B in the combination. We will take drug B to be
the inactive drug. Some level of effect, such as 50% of the maximum,
is selected and we wish to compare the total amount of the combination
that gives this effect with the calculated additive amount. These
amounts will usually be concentrations or doses expressed as mg per
kg of body weight. We denote the potency (e.g., 

 

D

 

50

 

 for 50% effect) of
drug A by 

 

A

 

. Then it is seen that the 

 

total amount

 

 in an additive
combination is 

 

Z

 

add

 

 

 

given by

. (9.1)

The reasoning behind Equation 9.1 is straightforward. Since only
drug A contributes to the effect, it is expected that the additive 

 

total

 

must be greater than its own 

 

D

 

50

 

. For example, if A represented only 1/3

Zadd
A
ρA
------=
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of the total combination then the additive total should be three times its
own 

 

D

 

50

 

 because of the dilution brought about by the presence of drug B. 
Because 

 

A

 

 has a standard error, 

 

Z

 

add

 

 will have a standard error
and this is given by

. (9.2)

The quantity calculated from Equation 9.1 must be compared with
the combination’s 

 

D

 

50

 

, denoted here by 

 

Z

 

mix

 

. Synergism requires that 

 

Z

 

mix

 

< 

 

Z

 

add

 

, and thus the difference between these is used in a statistical test
of the difference. (Usually the 

 

t

 

-test is applied to the logarithms of 

 

Z

 

add

 

and 

 

Z

 

mix

 

.) In the [Leu

 

5

 

]enkephalin-morphine test, the estimate of 

 

A

 

 (the

 

D

 

50

 

 of morphine) was obtained from regression of effect on log dose so
that 

 

A

 

 = 10

 

log 

 

A

 

 and the standard error was calculated as 

 

SE

 

(

 

A

 

) =
(2.30)(

 

A

 

)

 

SE

 

(log 

 

A

 

) (see Equation 2.12). A similar procedure was used to
get 

 

Z

 

mix

 

 

 

and its standard error from the combination regression of effect
on log (total dose). Several fixed-ratio combinations of morphine and
[Leu

 

5

 

]enkephalin were tested, and all showed synergism. The extent of
the synergism is shown by the additive and mixture totals in Table 9.1.

The degree of synergism varied with the mixture ratio, being great-
est for the 1:7 mixture.

 

9.2  Site-site interactions

 

Thus far our discussion of interactions has focused on combinations
of two or more drugs and the combined effect of these. It is interesting
to note that the mathematical formalism extends to 

 

dual site

 

 admin-

 

Table 9.1.  

 

Values of 

 

Z

 

add

 

 and 

 

Z

 

mix

 

 

 

(with S.E.M.)

 

 

 

for 
Combinations of [Leu

 

5

 

]enkephalin and Morphine Sulfate. 
Combination Ratio (L:M) is Based on the Mass of the 
Constituents

 

Ratio

 

Z

 

mix

 

Z

 

add

 

1:3 13.9 (0.96) 20.5 (1.6)
1:5 18.9 (1.3) 30.7 (2.5)
1:6 16.4 (1.0) 35.8 (2.9)
1:7 10.9 (0.96) 41.0 (3.3)

 

Porreca et al., 1990.

SE Zadd( ) SE A( )
ρA

------------------=
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istration of the same compound. If, say, a drug is administered in the
brain (intracerebroventricular, or i.c.v.) and simultaneously to
another site, say the spinal cord (intrathecal, or i.th.), the combination
will sometimes produce exaggerated effects. A well-known example
of this 

 

site-site interaction

 

 is presented in the work of Yeung and Rudy
(1980) which showed synergism when morphine was administered at
the two sites. 

Two-site administration has yielded other interesting results.
Roerig et al. (1991) studied analgesic interactions with dual-site admin-
istration of either fentanyl, D-Ala

 

2–

 

D-Leu

 

5

 

 enkephalin (DADLE) or mor-
phine in mice. They used i.c.v. and i.th. quantities of fentanyl (a 

 

mu

 

opioid agonist) in normal mice and found additivity using an isobolo-
graphic analysis. But, when the same experiment was conducted in
morphine-tolerant mice, the interaction became sub-additive. A quite
different result emerged when the 

 

delta 

 

agonist DADLE was given to
both sites in control and morphine-tolerant mice. This agonist showed
simple site-site additivity in control animals and synergism in mor-
phine-tolerant animals. These investigators further showed that mor-
phine, given i.c.v. along with either i.th. fentanyl or DADLE in control
animals, was synergistic. These studies have been useful in illuminat-
ing mechanisms and the role of receptor subtypes. (See the cited work
for a detailed discussion and mechanistic interpretation.)

 

Acetaminophen in Two-Site Analysis

 

Acetaminophen is one of the most widely used analgesics, yet its mech-
anism is largely unknown. Many studies, using virtually every route
of administration and many different animal antinociceptive tests, have
not produced an understanding of the mechanism of this analgesic that
was synthesized a century ago. (See discussion by Walker, 1995). Some
evidence points to the central nervous system as the site of action
(Bjorkman, 1995)

 

, 

 

but no clear mechanism has emerged. In an effort
to approach the mechanistic question in a different way, Raffa et al.
(1999) conducted experiments in which acetaminophen was injected
either into the brain (i.c.v.) or into the spinal cord (i.th.) and, subse-
quently, into both sites simultaneously. The study was conducted in
male mice and employed the abdominal irritant test described by Col-
lier et al. (1968). Injections made by the i.c.v. route were to the right
lateral cerebral ventricle (Haley and McCormick, 1957) whereas those
injected i.th. were into the subarachnoid space by direct puncture of
the subvertebral space between L5 and L6 (Hylden and Wilcox, 1980).
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The i.c.v. injections produced no measurable antinociceptive
effect, even for doses up to 1 

 

µ

 

mole. In contrast, the intrathecal route
produced clear dose-dependent antinociception. Assessment of effect
was based on protection from an irritant injection during an obser-
vation period following its administration. Thus, the data collected
were of the “all-or-none” variety. The results are given in Table 9.2.
Because the i.c.v. route showed no effect, the calculation of the addi-
tive 

 

ED50 

 

(using probit analysis) is based on the i.th. data and the
proportion of the total combination that was given this way; in this
case, equal amounts were used. 

As seen in Table 9.2, the 

 

ED50

 

 = 137 ± 22.6 

 

µ

 

g, and the proportion,
based on mass, is 0.5. Thus, from Equation 9.1, the calculated additive

 

ED50

 

 = 274 ± 45. The actual combinations tested, shown in the table,
gave 

 

ED50

 

 = 57.5 ± 8.55, a value significantly less than the additive
estimate and, thus, indicative of marked synergism. The analysis lead-
ing to this result employs both design features discussed in this section:
(1) one of the pair lacks efficacy and (2) site-site analysis. The result
of this study is termed “self synergy,” and it seems to be due to
acetaminophen-induced release of a second substance from the brain
that enters the cord to interact with acetaminophen at that site. Fur-
ther studies aimed at identifying the released substance were under-
way at the time of this writing.

 

Table 9.2.  

 

Acetaminophen Given at Two Sites

 

i.th

 

. (

 

µ

 

g) No. protected No. tested
45.35 5 50
90.70 7 20

151.17 11 18
226.76 6 10 log (

 

ED50

 

) = 2.14 ± 0.072

 

ED50

 

 = 137 ± 22.6

 

i.th., i.c.v.

 

11.34, 11.34 2 10
22.68, 22.68 14 30
45.35, 45.35 23 40
90.70, 90.70 19 20

log(

 

ED50

 

) = 1.76 ± 0.065
 

 

ED50

 

 = 57.5 ± 8.55

Calculated additive values: log (

 

ED50

 

) = 2.44 ± 0.072

 

ED50

 

 = 274 ± 45. 
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Site-Site Analysis with Opioid Receptor Subtypes

 

As a further indication of how combination analysis may illuminate
mechanism, we point to experiments with 

 

δ

 

1

 

 and 

 

δ

 

2

 

-opioid agonists
that were conducted in Hammond’s laboratory (Hurley et al., 1999).
These experiments were conducted in order to determine how delta-
opioid receptor subtypes in the ventromedial medulla and the spinal
cord interact to produce antinociception. To accomplish this, a single
agent, either DPDPE (

 

δ

 

1

 

 type) or deltorphin (

 

δ

 

2

 

 type), was administered
at both sites. Analysis of these experiments (tail-flick) revealed that
concomitant administration of the 

 

δ

 

1

 

 agonist, DPDPE resulted in a
simply additive interaction. In contrast, the same procedure with the

 

δ

 

2

 

 agonist, deltorphin, produced a marked synergism. In fact, deltor-
phin at the two different sites appeared to be about 400 times more
potent than the additive-predicted value. It was also found that at
higher doses of deltorphin, the synergistic interaction converted to
simple additivity, suggesting that different mechanisms mediate the
antinociceptive effects of high and low doses of 

 

δ

 

2

 

 agonists. These
findings point out the role of receptor subtypes and suggest that syn-
ergistic interactions may result from receptor subtypes. 

 

9.3  Theory of competitive antagonism

 

The main discussion thus far has been concerned with combinations
of agonist compounds. Earlier in this chapter we considered the case
of two compounds in which one of these showed little or no efficacy in
the production of 

 

a particular effect

 

 according to the animal model
tested. We now consider a situation in which one of the two drugs
lacks efficacy and is actually known to be a competitive antagonist
(

 

competitive inhibitor

 

 is also used to describe such compounds). The
earliest quantitative work in pharmacology aimed at receptor identi-
fication employed competitive antagonists in experiments with various
agonists. We now consider this theory and its use.

When a fixed dose of a competitive antagonist is used in an exper-
iment with graded doses of an agonist, it is possible to determine the
affinity of the antagonist for the common receptor. This estimate of
affinity provides a quantitative characterization of the receptor or
receptor subtype. The theoretical basis for this kind of study is the

 

law of mass action

 

 applied to the two competing agents. The agents,
denoted A and B, each interact reversibly with receptor R, forming
complexes AR and BR, respectively:
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.

At any time 

 

t

 

 we denote the concentration of AR by 

 

x

 

 and that of
BR by 

 

y

 

. The rate of formation of each is given by

(9.3)

(9.4)

where 

 

A, B, 

 

and 

 

R

 

 are the concentrations of compound A, compound
B, and receptor, respectively, and the 

 

k

 

’s are forward and reverse rate
constants that characterize each molecule’s reaction with the common
receptor. At equilibrium, the derivatives are both zero and thus the
equilibrium concentrations 

 

x

 

 and 

 

y

 

 are given by 

(9.5)

and

(9.6)

where 

 

K

 

A

 

 is 

 

k

 

2A/k1A and KB is k2B/k1B.
It is seen that each compound’s binding is reduced because of the

presence of the competing compound. If A is the active drug and B is
an inactive drug, the biological effect will depend on the concentration
xe of A that is bound. It follows that the presence of B reduces the
binding of A to the receptor and therefore reduces the effect. One need
not make any assumption regarding the relation between effect and
xe (that is, no particular function is assumed to relate effect and
occupancy), yet it is possible to obtain KB from this theory and an
experiment that produces dose-effect data.

A R+ AR⇔

B R+ BR⇔

dx
dt
------- k1AA R x– y–( ) k2Ax–=

dy
dt
------- k1BB R x– y–( ) k2By–=

xe
AR

A KA 1 B
KB
-------+ 

 +
----------------------------------------=

ye
BR

B KB 1 A
KA
-------+ 

 +
-----------------------------------------=
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Schild analysis

The experiment described here is one in which a fixed concentration
of inhibitor B is used and dose-response data of A, in the presence of
B, are obtained. The presence of B shifts the dose-effect curve to the
right (Figure 9.1). At any level of effect, the concentrations of A are
denoted by A in the absence of the competitor and A′ in the presence
of the competitor. These are equally effective concentrations and,
therefore, xe is the same in both situations. We therefore apply Equa-
tion 9.5 in the absence of B and in the presence of B and equate them: 

.

The above may be transformed to 

(9.7)

Figure 9.1.  The line on the left is that of the agonist, whereas the line on the right
is the agonist’s dose-response relation in the presence of a fixed antagonist dose.

AR
A KA+
----------------- A′R

A′ KA 1 B
KB
-------+ 

 +
------------------------------------------=

A′
A
------ 1– B

KB
-------=
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which is equivalent to

. (9.8)

For the known concentration B and the experimentally determined
ratio (A′/A), either of the above equations allows a calculation of KB. A
common procedure is to use the logarithmic form in a plot that uses
several different values of B and the experimentally produced agonist
dose ratios. This plot, called a Schild plot as shown in Figure 9.2, is
theoretically a straight line with slope = –1 and intercept –log KB. The
intercept is therefore an indicator of the logarithm of 1/KB. If the actual
data produced a plot with slope = –1, both intercepts would be the same,
and, thus, each gives the value of KB. In practice, the slope (usually
determined from linear regression) is not exactly –1. If the slope does
not differ significantly from –1, this will usually mean that the data are
acceptable and that the departure from unit slope is due to uncertainty

Figure 9.2.  Schild plot for the data in Table 9.3.  The pA2 value is indicated by the
arrow; for these data, pA2 = 6.37 ± 0.025. In this plot –log B is used, thereby producing
slope = –1.

A′
A
------ 1– 

 log Blog–( )– KBlog–=
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(scatter) in the data. In practice, one takes the horizontal intercept which
was called pA2 by Schild (Arunlakshana and Schild, 1959) when concen-
tration B is in molar units.

Because this intercept is derived from a plot that has scatter, the
confidence limits of the intercept are reported along with the pA2 value.
When the slope does not differ significantly from –1, the pA2 is related
to a fundamental receptor constant (KB). When the slope departs from
–1, the pA2 is merely a measure of the degree of antagonism. Values
of KB determined from Schild plots have been used to characterize
receptors and receptor subtypes. Examples of this kind of analysis are
numerous and the topic has been reviewed (Tallarida et al., 1979). A
more recent application, concerned with inhibition of platelet aggre-
gation, is described by Vezza et al. (1997). An example of Schild
analysis is provided below.

Example. Schild Analysis. Four doses of a competitive antagonist pro-
duced shifts in the agonist dose-response curve that were expressed as
the agonist dose ratio R = (A′/A). The data (simulated for illustration)
are shown in Table 9.3. The data in the table were analyzed with linear
regression (Chapter 2) and Equation 2.9 was applied to get the standard
error of the pA2 that is given in the legend of Figure 9.2. 

9.4  Combined inhibitory effects

Having discussed competitive inhibition in a book that is mainly con-
cerned with the combined action of agonist agents, we felt it reasonable
to ask whether two inhibitors ever show synergism. Braverman and
Ruggieri (2000) conducted this kind of experiment with muscarinic
agents that affect the bladder (in rat). The bladder was surgically
denervated and, following a three-day recovery period, was excised
and cut into strips for testing tension development in response to
carbachol. At a level of carbachol that produced a desired effect level
(% of maximum), one or the other of two competitive inhibitors were

Table 9.3.  Each Antagonist Dose (B) Produces a Dose Ratio (Shift) R

B –log (B) R – 1 log (R – 1)
10–4 4.0000 320 2.50
3.16x10–5 4.5003 97 1.99
10–5 5.0000 30 1.48
10–6 6.0000 2.4 0.38
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added in varying doses (ng/ml). These were methoctramine-tetrahy-
drochloride (Meth) and parafluorohexahydrosila-diphenadol HCl (pf).
Each produced a diminution of the tension, thereby indicating receptor
blockade. A 10:1 combination (based on mass) of the inhibitors was
subsequently used. Table 9.4 shows the data from a preliminary exper-
iment and a detailed regression analysis that includes the D50 values
for each inhibitor, the additive D50, and the actual (mixture) D50 . (The
D50 for inhibition is often denoted IC50). Because the mixture D50 is
significantly less than the additive D50, the combination of inhibitors
in the fixed ratio used (ρ = 0.9091) is synergistic. This finding may be
due to the fact that these are not entirely receptor-specific antagonists;
that is, each is only relatively selective for a specific muscarinic recep-
tor. In that case their actions are not independent (see Chapter 1) and,
therefore, some interaction would be expected. However, the same
experiment carried out in normal animals (i.e., not denervated) pro-
duced results that showed simple additivity (data not given here).
Thus, the nature of the interaction is not yet understood, and the
problem is undergoing further study at the time of this writing.

Table 9.4.  Combination of Inhibitors of Carbachol in the Rat Bladder

Data Set: Denervated: Meth
Dose(1) Log(dose) Effect(2)

457.7 2.661 12.6 
1405.7 3.148 19.7 
4537 3.657 38.2 

13840.2 4.141 63.6 

Eqn: Y = 34.64x –84.30 r = 0.972
slope = 34.64 ± 2.94

 = 3.401 Sxx = 1.225
  = 33.525 Sxy = 42.45

s = 6.522
SStot = 1555
SSres = 85.07 log D50 = 3.877 ± 0.124
SSreg = 1470 D50 = 7538 ± 2152

(continued)

(1) ng/ml

(2) % of maximum

x
y
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Table 9.4.  (Continued) Combination of Inhibitors of Carbachol in the Rat 
Bladder

Data Set: Denervated : Pf
Dose Log(dose) Effect

138.8 2.142 24.3 
457.7 2.661 32.8 

1406 3.148 42.3 
4537 3.657 64.9 

13840 4.141 72 

Eqn: Y = = 25.53x –33.17 r = 0.983
slope = 25.53 ± 1.245

 = 3.150 Sxx = 2.494
 = 47.26 Sxy = 63.68

s = 4.397
SStot = 1684
SSres = 58.00 logD50 = 3.257 ± 0.078
SSreg = 1626 D50 = 1807.4 ± 324

Composite Parameters f = 0.7057 
ρ1 = 0.9091 
Zadd(C) = 5745.2041 ± 759.1420

Data Set: Composite Additive
Dose Log(dose) Effect
250.3 2.398 12.6 
662.7 2.821 24.3 
833.5 2.921 19.7 

1940 3.288 32.8 
3216 3.507 38.2 
5158 3.712 42.3 

11308 4.053 64.9 
11692 4.068 63.6 
30214 4.480 72 

Eqn: Y = 30.80x –65.81 r = 0.977
slope = 30.80 ± 0.841

 = 3.472 Sxx = 3.682
(continued)

x
y

x
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Table 9.4.  (Continued) Combination of Inhibitors of Carbachol in the Rat 
Bladder

y – int = –65.80748 ± / –8.912029
 = 41.16 Sxy = 113.4

s = 4.844
SStot = 3658
SSres = 164.2 Log D50 = 3.75 ± 0.0574
SSreg = 3494 D50 = 5745 ± 759

Data Set: Denervated Mix
Combination Parameters f = 0.7057 

ρ1= 0.9091 
Dose Log(dose) Effect

457.7 2.661 25.1 
1406 3.148 38 
4537 3.657 65.1 

13840 4.141 86 

Eqn: Y = 42.41x –90.71 r = 0.992
slope = 42.41 ± 1.85

 = 3.402 Sxx = 1.225
 = 53.55 Sxy = 51.97

s = 4.094
SStot = 2237.61
SSres = 33.51831 log D50 = 3.318 ± 0.049
SSreg = 2204.092 D50 = 2079.13 ± 233

Statistics: F = 16.53 t′ = 5.855 T = 3.177

y

x
y
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CHAPTER 10

 

Response Surface Analysis 

 

of Drug Combinations 

 

Combinations of two drugs lead to effects that depend on the constit-
uent doses. It may be desirable to produce a plot of the effect for each
dose combination. This kind of plot and the procedures used to make
and analyze it provide methodology for measuring the synergism at
any particular dose combination and effect level. (This is in contrast
to the isobole method that measures synergism at a single, specified
effect level.) The dose of each drug is an independent variable and the
effect is the dependent variable. A three-dimensional plot results. The
doses are plotted on the plane in a three-dimensional Cartesian coor-
dinate system as individual points. The effect of a dose pair is plotted
as the vertical distance above the point. Since each dose of the pair
defining the combination is a continuous variable, the dose pair points
lie in a region over which there is a continuum of effects. The three-
dimensional plot is therefore a surface. Each measured effect
(response) is a point that defines this response surface.

If the data from each compound are fitted to a smooth curve, such
as the common hyperbolic curve, the surface of an additive combination
of doses is also smooth and is completely determinable. If actual com-
bination doses produce effects that are greater than additive, then
these points will be located above the additive surface. Each of these
super-additive effects can be characterized by the value of the inter-
action index which measures the strength of the synergism for the
dose pair.

 

 

 

10.1  Additive combinations and response surface

 

We are concerned here with a situation in which each of the two
compounds (denoted A and B) produces a dose-dependent effect, i.e.,
each yields a dose-effect relation for the common effect being studied.
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We denote these relations with functional notation, 

 

E

 

 = 

 

f

 

(

 

A

 

) for
compound A, and 

 

E

 

 = 

 

g

 

(

 

B

 

) for compound B. As we have seen, the two
compounds may produce either additive or nonadditive actions when
they are given together as the dose combination (

 

a, b

 

). An additive
action occurs when the constituents contribute to the effect in accor-
dance with their individual potencies. For example, if drug A has
twice the potency of drug B, then, in combination, A may be substi-
tuted for B in an amount that is one half the amount that would be
required of B. By using the relative potency of the agents, the com-
bination may be referred to either compound. For example, if A is
the reference compound, then (

 

a, b

 

) may be expressed as an equiva-
lent amount of A when it acts alone. For a simply additive interaction
with relative potency 

 

R 

 

(=

 

 dose A

 

/

 

dose B

 

)

 

 the same at every level of
effect

 

, the calculation of the dose of A that is equivalent to (

 

a, b

 

) is
given by 

 

A

 

eq

 

 

 

= 

 

a

 

 + 

 

Rb.

 

(10.1)

Because the effect 

 

E

 

 for any dose of A is known (from its dose-effect
curve, 

 

E

 

 = 

 

f

 

(

 

A

 

)) the dose combination (

 

a, b

 

), that yields 

 

A

 

eq 

 

from the
above equation can be paired with this effect by using the calculated

 

A

 

eq

 

 in the relation, 

 

E

 

 = 

 

f

 

(

 

A

 

). A graphical view of this pairing is provided
in a plot of 

 

E

 

 against (

 

a, b

 

), a procedure that yields a surface

 

 

 

above
the domain of (

 

a, b

 

) points. In other words, the pair (

 

a, b

 

) is a point
in the plane, and the effect is plotted as the vertical distance above it
(Figure 10.1). The response surface obtained this way (use of Equation
10.1) applies to simply additive combinations and is

 

 

 

therefore an 

 

addi-
tive response surface

 

. The procedure for getting the plot coordinates is
illustrated in the following example in which the individual dose-effect
curves have been constructed so that the relative potency is constant.
Any dose pair (

 

a, b

 

) leads to an equivalent dose of A

 

 

 

calculated from
Equation 10.1. This equivalent dose 

 

A

 

eq

 

 is used in the relation, 

 

E

 

 =

 

f

 

(

 

A

 

) to get the effect level 

 

E

 

. 

 

Example.

 

 Two compounds A and B have dose-effect relations shown in
Figure 10.2. The relative potency is constant and found to be 2.32. The
dose-effect equation of A, which we take as the reference compound, is
given by the equation, 

 

E

 

 = 100 

 

A

 

/(

 

A

 

 + 11.24). From Equation 10.1, any
pair of doses (

 

a, b

 

) is converted to an equivalent, 

 

A

 

eq

 

 = (

 

a

 

 +2.32 

 

b

 

). When
the value 

 

A

 

eq

 

, calculated this way, is inserted into the dose-effect equa-
tion for compound A, we get the expected additive effect. For example,
point (1, 2) gives 

 

A

 

eq

 

 = 1 + 2.32 

 

×

 

 2 = 5.64 and this dose of A gives
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E

 

 = 33.4. Proceeding this way for all dose combinations we get the addi-
tive response surface. 

 

10.2  Super-additive combinations 

 

When a dose combination is super-additive (synergistic) and the rela-
tive potency 

 

R

 

 is constant, the dose pair (

 

a

 

, 

 

b

 

) acts like the greater
dose (

 

a

 

 + 

 

R

 

 

 

b

 

)/

 

α

 

, where 

 

α,

 

 the 

 

interaction index

 

, is less than unity.
This relation follows from the simultaneous solution of 

 

R

 

 = 

 

A

 

/

 

B

 

 and

 

a

 

/

 

A

 

 + 

 

b

 

/

 

B

 

 = 

 

α.

 

 This directly relates the additive equivalent to the dose
corresponding to the observed effect of the combination. Stated differ-
ently, the interaction index is a mathematical factor (multiplier) that
indicates the degree of dosage reduction in a combination in order to
get the effect of 

 

A

 

 alone or 

 

B

 

 alone. With reference to compound A’s
dose-effect relation (curve) the greater dose, (

 

a

 

 + 

 

Rb

 

)/

 

α

 

, produces a
different (greater) effect than the additive effect. The three-dimen-
sional plot of effect vs. (

 

a

 

, 

 

b

 

) would therefore be a surface positioned
above the additive response surface. 

The interaction index is calculated from tests with combination (

 

a

 

,

 

b

 

). For such a pair, the effect is measured, and this value is related

 

Figure 10.2.  

 

Dose-effect curves for compounds A and B. The relative potency is 2.32,
compound B being the more potent.
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to the corresponding dose of A from its dose-effect relation (curve).
That dose, 

 

A

 

corr

 

, is then used in the following equation

 

A

 

corr

 

 = (

 

a

 

 + 

 

Rb

 

)/

 

α

 

 = 

 

A

 

eq

 

/

 

α

 

. (10.2)

This equation allows a determination of 

 

α

 

. In our previous exam-
ple we saw that (1, 2) gave 

 

A

 

eq

 

 = 5.64 and the additive effect 33.4.
Suppose, however, that the observed effect of this dose pair were 45
instead of 33.4. This magnitude of effect, 45, corresponds to dose 

 

A

 

corr

 

= 9.20, a value that we obtain from the dose-effect equation for
compound A. From Equation 10.2, we have 9.20 = 5.64/

 

α

 

; thus, 

 

α =
0.613. This procedure calculates the degree of synergism (expressed
as the interaction index α) for all actual dose pairs tested. It should
be noted that the relative potency R is an estimated quantity as are
the dose-effect relations of the constituent drugs. For this reason
several experiments with the same (a, b) combination should be
conducted, thereby giving a set of values of the interaction index α.
From these values a mean and standard error may be obtained. The
calculation of α is straightforward because the relative potency (R)
is a constant. We next discuss the calculation of α when R varies
with the effect level.

10.3  Variable relative potency

When the relative potency varies with the effect level the individual
dose-effect curves, EA = f(A) and EB = g(B), provide the values of R
and, thus, Aeq. To get the additive equivalent of A in this situation the
effects are equated, f(A) = g(B), and this equation is solved simulta-
neously with the additive relation

a/A + b/B = 1. (10.3)

Equation 10.3 is the same as Equation 10.1 except that R (=A/B) is
now a variable that does not appear explicitly. Its value depends on
the functions f and g and, therefore, it is implicit in the solution of the
simultaneous equations. The value of A determined from these simul-
taneous equations is Aeq and is obtained by eliminating B. The value
of Aeq is used to calculate the effect level from drug A’s dose-effect
equation (curve) as previously described. This calculated effect level is
the expected effect for pair (a, b) under additivity and a plot of these
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gives the additive response surface. Whether the relative potency is
constant or variable, it is seen that the additive surface is completely
determined from the individual dose-effect curves. Synergism in this
situation of varying R, described by a/A + b/B = α, is not characterized
by a simple relation such as Equation 10.2. Instead, a new relation is
derived in the following way. The effect of (a, b) is determined by
testing, and this effect is referred to drug A’s dose-effect equation
(curve) in order to get the corresponding dose, Acorr. Simultaneous solu-
tion of the equations, a/A + b/B = α and f(A) = g(B), eliminates B and
gives the relation between α and A(=Acorr), thereby providing the value
of α for the dose pair. The following example illustrates the calculation.

Example. The data sets below were made up to illustrate the situation
in which two compounds have a varying potency ratio. The values of dose
and effect (arbitrary units) are given in Table 10.1 for compounds A and B:

These data sets are well described by the equations

.

We now consider the system of equations: 

.

Elimination of B gives the following relation that relates the doses a, b
and α to the A corresponding to the observed effect:

24a + 75b + bA – 24αA = 0

Table 10.1.  Dose-Effect Data with Variable R

A B

Dose Effect Dose Effect
0 0 0 0
10 32 4 40
15 40 6 50
30 53 10 62
45 60 20 76

30 83
45 88

EA
80A

A 15+
-----------------=    and   EB

100B
B 6+
--------------=

80A
A 15+
----------------- 100B

B 6+
--------------=    and   a

A
---- b

B
----+ α=
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Now suppose that testing with doses a = 2, b = 3, produces an effect =
60. From the dose-effect relation of compound A, an effect = 60 means
that dose A = 45. Substitution of a = 2, b = 3, and A = 45 in the above
yields α = 0.378. In this same way the interaction index is determinable
for all combinations tested. Of course, only effects that are achieved by
both compounds can be used in this analysis. 

Dose-effect relations

The previous analysis shows that whether the relative potency of the
two compounds is constant or variable over the range of effects, it is
still possible to determine the value of α from the combination data
and thereby distinguish additivity from super-additivity. This analysis
requires suitable equations for modeling each compound’s dose-effect
relation. The (graded) dose-effect relation of a drug has been modeled
in a number of ways; a common model is the hyperbolic relation used
in the previous example and given by E = Emax(D)/[(D) + C]. In this
equation the constant C is equivalent to the dose (D) that gives the
half-maximal effect (D50 dose). If each drug also produces the same
maximum effect, then R, the relative potency, determined from the
hyperbolic relation is a constant equal to the ratio of the C’s of each
agent: R = CA/CB. (Other nonlinear models are discussed in Chapter
11.) Another common model is the linear log(dose)-effect relation. When
the two linear relations give parallel lines, the relative potency is
constant whereas nonparallel lines mean a varying R. Whether R is a
constant or a variable, the parameter α can be determined as we just
showed. It should be recalled that the dose-effect curves of the individ-
ual drugs allow one to calculate the additive total dose, Zadd, for a
specified effect level (isobole method described in Chapter 4). The value
of Zadd is then compared to the total dose of the combination (Zmix) that
gives the same effect experimentally. A synergistic interaction gives a
total dose Zmix that is equal to α Zadd.

10.4  Response surface analysis of morphine 
and clonidine 

There have been several quantitative studies of the combination of
spinal morphine and clonidine (Wilcox et al., 1987; Ossipov et al., 1990,
1990a; Fairbanks and Wilcox, 1999), including a study we conducted
(Tallarida et al., 1997). One aspect of these was discussed in Chapter
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4, in which we illustrated the isobole method for effect level = 50% of
the maximum. That analysis used linear regression of effect on log
dose as the model and employed one fixed-ratio combination. That
fixed dose ratio revealed synergism and was a confirmation of earlier
work by Ossipov et al. (1990; 1990a) who found synergism when the
drugs were administered intrathecally. It was desired to examine this
combination in a response surface analysis that employed other fixed
ratio combinations (Tallarida et al., 1999). In this study, the mouse
tail immersion test was used with hot water (55°C) as the nociceptive
stimulus using the protocol described by Raffa and Stone (1996).
Intrathecal administration via injection into the subvertebral space
between L5 an L6 (Hylden and Wilcox, 1980) was employed. Antinoci-
ception was measured as an increase in tail-withdrawal latency and
was converted to percent of maximum percent effect (MPE) according
to the formula: %MPE = 100 × (test latency – control latency)/(15
– control latency). The 15-s cutoff was used to avoid injury to the tail.
For construction of the dose-effect curves the effect was expressed as
mean %MPE, from 10 mice per dose, and was assessed at the time of
peak effect (10 min after drug administration).

Morphine-clonidine data 

The combination experiment produced data that are continuous on the
effect scale and are shown in Table 10.3. But first we must examine
the dose-effect data for each drug, used alone, in Table 10.2. These data
allow a calculation of the additive total dose for each fixed ratio com-
bination which may then be compared statistically to the actual total
dose for the same fixed ratio combination in order to distinguish syn-

Table 10.2.  Dose-Effect Dataa

Morphine SO4 Clonidine HCl

Dose Effect Dose Effect
1.138 19.67 0.800 19.79
3.793 40.32 2.667 31.40
11.38 61.91 7.998 74.92
37.93 88.52 26.66 92.41

D50 = 5.856 ± 0.52 D50 = 3.787 ± 0.78

a Dose of the salt (µg) and effect as mean% MPE based on 10 animals and use of the
hyperbolic model in which the constant C = D50 .

C0457_frame_C10  Page 164  Friday, May 19, 2000  7:23 AM



RESPONSE SURFACE ANALYSIS OF MORPHINE AND CLONIDINE 165

ergism from simple additivity. That kind of analysis (use of total dose),
previously made for one combination of these agents, was illustrated
in Chapter 4. The objective in this chapter is to present the data for
two additional combinations and, in so doing, utilize the response sur-
face approach that uses the dose pairs as previously described.

Each drug’s dose-effect data were fitted to the hyperbolic relation,
E = Emax(D)/[(D) + C] over the range of effects, 0 to 100 = Emax. (In
Chapter 4 these data sets were modeled with linear regression.) Cor-
relation coefficients, 0.993 for the morphine curve and 0.975 for the
clonidine curve confirm the good fits (Figure 10.3). The constant C (=
D50) for each is given in Table 10.2. As previously noted, this kind of
fit means that the potency ratio R is also a constant = CA/CB = 1.546
in this case. It is thus possible to construct the additive response
surface for these drugs in a three-dimensional plot (Figure 10.4). The
additive equation is given by 

. (10.4)

The super-additive equation, for constant α, is given by

. (10.5)

Figure 10.3.  The dose-response data for morphine (M) and clonidine (C) are each fitted
to a hyperbolic model from which the relative potency is 1.546.
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The amount of surface elevation for a synergistic dose (a, b) can
be determined from the above equations as the difference of the E’s.

Before examining the results of the combination experiments, it is
instructive to view the response surface for a synergistic (super-addi-
tive) interaction of these drugs. To accomplish this illustration we have
constructed such a surface using α = 0.1 (Figure 10.5). This is an
illustrative example in which a value of α indicative of strong (but
realistic) synergism is used (as will be shown subsequently); moreover,
this illustration includes the assumption of a single value of α that
characterizes the drug combination. This assumption was examined
in the current study by calculating the values of α for all dose pairs
tested and is described subsequently, but the graph of Figure 10.5,
based on a single value of α, is nevertheless revealing. It shows a
uniformly smooth response surface, convex and clearly positioned
above the simply additive surface. The extent to which a single value
of α and with this magnitude (0.1), applies to the current data is
revealed in an analysis of the actual combination data obtained. 

The data shown in Table 10.3 provide the results of the combination
experiments along with the calculated additive equivalent of drug A
(morphine) as well as the amount of A (Acorr) that corresponds to the
actual combination effect observed. Three different sets of fixed ratio
combinations were used. In the first set, the proportion of morphine
SO4 was 0.605, while in sets 2 and 3 the proportions were 0.338 and
0.821, respectively. For each drug combination, the parameter α was
calculated by relating the observed effect to get Acorr, calculating Aeq

and applying Equation 10.2 as previously described. These values are
given in the table. It is seen from the values of  α that there is marked
synergism. But the actual α values show a difference for each combi-
nation set tested. To test whether the mean value of this interaction
index differs among the three dose sets, we examined the groups in
an analysis of variance followed by the Newman Keuls test (described
in Chapter 12). The result, shown in Table 10.4, indicates significance,
p < 0.05. These statistical results indicate that the mean value of α
for set 1 is greater than the values for the other two sets which do not
differ significantly. In other words, there is synergism for each of the
three dose proportions tested, but the synergism is more pronounced
in sets 2 and 3 than in set 1. 

10.5  Isobolar analysis or surface analysis

The values of the interaction index α shown in Table 10.3 were deter-
mined from each combination’s observed effect, the values of Acorr and
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the additive equivalent dose, Aeq, of reference drug A (morphine) cal-
culated from Equation 10.1. The data for these three sets, however,
also permit estimations of α based on the 50% effect level. Toward this
end we utilize the calculated additive total dose for %MPE = 50,
denoted Zadd, and the total dose, Zmix, that gives %MPE = 50. The value
Zmix was obtained by curve-fitting the total dose-effect data to the
hyperbolic model, while Zadd is calculated from Equation 4.12. The
values Zadd and Zmix for the 50% effect level are shown in Table 10.5.

Table 10.3.  Combination Dose-Effect Data and Calculated Quantities for Morphine 
and Clonidine in Three Different Fixed Ratio Combinations

Comb. Doses (a, b)* Effect Aeq Acorr α
(µg)

Set 1 0.360, 0.235 20.21 0.723 1.483 0.487
0.720, 0.470 38.96 1.447 3.738 0.387
1.44, 0.940 65.98 2.893 11.357 0.255
2.88, 1.88 92.04 5.786 67.71 0.085

mean 0.303
Set 2 0.0225, 0.044 28.42 0.0905 2.325 0.039

0.045, 0.088 35.58 0.181 3.234 0.056
0.090, 0.176 42.96 0.362 4.410 0.082
0.180, 0.352 81.26 0.724 25.39 0.029
0.719, 1.408 90.81 2.896 57.86 0.050

mean 0.051
Set 3 0.1347, 0.0292 14.4 0.1799 0.985 0.183

0.269, 0.0585 47.66 0.3599 5.332 0.0675
0.539, 0.117 69.50 0.7199 13.34 0.0539
1.079, 0.235 69.45 1.442 13.31 0.1083

mean 0.101

* Dose (a, b) is (morphine.SO4, clonidine.HCl) per mouse. Each effect is the mean from at least
10 observations.

Table 10.4.  Analysis of Variance of Interaction Index (α) for Different 
Fixed Ratio Combinations

Source of 
variation

Sum of 
squares D.F

Mean 
square F

Total 0.2539 12
Between 0.1517 2 0.0758 7.42
Within 0.1022 10 0.0102
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The ratio, Zmix/Zadd, provides an estimation of α for the 50% level. The
values of α determined this way are given in Table 10.5 for each of
the three fixed ratio combination sets. This method of determining α
used equieffective total doses, Zadd and Zmix, and is therefore the isobole
method we have previously used (Chapter 4) to test for synergism.
These estimates of the interaction index for the three sets (Table 10.5)
have the same order relation as the mean values of the index that
were obtained from actual effects over the surface (Table 10.3). 

The isobole method uses doses of the individual drugs and the drug
combinations that produce some particular effect such as 50% of the
maximum. In contrast, the response surface approach examines all
tested combinations and the effects they produce, thereby obtaining
values of the interaction index for each combination. This more
detailed examination allows one to view the effects of both small and
large dose combinations and, thus, determine if the nature of the
interaction is dose dependent. This information may be useful in
uncovering mechanism. (See, for example, Hurley et al., 1999; Meissler
et al., 1998.) We saw, however, in the study just described, that the
three different fixed ratio combinations produced mean values of α
that had the same order relation as those obtained from the isobole
method. The choice of method will be dictated by the purpose of the
study. It should also be recalled that different tests can give different
results. For example, in tests of antinociception, the nature of the
nociceptive stimulus may affect the efficacy and the potency of the
individual compounds and, thus, their combined effect. In other words,
different neuronal mechanisms may underlie each stimulus and the
modulatory role of the drugs on responses to the stimulus. A good
example is provided in Adams et al. (1993).

Table 10.5.  Equieffective Total Doses and Interaction Index for %MPE = 50

Combination Set 1 Set 2 Set 3
Proportiona ρ = 0.605 ρ = 0.338 ρ = 0.821

Zadd 4.82 4.30 5.33
Zmix 1.43 0.223 0.414
α 0.297 0.052 0.077

a The proportion of the total mass that is morphine sulfate. The proportions are based
on estimated D50 values of the morphine (M) and clonidine (C) constituents: Set 1,
0.5 (M), 0.5 (C); Set 2, 0.25 (M), 0.75 (C); Set 3, 0.75 (M), 0.25 (C).
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CHAPTER 11

 

Nonlinear Regression Analysis

 

Thus far we have illustrated the use of linear regression as a way of
fitting dose-effect data. When the effect is plotted against the logarithm
of the dose over some mid-range of doses, a somewhat linear trend often
results. In this limited dose range, the points are often well approxi-
mated by a straight line fit; thus, if there are sufficient points in this
linear region, the use of linear regression is often adequate to get 

 

D

 

50

 

values and their standard errors. However, the complete log dose-effect
curve, that is, the curve over an extensive range of log dose values, is
frequently sigmoidal (S-shaped) and, thus, nonlinear. 

In binary outcomes (quantal data) the sigmoidal curve is analyzed
by transforming to probits (or logits) as we saw in Chapter 6. This
transformation often produces an acceptable linear fit of the data. For
graded (continuous) dose-effect data, probit analysis is not employed
as an analytical procedure (even though it often straightens the sig-
moid curve). Graded data will often fit a hyperbolic curve (also non-
linear) when the effect is plotted against the dose over the entire dose
range. This was illustrated in Chapter 2 where we used the hyperbolic
function, 

 

E

 

 = 

 

E

 

max

 

D

 

/(

 

D

 

 + 

 

C

 

), to describe the graded dose-effect relation
and in Chapter 10 where we saw its application to the drugs clonidine
and morphine.

The double reciprocal plot, 1/

 

E

 

 against 1/

 

D

 

, has been frequently
used when data are presumed to be hyperbolic, a use that is common
in the analysis of enzyme substrate kinetics. The basis for this is easily
seen by rearranging the hyperbola to give 1/

 

E

 

 = 1/

 

E

 

ma

 

x

 

 + (

 

C

 

/

 

E

 

max

 

) 1/

 

D

 

.
This is theoretically linear in the reciprocated variables, 1/

 

E

 

 and 1/

 

D

 

,
with slope = 

 

C

 

/

 

E

 

max

 

 and intercept = 1/

 

E

 

max

 

. But reciprocated variables
are not suitable for linear regression analysis (other than as first
approximations), and, thus, the parameter estimates obtained this way
are questionable; also, there is no acceptable way to get their variances.

With the availability of personal computers in recent years, a
number of software packages have appeared that allow the user to
select a nonlinear modeling equation that contains the parameters
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needed, such as 

 

E

 

max

 

 and 

 

D

 

50

 

. 

 

(

 

The companion software package to
this book contains such a program

 

; 

 

see page 204

 

.) In this procedure,
the user makes an 

 

initial estimate 

 

of the needed parameters, and the
program calculates the best-fitting value of the parameters while
also providing estimates of their standard errors. The mathematical
basis of the technique is in Taylor series. An outline of the idea and
a demonstration are given below. But first we describe the functional
forms that are most often employed in describing dose-effect data.
Also described are the usual transformations.

 

Simple hyperbolic

 

This form is given by 

 

E

 

 = 

 

E

 

max

 

 D

 

/(

 

D

 

 + 

 

C

 

) and the Taylor series
approach allows an estimate of both 

 

E

 

max

 

 and 

 

C 

 

(= 

 

D

 

50

 

) from the (

 

D,
E

 

) data points. Usually five or more points are needed for data that
show a smooth trend. Very often the fit is acceptable and the 

 

E

 

max

 

and 

 

C

 

 values are also acceptable based on the standard error esti-
mates that are obtained. When the standard errors appear to be too
large, it may be necessary to first transform the data to a form
suitable to the 

 

Hill equation.

 

11.1  Hill equation

 

The Hill equation is obtained as a transformation of the hyperbolic
form, 

 

E

 

 = 

 

E

 

max

 

D

 

/(

 

D

 

 + 

 

C

 

)

 

 

 

and has found much use in the analysis of
the oxygen saturation of hemoglobin, where an exponent 

 

p

 

 is put
on 

 

D

 

 and 

 

C

 

, and also in the analysis of radioligand binding sites.
Our use here is for curve fitting. When 

 

p 

 

= 1 the Hill equation is
a simple transformation of the hyperbolic relation expressed in
logarithmic form:

(11.1)

Instead of plotting 

 

E

 

 against 

 

D, 

 

this form requires plotting the
logarithm of 

 

E

 

/(

 

E

 

max

 

 – 

 

E

 

) against the logarithm of 

 

D

 

. When this plot
is made, the graph is a straight line with unit slope and vertical
intercept = –log 

 

C.

 

 When applied to actual data, the points are fitted
to a straight line. This is a useful plot because getting a slope other

E
Emax E–
---------------------- 

 log D Clog–log=
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than one provides some indication of the adequacy of the hyperbolic
model. If the slope differs significantly from one, then the hyperbolic
model will not give a good fit to the data. In such cases, the Hill plot

 

slope

 

, denoted 

 

p

 

, suggests a different (better-fitting) equation such as 

. (11.2)

Of course, the transformation of the data that led to the Hill plot
requires that 

 

E

 

max

 

 

 

is known, yet that is one of the values to be estimated
from the data. When the data have been appropriately normalized to

 

E

 

max

 

 = 100%, then that value is used as 

 

E

 

max

 

 in this plot. In other cases
a reasonable estimate of 

 

E

 

max

 

 

 

must be made so that the plot can be
generated and the slope estimated. A series of successive approxima-
tions may be necessary. That is, one makes a guess at 

 

E

 

max

 

 so that the
data are transformed to quantities log (

 

E

 

/(

 

E

 

max

 

 – 

 

E

 

)) for the y-axis. A
plot of these against log 

 

D

 

 would then be described by

. (11.3)

Equation 11.3 is seen to be a line with slope 

 

p 

 

in the transformed
variables

 

. 

 

Thus, one uses the Hill plot to get the slope which is then used
as the value of 

 

p

 

 in Equation 11.2. With 

 

p

 

 inserted into Equation 11.2
one can proceed to fit the data to this equation. If the fit is acceptable,
then both 

 

E

 

max

 

 

 

and 

 

C 

 

are calculated. If the fit still seems unacceptable,
then the value of 

 

p

 

 can be adjusted upward or downward. An application
of that procedure is given in the following example (Table 11.1).

 

Example. 

 

Data from Table 2.1 were transformed, as shown in Table
11.1, in order to construct the Hill plot of Figure 11.1. For this purpose

 

E

 

max

 

 was taken to be 20. Regression analysis gave slope = 1.44 ± 0.078;
accordingly, 

 

p

 

 was taken = 1.4 and 

 

E

 

max

 

 = 20 in Equation 11.2. This
analysis produced the plot shown in Figure 11.2. This fitted curve gave

 

D

 

50

 

 = 16.3 ± 0.38 

 

×

 

 10

 

–7

 

 M.  

 

11.2  Theory

 

The basis of nonlinear curve fitting is as follows. A function 

 

E

 

 of
concentration 

 

z

 

 contains, say, two parameters (

 

E

 

max

 

 and 

 

D

 

50

 

), denoted

E
EmaxD

p

Dp Cp+
--------------------=

E
Emax E–
---------------------- 

 log p Dlog p Clog–=
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Table 11.1.  Methoxamine Data of Table 2.1 Transformed for Hill Plot*

D E (Em – E) E/(Em – E) log D log[E/(Em – E)]
1.40 0.196 19.8 0.00990 0.146 –2.00
2.30 0.588 19.4 0.0303 0.362 –1.52
4.10 1.96 18.0 0.109 0.613 –0.964
5.70 3.33 16.7 0.200 0.756 –0.699
8.00 5.48 14.5 0.377 0.903 –0.423

11.0 7.84 12.2 0.645 1.04 –0.191
15.0 9.60 10.4 0.923 1.18 –0.0348
23.0 12.5 7.50 1.67 1.36 0.222
39.0 15.3 4.70 3.26 1.59 0.513
53.0 16.8 3.20 5.25 1.72 0.720
80.0 18.0 2.00 9.00 1.90 0.954

170 19.2 0.800 24.0 2.23 1.38
420 19.4 0.600 32.3 2.62 1.51

* Concentration, M × 107 ; E in millinewtons. Doses values ×10–7 (values rounded).

Figure 11.1.  Hill plot for methoxamine-induced contraction in aortic strips (see
Table 11.1).
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here by α and β, that is, E = f(z, α, β). We seek here a representation
in which α and β are estimated by a and b. These estimates are initially
a0 and b0. A Taylor series representation is made about these initial
estimates a0 and b0:

(11.4)

. (11.5)

For this choice of a0 for α and b0 for β, each dose value zi gives the
left-hand side of Equation 11.5, Ei – f(a0, b0, zi), denoted here by Yres.
Further, the partial derivative  uses the a0 an b0 values and also
has a value for each zi value, denoted here by X1i. Similarly, the partial
derivative  has a value at this zi which we denote by X2i. Thus,
we get a set of values of a dependent variable Yres that is linearly
related to the independent variables X1 and X2. A multiple linear
regression (see Chapter 12) yields the two regression coefficients α –
a0 and β – b0. 

The following applies this mathematical algorithm for estimating
parameters α and β in a hyperbolic model, Y = αx/(x + β) for the dose-

Figure 11.2.  Dose-effect data from Table 11.1 are fitted to Equation 11.2 for p = 1.4.
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response data set, (xi, yi). (Note that the dose is now denoted by x.)
Thus, Emax = α and D50 = β. The partial derivatives are  = x/(x
+ β) and  = –αx/(x + β)2. There are N data points. Original
estimates of parameters are denoted a0 and b0. The data are trans-
formed into three different sets, denoted by Yres, X1, and X2, defined
as follows:

(11.6)

(11.7)

. (11.8)

Thus, the original data set gives rise to three data columns of
length N:

The values of Yres, X1, and X2, in the above array are entered into
a standard linear multiple regression program modeled as 

Yres = cX1 + d X2. (11.9)

Multiple linear regression is a standard procedure that is contained
in certain software packages,* and details applicable to our application
are given in Chapter 12. The coefficients c and d are determined (with
standard errors) from these programs, and these allow improved esti-
mates of parameters a and b by taking a new set of estimates:

a1 = c + a0

and

b1 = d + b0.

Yres X1 X2

… … …
… … …

*See p. 204.

f α∂⁄∂
f β∂⁄∂

Yres yi
a0xi

xi b0+
----------------–=

X1
xi

xi b0+
----------------=

X2
a0– xi

xi b0+( )2
-----------------------=
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The new set of estimates, a1 and b1 are entered into Equations 11.6
to 11.8 (in place of a0 and b0) and the linear regression program to
yield a2 and b2 (with std. errors). A stopping criterion is applied, e.g.,
if the difference between two iterates is < 0.01. This last set is retained
and the last set’s standard errors are retained as the standard errors
of the final estimate.

11.3  Sigmoid plot

Many dose-effect curves take on a sigmoid (S) shape when the effect
is plotted against the logarithm of the dose. The basis of this shape is
best understood in relation to the “logistic curve” which was mentioned
in Chapter 6. Some additional discussion is given here.

The logistic curve arises in certain biological problems, such as the
growth of populations, and is often a topic in the study of differential
equations. Discussions of these applications may be found in Rainville
and Bedient (1989) and Weisstein (1999). For our purposes, the form
of the logistic function is given by 

(11.10)

where A and B are constants. Note that as x increases, y approaches
A, whereas as x decreases (approaches negative infinity), y approaches
zero. In the application at hand, A is the maximum effect of the drug,
B is the D50, x = log D, and y = effect. To see this more clearly, we
start with the hyperbolic form, y = AD/(D + B), and the identity, D =
10log D = 10x; then, effect y = ((A.10x)/(10x + B)) = (A/(1 + B.10–x)).
Therefore a plot of y against x is a plot of effect against log D. When
a slope factor p is needed, the equation becomes y = ((A.10px)/(10px +
Bp)). This form was applied to the data (log D, E) = (x, y), of Table 11.1
in which we took p = 1.4 and A = 20. The resulting graph is shown,
with the data points, in Figure 11.3. The curve-fitting procedure gave
B = 16.28 which is the D50 for these data (see example Section 11.1). 

y A
1 B.10 x–+
--------------------------=
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Figure 11.3.  Methoxamine data from Table 11.1, graphed as E against log D, and the 
smooth sigmoid curve given y = ((A.10px)/(10px + Bp)) with  p = 1.4.
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CHAPTER 12

 

Statistical Concepts 

 

and Tests of Hypotheses

 

12.1  Hypothesis testing with the 

 

t

 

-test: two groups

 

The 

 

t

 

-test was discussed previously in connection with dose-effect data
and distinguishing between the log 

 

D

 

50

 

 values from two curves or the
log 

 

ED50

 

 values from two curves (see Chapter 4). This test is also very
widely used for comparing the group means of two samples, {

 

x

 

1

 

, x

 

2

 

, …,
x

 

n

 

1

 

} containing 

 

n

 

1

 

 elements and { 

 

y

 

1

 

, y

 

2

 

, …, y

 

n

 

2

 

} containing 

 

n

 

2

 

 

 

elements.
True standard deviations of each population are often unknown and
are estimated from the sample standard deviations, 

 

s

 

x

 

 and 

 

s

 

y

 

, calcu-
lated from the respective variances (square of 

 

s

 

 values). The formulas
for the sample means and variances are familiar to most readers:

(12.1)

. (12.2)

An alternate equation for calculating a variance (say ) is

. (12.3)

A similar formula, of course, applies to .
In applying the 

 

t

 

-test these variances are used to get a pooled
estimate, 

 

s

 

2

 

, computed from

x
xi∑

n1
----------=    and   y

yi∑
n2

----------=

sx
2 xi x–( )2∑

n1 1–
--------------------------=    and   sy

2 yi y–( )2∑
n2 1–

--------------------------=

sx
2

sx
2 xi

2 nix
2–∑

n1 1–
----------------------------=

sy
2
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. (12.4)

The quantity calculated as

(12.5)

follows the 

 

t

 

-distribution with 

 

n

 

1

 

 + 

 

n

 

2

 

 – 2 degrees of freedom if the two
population means are equal. This equality is the null hypothesis and
a rejection of this hypothesis tells us, in simpler language, that the
two means differ significantly. Accordingly the quantity calculated
from Equation 12.5 must exceed in magnitude the value in Table A.6.
The following example illustrates this application.

 

Example.

 

 Isometric force in isolated aortic strips of the rabbit was mea-
sured in response to a fixed dose of norepinephrine. In one set of experi-
ments, the passive tension (preload) was set low, whereas in the other it
was set at a higher value. Force was in millinewtons and was converted
to grams for listing below. The lower preload group is denoted by X and
the higher by Y in Table 12.1 which also shows pertinent statistics.

 

Table 12.1.  

 

Force Development in Isolated Aortic Strips*

 

Sets X Y
1.9 2.4
2.3 3.1
2.6 3.5
2.7 4.0
2.8 3.9
2.2 4.1

4.4
4.8

 

Sum

 

14.5 30.2

 

Number (n)

 

6 8

 

Mean

 

2.4167 3.775

 

Std Deviation

 

0.3430 0.7592

 

Variance

 

0.1177 0.5764

 

Std Error

 

0.1400 0.2684

 

* Unpublished data, MacNab and Tallarida.

s2 n1 1–( )2sx
2 n2 1–( )2sy

2+
n1 n2 2–+

-------------------------------------------------------------=

t x y–

s 1
n1
----- 1

n2
-----+

-------------------------=
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The pooled variance is

 

 

 

Thus, 

 

s

 

 = 0.6207 and this value is used in the calculation of 

 

t

 

 from
Equation 12.5:

.

From Table A.6, for 12 degrees of freedom (99% level), the critical 

 

t

 

 =
3.055. Since the calculated 

 

t

 

 has a 

 

magnitude

 

 greater than 3.055 we may
conclude that the difference is significant; i.e., we reject with appreciable
confidence the hypothesis that the two populations are the same. (See
also, Equations 4.7 and 4.8.)

 

The 

 

t

 

-test is based on the assumption that the 

 

data are normal

 

(see Figure 6.2 and discussion in Chapter 6). When the number of
objects in each group is large, say > 30, we are less concerned about
this assumption because of a certain theoretical result (the central
limit theorem) which ensures that the sample means are approxi-
mately normal regardless of the underlying distribution. But even for
small samples, it has been shown that, unless the departure from
normality is extreme, or the number of objects is very small, this
distribution is insensitive to even moderate departures from normality.
In other words, the 

 

t

 

-test is a robust test of significance, and this
property accounts for its widespread use. Nevertheless there are sit-
uations in which the assumptions of the 

 

t

 

-test may not apply. Such
situations sometimes occur in certain behavioral tests in animals. This
concern has prompted the development of distribution-free tests (non-
parametric tests) for examining the differences in two groups. One
such test that is quite popular (Mann-Whitney) is discussed subse-
quently. Before this, we discuss the paired 

 

t

 

-test.

 

12.2  

 

t

 

-test: paired data

 

It is often possible to pair the values obtained in two different situa-
tions. For example, data might consist of measurements on the same

s2 6 1–( ) 0.1177( ) 8 1–( ) 0.5764( )+
12

----------------------------------------------------------------------------------------=

0.3853.=

t 2.4167 3.775–

0.6207 1
6
--- 1

8
---+

--------------------------------------- 4.052–= =
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subject under two different conditions. In such cases it is the difference
in the values that is important. This situation frequently occurs in
drug testing; for example, when each animal provides a value (say,
heart rate) before drug administration and after drug administration.
An example is indicated in the data of Table 12.2. The null hypothesis
is that the mean difference is zero. The set of 

 

n

 

 differences (

 

d’s) are
used to get the mean  and the standard deviation sd from which t is
calculated from the following equations:

(12.6)

(12.7)

(12.8)

The degrees of freedom = n – 1 in this application of the t-test and
this number is needed in using Table A.6. If the calculated t exceeds
the tabular value then the difference is significant. For the data in
the following example (Table 12.2) the mean difference is 6.125 and
is seen to be significant (p < 0.05).

Table 12.2.  Heart Rates Before and After Drug Administration

Before 
Treatment

After 
Treatment Difference

88 94 6
93 108 15
87 89 2

105 119 14
91 98 7
80 84 4

101 100 –1
85 87 2

Mean 6.125
Std Deviation 5.743
Variance 32.98
Std Error 2.030 t = 3.017 t0.05 = 2.365

d

d
di∑

n
-----------=

sd

di d–( )
2

∑
n 1–

----------------------------=

t d
sd n⁄
----------------=
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Example. The data in Table 12.2, from a student animal laboratory
exercise, give the heart rates in the same animal before and after a small
dose of isoproterenol, a beta adrenoceptor stimulating drug.

12.3  Confidence interval

Besides its use in comparing two groups, the t–distribution has an
important use in calculating confidence limits of the mean. When n
values are obtained from a normal variate with mean µ and variance
σ2, a 95% confidence interval is calculated from the sample mean 
as . Usually we do not know the variance σ2, but have
only the sample standard deviation sx. In this case it is necessary to
replace the number 1.96 (from the standard normal curve) by a value
of the t-distribution (for n – 1 degrees of freedom). Thus, the popula-
tion mean lies between . This is called a confidence interval.
For the set of differences in Table 12.2, the mean difference = 6.125
and  = 2.030; hence, using the t-value 2.365 (for 95% and d.f.
= 7) from appendix Table A.6, we calculate the confidence interval to
be 6.125 ± 4.801.

12.4  Mann-Whitney test

The Mann-Whitney test is a nonparametric test to compare two pop-
ulations. As in the t-test, the entries from groups 1 and 2 will generally
have unequal numbers, denoted by n1 and n2. Sample data are shown
in Table 12.3. We wish to determine if the means of the two groups
are different. 

Table 12.3.  Data for Mann-Whitney Test

Group #1 Group #2
1 2
8 12
9 14

12 16
23

(n1 = 4) (n2 = 5)*

* In cases of unequal sample size, n2 is taken to be
the larger.

x
x ± 1.96σ n⁄

x ± tsx n⁄

sx n⁄

C0457_frame_C12  Page 187  Friday, May 19, 2000  7:36 AM



188 STATISTICAL CONCEPTS AND TESTS OF HYPOTHESES

The elements from both sets are arranged in ascending order and
that order has a rank number (R) listed below; thus

Note that the number 12 occurs in positions 5 and 6; rather than
rank these differently, we give each of them the average rank, 5.5.
Note also that we have distinguished the elements by writing those
from set #1 with bold type. This allows us to easily identify the set
from which each element came and its rank number. The ranks of set
#1 elements are summed and those from set #2 are summed to give
quantities, R1 and R2, respectively:

R1 = 1 + 3 + 4 + 5.5 = 13.5

R2 = 2 + 5.5 + 7 + 8 + 9 = 31.5

From these rank sums we calculate U1 and U2 from the following:

(12.9)

(12.10)

In this example, n2 = 5 and n1 = 4. From Equations 12.9 and 12.10,
U1 = 16.5 and U2 = 3.5. 

The statistic U is taken to be the smaller of U1 and U2 and its value,
along with the values of n1 and n2, allow the use of tables from which
the significance of the difference is judged. There are two sets of tables
in the appendix (A11a and A11b) and the choice depends on the set
sizes. 

Case 1

If neither n1 nor n2 is larger than 8, we use Table A.11a which uses
n1, n2 and the calculated U to give a probability. Significance is indi-
cated by a small p, e.g., p < 0.05 is required to show a difference.

Number 1 2 8 9 12 12 14 16 23 

Rank (1) (2) (3) (4) (5.5) (5.5) (7) (8) (9)

U1 n1n2
n1 n1 1+( )

2
-------------------------- R1–+=

U2 n1n2
n2 n2 1+( )

2
-------------------------- R2–+=
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Case 2

If n2 is greater than 8, then Table A.11b is used. In this table, the
numbers n1 and n2 are used for the significance level (e.g., p < 0.05)
and the table values give the critical value of U. If the calculated U
is less than or equal to the tabular U, the difference is significant.

In our example (Table 12.3) U = 3.5 and, because n2 is not larger
than 8, we use Table A.11a with this value of U and n1 = 4, n2 = 5. It
is seen that the p value is a number between 0.056 and 0.095. Since
this number is not less than 0.05 (usual criterion for significance) we
cannot conclude that there is a significant difference.

We now illustrate using a group that has more than eight elements,
along with a group containing four elements. We also have selected
the values to demonstrate the smallness of U in cases of very high
significance. Thus, let one set be {4, 5, 6, 8} and the other {7, 9, 11,
12, 16, 18, 20, 21, 22}. The rank sums are R1 = 11 and R2 = 80 and,
from Equations 12.9 and 12.10, U1 = 35 and U2 = 1; thus U = 1. From
table A-11b, the critical value of U(p < 0.05) is 4. Because the calculated
U is less than 4, the difference is significant. In fact, the difference is
seen to be significant (from the table value) for p = 0.02.

12.5  Analysis of variance

When the means of two samples are to be compared, we use the t-
test (or the Mann-Whitney test). When there are three or more sets
of data (for example, k sets), the comparison of means is first accom-
plished with the analysis of variance (ANOVA) which uses the F-
distribution. It may seem correct to use individual t-tests on each
pair of means; this usage, however, can lead to wrong conclusions
and is not recommended. Analysis of variance, described here, is the
recommended procedure. 

In our description we denote the number of elements in the k sets
by n1, n2, …, nk . The data array is depicted in Table 12.4. The k sets
are arranged in columns and the elements (the B’s) have a double
subscript (row, column) as shown in Table 12.4. The individual sample
means, , for the k sets are computed, as is the grand mean

. The grand mean is used to calculate quantities denoted SS, SST,
and SSE. First, every element in the entire array is reduced by the
grand mean and each reduced quantity is squared and summed to
form the quantity SS:

B1 B2 … Bk, , ,
B
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. (12.11) 

Also needed are quantities SST and SSE defined as follows:

(12.12) 

. (12.13) 

SSE is formed by summing the squares of each element in the column
reduced by the column mean; therefore, it is called the within sample
sum of squares. SST involves the sum of squares of column means,
reduced by the grand mean; it is called the between means sum of
squares. It measures the dispersion of the sample means about the
grand mean. These quantities are related by

SS = SST + SSE. (12.14)

These provide two estimates of the population variance, denoted 
and :

Table 12.4.  Data Array for Use in Analysis of Variance

Sample 1 Sample 2 . . . Sample k
B1, 1 B1, 2 B1, k

B2, 1 B2, 2 B2, k

. . .

. . .

. . .
Bn1, 1

. Bnk, k

.

.
Bn2, 2

 (means)

(grand mean)

B1 B2 Bk

B
Bi∑

k
------------=

SS B1 1, B–( )
2

B2 1, B–( )
2

… Bnk k, B–( )
2

+ +=

SST n1 B1 B–( )
2

n2 B2 B–( )
2

… nk Bk B–( )
2

+ + +=

SSE Bi1 B1–( )
2

Bi2 B2–( )
2

∑ … Bik Bk–( )
2

∑+ + +∑=

sp
2

st
2
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(12.15)

and

. (12.16)

The ratio of these follows the F-distribution, 

(12.17)

with degrees of freedom k – 1 (across) and n1 + n2 + … + nk – k
(down). Table A.9 gives the values of F. If the calculated F exceeds
the tabular value, then at least one pair of the group means differ
significantly. (In the special case of k = 2, that is, when two groups
are being compared, it may be shown that the value of F is the
square of t used in Student’s t-test.) The results of this analysis are
usually arranged in a table such as Table 12.5. A worked example
is given in the next section. While the calculation of F may show
that one or more differences exists among the means, it does not
identify the group or groups responsible. To find out which pair (or
pairs) differ significantly, we can use a test known as Newman-
Keuls test. 

Table 12.5.  Analysis of Variance for Unequal Sample Sizes

Source Sum of 
squares D.F.*

Mean 
square F

Total SS ν1

Between SST ν2

Within SSE ν3

* ν1 =  – 1; ν2 = k – 1; ν3 =  – k

sp
2 SSE

n1 n2 … nk k–+ + +
----------------------------------------------------=

st
2 SST

k 1–
------------=

F
st

2

sp
2

----=

st
2 SST

ν2
------------=

st
2

sp
2

---- F=

sp
2 SSE

ν3
-------------=

ni∑( ) ni∑( )
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12.6  Newman-Keuls test

When the F-test indicates a significant difference the Newman-Keuls
Test examines the k sample means. These are arranged in order of
increasing magnitude

.

Note that this notation now denotes increasing magnitude and is
not the same as the group numbers 1, 2, …, k in the preceding discus-
sion of analysis of variance. For the largest and the smallest means,
we calculate the quantity q given by

(12.18)

where 

. (12.19)

The number q calculated from these equations is associated with
an integer w that equals the number of means in the range of this
pair; in this case, w = k. The next calculation considers the largest
against the “second smallest,” i.e.,  and  are used to form SE
and q, using numbers nk and n2. Now the associated number w = k-1,
since this is the number of means in the range 2 to k. Subsequent
calculations are for the remaining pairs: largest against third smallest,
etc., then second largest against smallest, etc., thereby considering all
combinations of two means.

For any pair of means, appendix Table A.10 is used to get the
critical value of q to which the calculated q is compared. The table
value depends on degrees of freedom, given by d.f. = (n1 + n2 + … +
nk – k), and the value of w that is appropriate for the pair under
consideration. The tables are given for confidence levels 95% and 99%.
If the calculated q for any pair ≥ tabular value, then the difference
between those means is significant. We provide an example below, with
made-up numbers, in order to simplify the illustration.

B1 B2 … Bk, , ,

q Bk B1–
SE

-------------------=

SE
sp( )2

2
------------ 1

nk
----- 1

n1
-----+ 

 
1 2⁄

=

Bk B2
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Example. Four groups have the values given in Table 12.6. It is desired
to test for differences among the means and to determine which pairs
of means, if any, are significantly different. It is seen that the calculated
F value exceeds the tabular value (99%); thus the means differ. To
determine which pairs are significantly different we apply the Newman-
Keuls test. To do this we arrange the four means in ascending order:

The number of objects (ni) in each group is shown below each mean. Table
12.7 lists the six pairs and the calculated values of SE and q, as well as
the value of w that are needed for use of Table A.10. It is noted that d.f.
= 12 in this application. Among the pairs of means listed, the first three
differ significantly (in each case, p < 0.01) and these are indicated by **;
the other three did not reach significance even at the 0.05 level.

Table 12.6.  Differences Among Means

I II III IV
3 16 21 4
6 8 25 6
8 3 20 7
5 9 6

14

mean 5.5 10 22 5.75

grand mean = 10.8125

SS = 731.9375  = 11.4792
SSE = 137.75  = 198.0625 F3, 12 = 5.95 (99%)
SST = 594.1875 F = 17.254 F3, 12 = 3.49 (95%)

5.5 5.75 10 22
(4) (4) (5) (3)

Table 12.7.  Newman-Keuls Analysis

pair SE w q
22/5.5 1.830 4 9.016**

22/5.75 1.830 3 8.880**
22/10 1.749 2 6.861**
10/5.5 1.607 3 2.800

10/5.75 1.607 2 2.645
5.75/5.5 1.694 2 0.148

sp
2

st
2
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12.7  Chi square

If n events occur with observed frequencies o1, o2, …, on and their
corresponding expected frequencies are e1, e2, …, en, the chi square
statistic, denoted χ2, is given by 

. (12.20)

The calculation of χ2 provides a number that indicates the agree-
ment between the observed and the expected frequencies. A small
value of this statistic means good agreement between the observed
and expected frequencies of the n events. The distribution of chi square
is associated with a constant, the degrees of freedom (d.f.). For the n
events considered above d.f. = n – 1. The appendix Table A.7 gives the
value of this statistic for different degrees of freedom at both the 95%
and the 99% significance levels.

The analysis of dose-effect data often leads to situations in which
a characteristic is classified into classes represented in rows (R) and
a second characteristic is also classified into classes expressed in col-
umns (C). A row-column entry constitutes a cell, and each cell contains
a number. For example, three different species of an animal may
respond or not respond to a drug (Table 12.8). This is an example of
a contingency table. The species, denoted I, II, and III, showed
responses and non-responses as shown, and it is desired to determine
whether the relative numbers of responders is the same across the
three strains.

In other words, is the response independent of the strain? The
entries in the table constitute the observed numbers; the expected
numbers are computed under the assumption that there is no differ-
ence. For example, in group I, while the observed number of responders
is 12, the expected number of responders, if all strains were equal, is
32/153 times the number (52) in group I. Thus, 32 × 52/153 = 10.9.
Then in this group, the expected number of nonresponders = 52 ×

Table 12.8.  Contingency Table

I II III Totals
Response 12 14 6 32
No response 40 40 41 121

52 54 47 153

χ2 oi ei–( )2

ei
---------------------

1

n

∑=
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121/153 = 41.1. (Of course, the sum of responders and nonresponders
is the group total 52). The expected number for each cell is (row-total)
× (column-total)/total. Proceeding in this way, we get for each cell
observed and expected pairs, (oi, ei), as follows: (12, 10.9), (14, 11.3),
(6, 9.8), (40, 41.1), (40, 42.7), (41, 37.2). A significant difference among
the strains is indicated by a large value of χ2 calculated from Equation
12.20, i.e., a value that is greater than the critical value in Table A.7.
In this kind of application of chi square (contingency table) the degrees
of freedom = (R – 1) × (C – 1). Thus, in this example, d.f. = 2. From
Equation 12.20, χ2 = 2.84. This calculated value is compared with the
value in Table A.7 for 2 degrees of freedom. The table value (for 95%
confidence) is 5.99. Because the calculated value does not exceed the
tabular value, we cannot conclude that there is a significant difference
among the three strains. 

Adjusted chi square

In a 2 × 2 contingency table, d.f. = 1. In this situation an adjustment,
called the “Yate’s correction,” is needed and it computes chi square
according to

. (12.21)

Comparing two proportions

The form of the chi square given by Equation 12.21 is applicable to
comparisons of two proportions and is illustrated in the following
example.

Example. Two drugs are tested for a response (all or none) in laboratory
animals. Drug #1 produces a response in 12 of 15 animals (80%), whereas
drug 2 is found to be effective in only 6 of 10 animals (60%) tested. The
test results may be expressed in the 2×2 contingency table shown in
Table 12.9. 

Since this is a 2×2 contingency table there is one degree of freedom. The
calculated χ2 = 0.405 from Equation 12.21, and it does not exceed the
tabular value 3.84 of Table A.7 (for 95% level). Thus, the difference is
not significant. This example points out the difficulty of drawing conclu-

χ2 oi ei– 1 2⁄–( )2

ei
-----------------------------------------∑=
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sions based on single dose experimentation. Many more animals would
have to be tested (discussed subsequently) even to show a difference as
large as the 20% suggested in this example. This finding emphasizes
the need for dose-effect analysis, i.e., the use of several doses, and the
regression and other models discussed in earlier chapters.

12.8  Confidence limits of a proportion

When N subjects are treated with a drug and L of them respond, we
estimate the proportion of responders, p = L/N, as indicative of the
population. But the estimated proportion p has a variance and, there-
fore, the estimate requires confidence limits. When N is large, say
greater than 30, confidence limits are calculated from

(12.22)

where Z is taken from the standard normal curve as 1.96 (95% limits)
or 2.58 (99% limits). For smaller values of N, the confidence limits are
values computed from

(12.23)

and

. (12.24)

In these formulas R1 and R2 are given by

R1 = [p + 1/(2N)][1 – p – 1/(2N)] / N + Z2/(4N2) (12.25)

R2 = [p – 1/(2N)][(1 – p + 1/(2N)] / N + Z2/(4N2). (12.26)

Table 12.9.  Contingency Table for Testing Two Proportions

I II Totals
Response 12 6 18
No response 3 4 7

15 10 25

p ± Z p 1 p–( ) N⁄

N
N Z2+
----------------- p 1 2N( ) Z2 2N( ) Z R1–⁄+⁄–{ }

N
N Z2+
----------------- p 1 2N( ) Z2 2N( ) Z R2+⁄+⁄+{ }
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In using these formulas it is recommended that Np > 5 and N(1–p) > 5.

Example. In a drug trial that tested 20 subjects it was observed that 8
showed a favorable response; thus p = 0.4. Substitution of these values
in the above equations, using Z = 1.96 (for 95% confidence limits), gives
limits of 0.196 to 0.632. If 40 subjects were tested and gave the same
proportion (16 responders) the calculation shows that the confidence
limits narrow to 0.251 to 0.564. This example again points out the
statistical challenge when dealing with a single dose.

12.9  Confidence limits for a ratio

It is often necessary in pharmacological investigations to consider the
ratio of two variables. For example, the relative potency of two drugs
is the ratio of their D50 values or ED50 values. In considering a ratio,
it is clear that both the numerator and the denominator are estimated
quantities, and, thus, the ratio of these has confidence limits. In other
words, the parameters α and β give a ratio µ = α/β that is estimated
by measured quantities a and b, so the ratio is estimated as a/b. We
wish to determine the limits within which µ lies. This question was
addressed by Cochran (1938) and by Finney (1964), but the definitive
result is due to Fieller (1944), whose result is given here in an expres-
sion for the limits. Provided that the numerator and denominator are
independent the confidence limits are given by 

(12.27)

where

. (12.28)

If the individual means come from n1 and n2 values, respectively,
and if the individual variances can be pooled, then t has
d.f. = n1 + n2 – 2. If the values of the numerator and denominator are
D50 or ED50 values from regression analysis, say parallel line esti-
mates (Chapter 3), then d.f. = n1 + n2 – 3. If these are the results of
probit analysis (Chapter 6) the value of t depends on the value of g.

a
b
---

g
1 g–( )

----------------- a
b
--- 

   ± 
t

b 1 g–( )
--------------------- V a( )

a2

b2
-----V b( ) gV a( )–++

g t2V b( )

b2
-----------------=
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If g is small, say, less than 0.1, t has the value from the normal
distribution (1.96 for 95% confidence limits); when g cannot be
neglected, then t is a value from the Student distribution (Table A.6). 

Note that when g can be neglected, the second term of Equation
12.27 is

.

Accordingly, the coefficient of t “looks like” a standard error, and
this quantity is sometimes used as an approximation for the standard
error of a quotient when the numerator and denominator are indepen-
dent (have zero covariance):

. (12.29)

Example. If a = 20 with standard deviation 4 and b = 6 with standard
deviation 3, the variances V(a) =16 and V(b) = 9, inserted into the above
equation, lead to SE(a/b) = 1.79.

12.10  Multiple regression (equations)

In our discussion on nonlinear curve-fitting (Chapter 11) we saw the
need for iterative use of 2–parameter linear regression given by

Y = b1 X1 + b2 X2

At every step of the iterative process, a set of X1, X2, and corre-
sponding Y values (there denoted by Yres) were calculated, and, at
that step, we wish to calculate the coefficients b1 and b2. The proce-
dure for doing this is a special case of the general multiple regression
algorithm based on Y = b0 + b1X1 + b2X2 + … + bnXn, that estimates
all the coefficients. In our application (2–parameter nonlinear anal-
ysis) there is no b0 term and n = 2. The data array is that shown in
Table 12.10.

Our model equation is 

. (12.30)

±t V a( )

a2
------------

a2

b4
-----V b( )+ ±ta

b
--- V a( )

b2
------------ V b( )

b2
------------+=

SE a
b
--- 

  a
b
--- V a( )

a2
------------ V b( )

b2
------------+≈

Ŷ b1X1 b2X2+=
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The least squares procedure leads to “normal equations” whose
solution requires a calculation of the following determinant D:

(12.31)

from which the coefficients b1 and b2 are calculated:

(12.32)

. (12.33)

The following Gaussian coefficients are needed in the error esti-
mates and these are given by

. (12.34)

The squared differences between the observed and estimated Y
values are summed to give , which is more readily
calculated from

. (12.35)

From SSres we get the variance

(12.36)

Table 12.10.  Data Array for a Step in Nonlinear Curve Fitting Procedure

Data Y X1 X2

… … …
… … …

(n sets) at each cycle of the procedure

D X1
2∑ X1X2∑

X1X2∑ X2
2∑

X1
2∑( ) X2

2∑( ) X1X2∑( )2–= =

b1
YX1∑ X1X2∑
YX2∑ X2

2∑
= D÷

b2
X1

2∑ YX1∑
X1X2∑ YX2∑

= D÷

c11
X2

2∑
D

------------= c22
X1

2∑
D

------------= c12
X1X2∑–
D

----------------------=

SSres Y Ŷ–( )
2

∑=

SSres Y2∑ b1 X1Y∑ b2 X2Y∑+( )–=

s2 SSres

n 2–
-------------=
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which is used to obtain the needed variances and standard errors
calculated as follows:

(12.37)

. (12.38)

It is seen that the procedure for nonlinear curve fitting requires
extensive computation that is almost always done on a computer. The
examples in Chapter 11 used the above procedure at each cycle that
produced the data array. The iteration stops when the changes in
coefficients b1 and b2 become sufficiently small. At that point in the
process, the standard errors are those given in Equations 12.38 at this
last turn of the cycle.

12.11  Sample size calculations

In numerous applications throughout this book (and several in this
chapter) we encountered situations in which a standard error or a
confidence interval was calculated. It is clear that the size of the
sample is a most important factor in narrowing a confidence interval.
Some guidance on sample size is therefore in order to aid planning
and executing experiments. If one wishes to test the difference in two
populations by sampling from each, the use of very small sample sizes
will almost always show that the difference is not significant, even if
a difference really exists. This is called a type 2 error or an error due
to low power. (A type 1 error occurs when we attribute a significant
difference and there is none.) Loosely speaking, statistical power is
the ability to detect a difference in cases in which the difference really
exists. The power, which is expressed usually as a percentage, e.g.,
80% power or 90%, expresses the probability of detecting a significant
difference when there is a real difference. Accordingly, we desire suf-
ficient power in our tests; very often 80 or 90% power is used in drug
studies. Sometimes certain limitations on the number of subjects force
us to lower the power, but when it is possible to do so the sample size
(hence, power) should be as large as is practical. The importance is
revealed in the several formulas and examples given below which deal
with different kinds of statistical tests.

V b1( ) c11s2= V b2( ) c22s2=

SE b1( ) V b1( )= SE b2( ) V b2( )=
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Single proportion

To detect a difference between a test proportion p1 and a standard
proportion, p0, the sample size is calculated from the equation

(12.39)

where Zα  = 1.96 (for 95% confidence) and Zβ is one of the following:
–1.28 (90% power), –0.84 (80% power) or –0.525 (70% power). Note
that Zα is the two-tailed value from the standard normal curve and Zβ

is the lower one-tailed z-value selected for the desired power.

Example. Suppose it is well known that 30% of the residents of a certain
community experience allergy symptoms each year. A new preventive
inoculation is developed, and it is desired to show that its use can reduce
this proportion to 10%. Thus, p0 = 0.30 and p1 = 0.10. We use Zα = 1.96
and Zβ = –0.84 (80% power). Calculation with Equation 12.39 yields n
= 33.07; therefore, at least 34 subjects should be tested.

Two proportions

When both control and treatment groups are sampled, and the respec-
tive proportions are pc and pi, the needed sample size of each group to
show a difference is the number n calculated from 

(12.40)

Example. Suppose it is known that shock occurs in 15% of patients who
get a certain infection. A new treatment is said to reduce this proportion
to 5%. Studies in both a control and an experimental group are now to
be undertaken. These values, pc = 0.15 and pi = 0.05, are anticipated.
We use the values Zα = 1.96 and Zβ  = –0.84 (80% power) and calculate
the number in each group from Equation 12.40; this yields n = 179.9.
Thus, 180 patients in each group should be tested.

n
Zα p0 1 p0–( ) Zβ p1 1 p1–( )–

p1 p0–
-------------------------------------------------------------------------------

 
 
 

2

=

n
Zα 2pc 1 pc–( ) Zβ pi 1 pi–( ) pc 1 pc–( )+–

pc pi–
----------------------------------------------------------------------------------------------------------------

 
 
 

2

=
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Two means

When two groups are sampled with the aim of detecting a difference
in their means, µ1 – µ2, the sample size of each group is calculated from

(12.41)

Example. Locomotive behavior in mice is to be studied in a control group
and in a group that receives a stimulating drug. Typical scores in this
test (in controls) are 200 with a standard deviation of 60. It is anticipated
that the scores in the treated group may rise to approximately 250. Using
90% power and the 95% level of significance, we insert Zα = 1.96 and Zβ

= –1.28 into Equation 12.41. This yields n = 30.23; thus, 31 are needed
in each group. Examination of Equation 12.41 shows that larger differ-
ences in the expected means leads to smaller values of n. In other words,
detecting small differences requires large sample sizes.

Sample mean

When the mean of a sample (µ1) is to be compared to a standard value
(µ0) the number to be sampled in order to show a significant difference
is calculated from

(12.42)

where σ is an estimate of the population standard deviation. Note the
difference between this value of n and that when two populations are
sampled. The number in this case is half of that which is required
when two groups are sampled.

n 2
Zα Zβ–( )σ
µ1 µ2–

---------------------------

2

=

n
Zα Zβ–( )σ
µ1 µ0–

---------------------------

2

=
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Information regarding the purchase of the companion software pack-
age may be obtained by writing the McCary Group:
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P.O. Box 7105
Elkins Park, PA 19027

jmccary@mccarygroup.com
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Table A-1.  

 

 Common Logarithms

 

n

 

0 1 2 3 4 5 6 7 8 9
1.0 0.0000 0.0043 0.0086 0.0128 0.0170 0.0212 0.0253 0.0294 0.0334 0.0374
1.1 0.0414 0.0453 0.0492 0.0531 0.0569 0.0607 0.0645 0.0682 0.0719 0.0755
1.2 0.0792 0.0828 0.0864 0.0899 0.0934 0.0969 0.1004 0.1038 0.1072 0.1106
1.3 0.1139 0.1173 0.1206 0.1239 0.1271 0.1303 0.1335 0.1367 0.1399 0.1430
1.4 0.1461 0.1492 0.1523 0.1553 0.1584 0.1614 0.1644 0.1673 0.1703 0.1732

1.5 0.1761 0.1790 0.1818 0.1847 0.1875 0.1903 0.1931 0.1959 0.1987 0.2014
1.6 0.2041 0.2068 0.2095 0.2122 0.2148 0.2175 0.2201 0.2227 0.2253 0.2279
1.7 0.2304 0.2330 0.2355 0.2380 0.2405 0.2430 0.2455 0.2480 0.2504 0.2529
1.8 0.2553 0.2577 0.2601 0.2625 0.2648 0.2672 0.2695 0.2718 0.2742 0.2765
1.9 0.2788 0.2810 0.2833 0.2856 0.2878 0.2900 0.2923 0.2945 0.2967 0.2989

2.0 0.3010 0.3032 0.3054 0.3075 0.3096 0.3118 0.3139 0.3160 0.3181 0.3201
2.1 0.3222 0.3243 0.3263 0.3284 0.3304 0.3324 0.3345 0.3365 0.3385 0.3404
2.2 0.3424 0.3444 0.3464 0.3483 0.3502 0.3522 0.3541 0.3560 0.3579 0.3598
2.3 0.3617 0.3636 0.3655 0.3674 0.3692 0.3711 0.3729 0.3747 0.3766 0.3784
2.4 0.3802 0.3820 0.3838 0.3856 0.3874 0.3892 0.3909 0.3927 0.3945 0.3962

2.5 0.3979 0.3997 0.4014 0.4031 0.4048 0.4065 0.4082 0.4099 0.4116 0.4133
2.6 0.4150 0.4166 0.4183 0.4200 0.4216 0.4232 0.4249 0.4265 0.4281 0.4298
2.7 0.4314 0.4330 0.4346 0.4362 0.4378 0.4393 0.4409 0.4425 0.0440 0.4456
2.8 0.4472 0.4487 0.4502 0.4518 0.4533 0.4548 0.4564 0.4579 0.4594 0.4609
2.9 0.4624 0.4639 0.4654 0.4669 0.4683 0.4698 0.4713 0.4728 0.4742 0.4757

3.0 0.4771 0.4786 0.4800 0.4814 0.4829 0.4843 0.4857 0.4871 0.4886 0.4900
3.1 0.4914 0.4928 0.4942 0.4955 0.4969 0.4983 0.4997 0.5011 0.5024 0.5038
3.2 0.5051 0.5065 0.5079 0.5092 0.5105 0.5119 0.5132 0.5145 0.5159 0.5172
3.3 0.5185 0.5198 0.5211 0.5224 0.5237 0.5250 0.5263 0.5276 0.5289 0.5302
3.4 0.5315 0.5328 0.5340 0.5353 0.5366 0.5378 0.5391 0.5403 0.5416 0.5428

 

continued
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3.5 0.5441 0.5453 0.5465 0.5478 0.5490 0.5502 0.5514 0.5527 0.5539 0.5551
3.6 0.5563 0.5575 0.5587 0.5599 0.5611 0.5623 0.5635 0.5647 0.5638 0.5670
3.7 0.5682 0.5694 0.5705 0.5717 0.5729 0.5740 0.5752 0.5763 0.5775 0.5786
3.8 0.5798 0.5809 0.5821 0.5832 0.5843 0.5855 0.5866 0.5877 0.5888 0.5899
3.9 0.5911 0.5922 0.5933 0.5944 0.5955 0.5966 0.5977 0.5988 0.5999 0.6010

4.0 0.6021 0.6031 0.6042 0.6053 0.6064 0.6075 0.6085 0.6096 0.6107 0.6117
4.1 0.6128 0.6138 0.6149 0.6160 0.6170 0.6180 0.6191 0.6201 0.6212 0.6222
4.2 0.6232 0.6243 0.6253 0.6263 0.6274 0.6284 0.6294 0.6304 0.6314 0.6325
4.3 0.6335 0.6345 0.6355 0.6365 0.6375 0.6385 0.6395 0.6405 0.6415 0.6425
4.4 0.6435 0.6444 0.6454 0.6464 0.6474 0.6484 0.6493 0.6503 0.6513 0.6522

4.5 0.6532 0.6542 0.6551 0.6561 0.6571 0.6580 0.6590 0.6599 0.6609 0.6618
4.6 0.6628 0.6637 0.6646 0.6656 0.6665 0.6675 0.6684 0.6693 0.6702 0.6712
4.7 0.6721 0.6730 0.6739 0.6749 0.6758 0.6767 0.6776 0.6785 0.6794 0.6803
4.8 0.6812 0.6821 0.6830 0.6839 0.6848 0.6857 0.6866 0.6875 0.6884 0.6893
4.9 0.6902 0.6911 0.6920 0.6928 0.6937 0.6946 0.6955 0.6964 0.6972 0.6981

5.0 0.6990 0.6998 0.7007 0.7016 0.7024 0.7033 0.7042 0.7050 0.7059 0.7067
5.1 0.7076 0.7084 0.7093 0.7101 0.7110 0.7118 0.7126 0.7135 0.7143 0.7152
5.2 0.7160 0.7168 0.7177 0.7185 0.7193 0.7202 0.7210 0.7218 0.7226 0.7235
5.3 0.7243 0.7251 0.7259 0.7267 0.7275 0.7284 0.7292 0.7300 0.7308 0.7316
5.4 0.7324 0.7332 0.7340 0.7348 0.7356 0.7364 0.7372 0.7380 0.7388 0.7396

5.5 0.7404 0.7412 0.7419 0.7427 0.7435 0.7443 0.7451 0.7459 0.7466 0.7474
5.6 0.7482 0.7490 0.7497 0.7505 0.7513 0.7520 0.7528 0.7536 0.7543 0.7551
5.7 0.7559 0.7566 0.7574 0.7582 0.7589 0.7597 0.7604 0.7612 0.7619 0.7627
5.8 0.7634 0.7642 0.7649 0.7657 0.7664 0.7672 0.7679 0.7686 0.7694 0.7701
5.9 0.7709 0.7716 0.7723 0.7731 0.7738 0.7745 0.7752 0.7760 0.7767 0.7774

6.0 0.7782 0.7789 0.7796 0.7803 0.7810 0.7818 0.7825 0.7832 0.7839 0.7846
6.1 0.7853 0.7860 0.7868 0.7875 0.7882 0.7889 0.7896 0.7903 0.7910 0.7917
6.2 0.7924 0.7931 0.7938 0.7945 0.7952 0.7959 0.7966 0.7973 0.7980 0.7987
6.3 0.7993 0.8000 0.8007 0.8014 0.8021 0.8028 0.8035 0.8041 0.8048 0.8055
6.4 0.8062 0.8069 0.8075 0.8082 0.8089 0.8096 0.8102 0.8109 0.8116 0.8122

6.5 0.8129 0.8136 0.8142 0.8149 0.8156 0.8162 0.8169 0.8176 0.8182 0.8189
6.6 0.8195 0.8202 0.8209 0.8215 0.8222 0.8228 0.8235 0.8241 0.8248 0.8254
6.7 0.8261 0.8267 0.8274 0.8280 0.8287 0.8293 0.8299 0.8306 0.8312 0.8319
6.8 0.8325 0.8331 0.8338 0.8344 0.8351 0.8357 0.8363 0.8370 0.8376 0.8382
6.9 0.8388 0.8395 0.8401 0.8407 0.8414 0.8420 0.8426 0.8432 0.8439 0.8445

 

Table A-1.  

 

 (Continued) Common Logarithms

 

n

 

0 1 2 3 4 5 6 7 8 9

 

C0457_frame_Apx  Page 206  Thursday, May 18, 2000  11:45 PM



 

 COMMON LOGARITHMS 207

 

7.0 0.8451 0.8457 0.8463 0.8470 0.8476 0.8482 0.8488 0.8494 0.8500 0.8506
7.1 0.8513 0.8519 0.8525 0.8531 0.8537 0.8543 0.8549 0.8555 0.8561 0.8567
7.2 0.8573 0.8579 0.8585 0.8591 0.8597 0.8603 0.8609 0.8615 0.8621 0.8627
7.3 0.8633 0.8639 0.8645 0.8651 0.8657 0.8663 0.8669 0.8675 0.8681 0.8686
7.4 0.8692 0.8698 0.8704 0.8710 0.8716 0.8722 0.8727 0.8733 0.8739 0.8745

7.5 0.8751 0.8756 0.8762 0.8768 0.8774 0.8779 0.8785 0.8791 0.8797 0.8802
7.6 0.8808 0.8814 0.8820 0.8825 0.8831 0.8837 0.8842 0.8848 0.8854 0.8859
7.7 0.8865 0.8871 0.8876 0.8882 0.8887 0.8893 0.8899 0.8904 0.8910 0.8915
7.8 0.8921 0.8927 0.8932 0.8938 0.8943 0.8949 0.8954 0.8960 0.8965 0.8971
7.9 0.8976 0.8982 0.8987 0.8993 0.8998 0.9004 0.9009 0.9015 0.9020 0.9025

8.0 0.9031 0.9036 0.9042 0.9047 0.9053 0.9058 0.9063 0.9069 0.9074 0.9079
8.1 0.9085 0.9090 0.9096 0.9101 0.9106 0.9112 0.9117 0.9122 0.9128 0.9133
8.2 0.9138 0.9143 0.9149 0.9154 0.9159 0.9165 0.9170 0.9175 0.9180 0.9186
8.3 0.9191 0.9196 0.9201 0.9206 0.9212 0.9217 0.9222 0.9227 0.9232 0.9238
8.4 0.2943 0.9248 0.9253 0.9258 0.9263 0.9269 0.9274 0.9279 0.9284 0.9289

8.5 0.9294 0.9299 0.9304 0.9309 0.9315 0.9320 0.9325 0.9330 0.9335 0.9340
8.6 0.9345 0.9350 0.9355 0.9360 0.9365 0.9370 0.9375 0.9380 0.9385 0.9390
8.7 0.9395 0.9400 0.9405 0.9410 0.9415 0.9420 0.9425 0.9430 0.9435 0.9440
8.8 0.9445 0.9450 0.9455 0.9460 0.9465 0.9469 0.9474 0.9479 0.9484 0.9489
8.9 0.9494 0.9499 0.9504 0.9509 0.9513 0.9518 0.9523 0.9528 0.9533 0.9538

9.0 0.9542 0.9547 0.9552 0.9557 0.9562 0.9566 0.9571 0.9576 0.9581 0.9586
9.1 0.9590 0.9595 0.9600 0.9605 0.9609 0.9614 0.9619 0.9624 0.9628 0.9633
9.2 0.9638 0.9643 0.9647 0.9652 0.9657 0.9661 0.9666 0.9671 0.9675 0.9680
9.3 0.9685 0.9689 0.9694 0.9699 0.9703 0.9708 0.9713 0.9717 0.9722 0.9727
9.4 0.9731 0.9736 0.9741 0.9745 0.9750 0.9754 0.9759 0.9763 0.9768 0.9773

9.5 0.9777 0.9782 0.9786 0.9791 0.9795 0.9800 0.9805 0.9809 0.9814 0.9818
9.6 0.9823 0.9827 0.9832 0.9836 0.9841 0.9845 0.9850 0.9854 0.9859 0.9863
9.7 0.9868 0.9872 0.9877 0.9881 0.9886 0.9890 0.9894 0.9899 0.9903 0.9908
9.8 0.9912 0.9917 0.9921 0.9926 0.9930 0.9934 0.9939 0.9943 0.9948 0.9952
9.9 0.9956 0.9661 0.9965 0.996 0.9974 0.9978 0.9983 0.9987 0.9991 0.9996

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calculations with Computer
Programs

 

, 2nd ed 1987. By permission of Springer-Verlag, New York.
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 (Continued) Common Logarithms
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0 1 2 3 4 5 6 7 8 9
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Table A-2 .  

 

Natural Logarithms

 

x

 

ln 

 

x x

 

ln 

 

x x

 

ln 

 

x

 

0.1 7.6974–10 3.6 1.2809 7.1 1.9601
0.2 8.3906–10 3.7 1.3083 7.2 1.9741
0.3 8.7960–10 3.8 1.3350 7.3 1.9879
0.4 9.0837–10 3.9 1.3610 7.4 2.0015
0.5 9.3069–10 4.0 1.3863 7.5 2.0149

0.6 9.4892–10 4.1 1.4110 7.6 2.0281
0.7 9.6433–10 4.2 1.4351 7.7 2.0412
0.8 9.7769–10 4.3 1.4586 7.8 2.0541
0.9 9.8946–10 4.4 1.4816 7.9 2.0669
1.0 0.0000 4.5 1.5041 8.0 2.0794

1.1 0.0953 4.6 1.5261 8.1 2.0919
1.2 0.1823 4.7 1.5476 8.2 2.1041
1.3 0.2624 4.8 1.5686 8.3 2.1163
1.4 0.3365 4.9 1.5892 8.4 2.1182
1.5 0.4055 5.0 1.6094 8.5 2.1401

1.6 0.4700 5.1 1.6292 8.6 2.1518
1.7 0.5306 5.2 1.6487 8.7 2.1633
1.8 0.5878 5.3 1.6677 8.8 2.1748
1.9 0.6419 5.4 1.6864 8.9 2.1861
2.0 0.6931 5.5 1.7047 9.0 2.1972

2.1 0.7419 5.6 1.7228 9.1 2.2083
2.2 0.7885 5.7 1.7405 9.2 2.2192
2.3 0.8329 5.8 1.7579 9.3 2.2300
2.4 0.8755 5.9 1.7750 9.4 2.2407
2.5 0.9163 6.0 1.7918 9.5 2.2513

2.6 0.9555 6.1 1.8083 9.6 2.2618
2.7 0.9933 6.2 1.8245 9.7 2.2721
2.8 1.0296 6.3 1.8405 9.8 2.2824
2.9 1.0647 6.4 1.8563 9.9 2.2925
3.0 1.0986 6.5 1.8718 10 2.3026

3.1 1.1314 6.6 1.8871 11 2.3979
3.2 1.1632 6.7 1.9021 12 2.4849
3.3 1.1939 6.8 1.9169 13 2.5649
3.4 1.2238 6.9 1.9315 14 2.6391
3.5 1.2528 7.0 1.9459 15 2.7081
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16 2.7726 45 3.8067 90 4.4998
17 2.8322 50 3.9120 95 4.5539
18 2.8904 55 4.0073 100 4.6052
19 2.9444 60 4.0943
20 2.9957 65 4.1744

25 3.2189 70 4.2485
30 3.4012 75 4.3175
35 3.5553 80 4.3820
40 3.6889 85 4.4427

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calcu-
lations with Computer Programs

 

, 2nd ed 1987. By permission of Springer-Verlag,
New York.

 

Table A-2 (Continued) .  

 

Natural Logarithms

 

x

 

ln 

 

x x

 

ln 

 

x x

 

ln 

 

x
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Table A-3.  

 

 Powers of 

 

e

 

: exp(

 

x

 

) and exp(–

 

x

 

)

 

x e

 

x

 

e

 

–x

 

x e

 

x

 

e

 

–x

 

0.00 1.00000 1.00000 1.40 4.05519 0.24659
0.01 1.01005 0.99004 1.50 4.48168 0.22313
0.02 1.02020 0.98019 1.60 4.95302 0.20189
0.03 1.03045 0.97044 1.70 5.47394 0.18268
0.04 1.04081 0.96078 1.80 6.04964 0.16529
0.05 1.05127 0.95122 1.90 6.68589 0.14956
0.06 1.06183 0.94176 2.00 7.38905 0.13533
0.07 1.07250 0.93239 2.10 8.16616 0.12245
0.08 1.08328 0.92311 2.20 9.02500 0.11080
0.09 1.09417 0.91393 2.30 9.97417 0.10025
0.10 1.10517 0.90483 2.40 11.02316 0.09071
0.11 1.11628 0.89583 2.50 12.18248 0.08208
0.12 1.12750 0.88692 2.60 13.46372 0.07427
0.13 1.13883 0.87810 2.70 14.87971 0.06720
0.14 1.15027 0.86936 2.80 16.44463 0.06081
0.15 1.16183 0.86071 2.90 18.17412 0.05502
0.16 1.17351 0.85214 3.00 20.08551 0.04978
0.17 1.18530 0.84366 3.50 33.11545 0.03020
0.18 1.19722 0.83527 4.00 54.95815 0.01832
0.19 1.20925 0.82696 4.50 90.01713 0.01111
0.20 1.22140 0.81873 5.00 148.41316 0.00674
0.30 1.34985 0.74081 5.50 244.69193 0.00409
0.40 1.49182 0.67032 6.00 403.42879 0.00248
0.50 1.64872 0.60653 6.50 665.14163 0.00150
0.60 1.82211 0.54881 7.00 1096.63316 0.00091
0.70 2.01375 0.49658 7.50 1808.04241 0.00055
0.80 2.22554 0.44932 8.00 2980.95799 0.00034
0.90 2.45960 0.40656 8.50 4914.76884 0.00020
1.00 2.71828 0.36787 9.00 8103.08398 0.00012
1.10 3.00416 0.33287 9.50 13359.72683 0.00007
1.20 3.32011 0.30119 10.00 22026.46579 0.00005
1.30 3.66929 0.27253

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calculations with
Computer Programs

 

, 2nd ed 1987. By permission of Springer-Verlag, New York.
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Table A-4.  

 

 Squares and Square Roots

 

n n

 

2

 

n n

 

2

 

1 1 1.000 3.162 36 1296 6.000 18.974
2 4 1.414 4.472 37 1369 6.083 19.235
3 9 1.732 5.477 38 1444 6.164 19.494
4 16 2.000 6.325 39 1521 6.245 19.748
5 25 2.236 7.071 40 1600 6.325 20.000

6 36 2.449 7.746 41 1681 6.403 20.248
7 49 2.646 8.367 42 1764 6.481 20.494
8 64 2.828 8.944 43 1849 6.557 20.736
9 81 3.000 9.487 44 1936 6.633 20.976

10 100 3.162 10.000 45 2025 6.708 21.213

11 121 3.317 10.488 46 2116 6.782 21.448
12 144 3.464 10.954 47 2209 6.856 21.679
13 169 3.606 11.042 48 2304 6.928 21.909
14 196 3.742 11.832 49 2401 7.000 22.136
15 225 3.873 12.247 50 2500 7.071 22.361

16 256 4.000 12.649 51 2601 7.141 22.583
17 289 4.123 13.038 52 2704 7.211 22.804
18 324 4.243 13.416 53 2809 7.280 23.022
19 361 4.359 13.784 54 2916 7.348 23.238
20 400 4.472 14.142 55 3025 7.416 23.452

21 441 4.583 14.491 56 3136 7.483 23.664
22 484 4.690 14.832 57 3249 7.550 23.875
23 529 4.796 15.166 58 3364 7.616 24.083
24 576 4.899 15.492 59 3481 7.681 24.290
25 625 5.000 15.811 60 3600 7.746 24.495

26 676 5.099 16.125 61 3721 7.810 24.698
27 729 5.196 16.432 62 3844 7.874 24.900
28 784 5.292 16.733 63 3969 7.937 25.100
29 841 5.385 17.029 64 4096 8.000 25.298
30 900 5.477 17.321 65 4225 8.062 25.495

31 961 5.568 17.607 66 4356 8.124 25.690
32 1024 5.657 17.889 67 4489 8.185 25.884
33 1089 5.745 18.166 68 4624 8.246 26.077
34 1156 5.831 18.439 69 4761 8.307 26.268
35 1225 5.916 18.708 70 4900 8.367 26.458

 

continued

n 10n n 10n
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71 5041 8.426 26.646 86 7396 9.274 29.326
72 5184 8.485 26.833 87 7569 9.327 29.496
73 5329 8.544 27.019 88 7744 9.381 29.665
74 5476 8.602 27.203 89 7921 9.434 29.833
75 5625 8.660 27.386 90 8100 9.487 30.000

76 5776 8.718 27.568 91 8281 9.539 30.166
77 5929 8.775 27.749 92 8464 9.592 30.332
78 6084 8.832 27.928 93 8649 9.644 30.496
79 6241 8.888 28.107 94 8836 9.695 30.659
80 6400 8.944 28.284 95 9025 9.747 30.822

81 6561 9.000 28.460 96 9216 9.798 30.984
82 6724 9.055 28.636 97 9409 9.849 31.145
83 6889 9.110 28.810 98 9604 9.899 31.305
84 7056 9.165 28.983 99 9801 9.950 31.464
85 7225 9.220 29.155 100 10000 10.000 31.623

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calculations with
Computer Programs

 

, 2nd ed 1987. By permission of Springer-Verlag, New York.
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 (Continued) Squares and Square Roots

 

n n

 

2
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Table A-5.  

 

Areas Under the Standard Normal Curve

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calculations with Computer
Programs

 

, 2nd ed 1987. By permission of Springer-Verlag, New York.
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Table A-6.  

 

t

 

 Distribution

deg. freedom, 

 

v

 

90% (

 

P

 

 = 0.1) 95% (

 

P

 

 = 0.05) 99% (

 

P

 

 = 0.01)
1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032

6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3.250

10 1.812 2.228 3.169

11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1.771 2.160 3.012
14 1.761 2.145 2.977
15 1.753 2.131 2.947

16 1.746 2.120 2.921
17 1.740 2.110 2.898
18 1.734 2.101 2.878
19 1,729 2.093 2.861
20 1.725 2.086 2.845

21 1.721 2.080 2.831
22 1.717 2.074 2.819
23 1.714 2.069 2.807
24 1.711 2.064 2.797
25 1.708 2.060 2.787

26 1.706 2.056 2.779
27 1.703 2.052 2.771
28 1.701 2.048 2.763
29 1.699 2.045 2.756
inf. 1.645 1.960 2.576

 

Reprinted from Tallarida, R.J. and Murray, R.B., 

 

Manual of Pharmacologic Calcu-
lations with Computer Programs

 

, 2nd ed 1987. By permission of Springer-Verlag,
New York.
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Table A-7.  

 

Chi Square

 

ν

 

0.05 0.025 0.01 0.005
1 3.841 5.024 6.635 7.879
2 5.991 7.378 9.210 10.597
3 7.815 9.348 11.345 12.838
4 9.488 11.143 13.277 14.860
5 11.070 12.832 15.086 16.750

6 12.592 14.449 16.812 18.548
7 14.067 16.013 18.475 20.278
8 15.507 17.535 20.090 21.955
9 16.919 19.023 21.666 23.589
10 18.307 20.483 23.209 25.188

11 19.675 21.920 24.725 26.757
12 21.026 23.337 26.217 28.300
13 22.362 24.736 27.688 29.819
14 23.685 26.119 29.141 31.319
15 24.996 27.488 30.578 32.801

16 26.296 28.845 32.000 34.267
17 27.587 30.191 33.409 35.718
18 28.869 31.526 34.805 37.156
19 30.144 32.852 36.191 38.582
20 31.410 34.170 37.566 39.997

21 32.671 35.479 38.932 41.401
22 33.924 36.781 40.289 42.796
23 35.172 38.076 41.638 44.181
24 36.415 39.364 42.980 45.558
25 37.652 40.646 44.314 46.928

26 38.885 41.923 45.642 48.290
27 40.113 43.194 46.963 49.645

 

continued

χ 2
0
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Table A-7.  

 

(Continued) Chi Square

 

ν

 

0.05 0.025 0.01 0.005
28 41.337 44.461 48.278 50.993
29 42.257 45.722 49.588 52.336
30 43.773 46.979 50.892 53.672
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Table A-8.  

 

 Probit Transformation

Probit Proportion Probit Proportion Probit Proportion
1.00 0.00003167 1.41 0.00016534 1.82 0.00073638
1.01 0.00003304 1.42 0.00017180 1.83 0.00076219
1.02 0.00003446 1.43 0.00017849 1.84 0.00078885
1.03 0.00003594 1.44 0.00018543 1.85 0.00081635
1.04 0.00003747 1.45 0.00019262 1.86 0.00084474
1.05 0.00003908 1.46 0.00020006 1.87 0.00087403
1.06 0.00004074 1.47 0.00020778 1.88 0.00090426
1.07 0.00004247 1.48 0.00021577 1.89 0.00093544
1.08 0.00004427 1.49 0.00022405 1.90 0.00096760
1.09 0.00004615 1.50 0.00023263 1.91 0.00100078
1.10 0.00004810 1.51 0.00024151 1.92 0.00103500
1.11 0.00005012 1.52 0.00025071 1.93 0.00107029
1.12 0.00005223 1.53 0.00026063 1.94 0.00110669
1.13 0.00005442 1.54 0.00027009 1.95 0.00114421
1.14 0.00005669 1.55 0.00028029 1.96 0.00118289
1.15 0.00005906 1.56 0.00029086 1.97 0.00122277
1.16 0.00006152 1.57 0.00030179 1.98 0.00126387
1.17 0.00006407 1.58 0.00031311 1.99 0.00130624
1.18 0.00006673 1.59 0.00032481 2.00 0.00134990
1.19 0.00006948 1.60 0.00033693 2.01 0.00139489
1.20 0.00007235 1.61 0.00034946 2.02 0.00144124
1.21 0.00007532 1.62 0.00036243 2.03 0.00148900
1.22 0.00007841 1.63 0.00037584 2.04 0.00153820
1.23 0.00008162 1.64 0.00038971 2.05 0.00158887
1.24 0.00008496 1.65 0.00040406 2.06 0.00164106
1.25 0.00008842 1.66 0.00041889 2.07 0.00169481
1.26 0.00009201 1.67 0.00043423 2.08 0.00175016
1.27 0.00009574 1.68 0.00045009 2.09 0.00180714
1.28 0.00009961 1.69 0.00046648 2.10 0.00186581
1.29 0.00010363 1.70 0.00048342 2.11 0.00192621
1.30 0.00010780 1.71 0.00050094 2.12 0.00198838
1.31 0.00011213 1.72 0.00051904 2.13 0.00205236
1.32 0.00011662 1.73 0.00053774 2.14 0.00211821
1.33 0.00012128 1.74 0.00055706 2.15 0.00218596
1.34 0.00012611 1.75 0.00057703 2.16 0.00225568
1.35 0.00013112 1.76 0.00059765 2.17 0.00232740
1.36 0.00013632 1.77 0.00061895 2.18 0.00240118
1.37 0.00014171 1.78 0.00064095 2.19 0.00247708
1.38 0.00014730 1.79 0.00066367 2.20 0.00255513
1.39 0.00015310 1.80 0.00068714 2.21 0.00263540
1.40 0.00015911 1.81 0.00071136 2.22 0.00271794

 

continued
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2.23 0.00280281 2.66 0.00964187 3.09 0.02806661
2.24 0.00289007 2.67 0.00990308 3.10 0.02871656
2.25 0.00297976 2.68 0.01017044 3.11 0.02937898
2.26 0.00307196 2.69 0.01044408 3.12 0.03005404
2.27 0.00316672 2.70 0.01072411 3.13 0.03074191
2.28 0.00326410 2.71 0.01101066 3.14 0.03144276
2.29 0.00336416 2.72 0.01130384 3.15 0.03215678
2.30 0.00346697 2.73 0.01160379 3.16 0.03288412
2.31 0.00357260 2.74 0.01191063 3.17 0.03362497
2.32 0.00368111 2.75 0.01222447 3.18 0.03437950
2.33 0.00379256 2.76 0.01254546 3.19 0.03514789
2.34 0.00390703 2.77 0.01287372 3.20 0.03593032
2.35 0.00402459 2.78 0.01320938 3.21 0.03672696
2.36 0.00414530 2.79 0.01355258 3.22 0.03753798
2.37 0.00426924 2.80 0.01390345 3.23 0.03836357
2.38 0.00439649 2.81 0.01426212 3.24 0.03920390
2.39 0.00452711 2.82 0.01462873 3.25 0.04005916
2.40 0.00466119 2.83 0.01500342 3.26 0.04092951
2.41 0.00479880 2.84 0.01538634 3.27 0.04181514
2.42 0.00494002 2.85 0.01577761 3.28 0.04271622
2.43 0.00508493 2.86 0.01617738 3.29 0.04363294
2.44 0.00523361 2.87 0.01658581 3.30 0.04456546
2.45 0.00538615 2.88 0.01700302 3.31 0.04551398
2.46 0.00554262 2.89 0.01742918 3.32 0.04647866
2.47 0.00570313 2.90 0.01786442 3.33 0.04745968
2.48 0.00586774 2.91 0.01830890 3.34 0.04845723
2.49 0.00603656 2.92 0.01876277 3.35 0.04947147
2.50 0.00620967 2.93 0.01922617 3.36 0.05050258
2.51 0.00638715 2.94 0.01969927 3.37 0.05155075
2.52 0.00656912 2.95 0.02018222 3.38 0.05261614
2.53 0.00675565 2.96 0.02067516 3.39 0.05369893
2.54 0.00694685 2.97 0.02117827 3.40 0.05479929
2.55 0.00714281 2.98 0.02169169 3.41 0.05591740
2.56 0.00734363 2.99 0.02221559 3.42 0.05705343
2.57 0.00754941 3.00 0.02275013 3.43 0.05820756
2.58 0.00776025 3.01 0.02329547 3.44 0.05937994
2.59 0.00797626 3.02 0.02385176 3.45 0.06057076
2.60 0.00819754 3.03 0.02441919 3.46 0.06178018
2.61 0.00842419 3.04 0.02499790 3.47 0.06300836
2.62 0.00865632 3.05 0.02558806 3.48 0.06425549
2.63 0.00889404 3.06 0.02618985 3.49 0.06552171
2.64 0.00913747 3.07 0.02680342 3.50 0.06680720
2.65 0.00938671 3.08 0.02742895 3.51 0.06811212

 

Table A-8.  
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3.52 0.06943662 3.93 0.14230965 4.34 0.25462691
3.53 0.07078088 3.94 0.14457230 4.35 0.25784611
3.54 0.07214504 3.95 0.14685906 4.36 0.26108630
3.55 0.07352926 3.96 0.14916995 4.37 0.26434729
3.56 0.07493370 3.97 0.15150500 4.38 0.26762889
3.57 0.07635851 3.98 0.15386423 4.39 0.27093090
3.58 0.07780384 3.99 0.15624765 4.40 0.27425312
3.59 0.07926984 4.00 0.15865525 4.41 0.27759532
3.60 0.08075666 4.01 0.16108706 4.42 0.28095731
3.61 0.08226444 4.02 0.16354306 4.43 0.28433885
3.62 0.08379332 4.03 0.16602325 4.44 0.28773972
3.63 0.08534345 4.04 0.16852761 4.45 0.29115969
3.64 0.08691496 4.05 0.17105613 4.46 0.29459852
3.65 0.08850799 4.06 0.17360878 4.47 0.29805597
3.66 0.09012267 4.07 0.17618554 4.48 0.30153179
3.67 0.09175914 4.08 0.17878638 4.49 0.30502573
3.68 0.09341751 4.09 0.18141125 4.50 0.30853754
3.69 0.09509792 4.10 0.18406013 4.51 0.31206695
3.70 0.09680049 4.11 0.18673294 4.52 0.31561370
3.71 0.09852533 4.12 0.18942965 4.53 0.31917751
3.72 0.10027257 4.13 0.19215020 4.54 0.32275811
3.73 0.10204232 4.14 0.19489452 4.55 0.32635522
3.74 0.10383468 4.15 0.19766254 4.56 0.32996855
3.75 0.10564977 4.16 0.20045419 4.57 0.33359782
3.76 0.10748770 4.17 0.20326939 4.58 0.33724273
3.77 0.10934855 4.18 0.20610805 4.59 0.34090297
3.78 0.11123244 4.19 0.20897009 4.60 0.34457826
3.79 0.11313945 4.20 0.21185540 4.61 0.34826827
3.80 0.11506967 4.21 0.21476388 4.62 0.35197271
3.81 0.11702320 4.22 0.21769544 4.63 0.35569125
3.82 0.11900011 4.23 0.22064995 4.64 0.35942357
3.83 0.12100048 4.24 0.22362729 4.65 0.36316935
3.84 0.12302440 4.25 0.22662735 4.66 0.36692826
3.85 0.12507194 4.26 0.22965000 4.67 0.37069998
3.86 0.12714315 4.27 0.23269509 4.68 0.37448417
3.87 0.12923811 4.28 0.23576250 4.69 0.37828048
3.88 0.13135688 4.29 0.23885207 4.70 0.38208858
3.89 0.13349951 4.30 0.24196365 4.71 0.38590812
3.90 0.13566606 4.31 0.24509709 4.72 0.38973875
3.91 0.13785657 4.32 0.24825223 4.73 0.39358013
3.92 0.14007109 4.33 0.25142890 4.74 0.39743189

 

continued
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4.75 0.40129367 5.18 0.57142372 5.61 0.72906910
4.76 0.40516513 5.19 0.57534543 5.62 0.73237111
4.77 0.40904588 5.20 0.57925971 5.63 0.73565271
4.78 0.41293558 5.21 0.58316616 5.64 0.73891370
4.79 0.41683384 5.22 0.58706442 5.65 0.74215389
4.80 0.42074029 5.23 0.59095412 5.66 0.74537309
4.81 0.42465457 5.24 0.59483487 5.67 0.74857110
4.82 0.42857628 5.25 0.59870633 5.68 0.75174777
4.83 0.43250507 5.26 0.60256811 5.69 0.75490291
4.84 0.43644054 5.27 0.60641987 5.70 0.75803635
4.85 0.44038231 5.28 0.61026125 5.71 0.76114793
4.86 0.44433000 5.29 0.61409188 5.72 0.76423750
4.87 0.44828321 5.30 0.61791142 5.73 0.76730491
4.88 0.45224157 5.31 0.62171952 5.74 0.77035000
4.89 0.45620469 5.32 0.62551583 5.75 0.77337265
4.90 0.46017216 5.33 0.62930002 5.76 0.77637271
4.91 0.46414361 5.34 0.63307174 5.77 0.77935005
4.92 0.46811863 5.35 0.63683065 5.78 0.78230456
4.93 0.47209683 5.36 0.64057643 5.79 0.78523612
4.94 0.47607782 5.37 0.64403875 5.80 0.78814460
4.95 0.48006119 5.38 0.64802729 5.81 0.79102991
4.96 0.48404656 5.39 0.65173173 5.82 0.79389195
4.97 0.48803353 5.40 0.65542174 5.83 0.79673061
4.98 0.49202169 5.41 0.65909703 5.84 0.79954581
4.99 0.49601064 5.42 0.66275727 5.85 0.80233746
5.00 0.50000000 5.43 0.66640218 5.86 0.80510548
5.01 0.50398936 5.44 0.67003145 5.87 0.80784980
5.02 0.50797831 5.45 0.67364478 5.88 0.81057035
5.03 0.51196647 5.46 0.67724189 5.89 0.81326706
5.04 0.51595344 5.47 0.68082249 5.90 0.81593987
5.05 0.51993881 5.48 0.68438630 5.91 0.81858875
5.06 0.52392218 5.49 0.68793305 5.92 0.82121362
5.07 0.52790317 5.50 0.69146246 5.93 0.82381446
5.08 0.53188137 5.51 0.69497427 5.94 0.82639122
5.09 0.53585639 5.52 0.69846821 5.95 0.82894387
5.10 0.53982784 5.53 0.70194403 5.96 0.83147239
5.11 0.54379531 5.54 0.70540148 5.97 0.83397675
5.12 0.54775843 5.55 0.70884031 5.98 0.83645694
5.13 0.55171679 5.56 0.71226028 5.99 0.83891294
5.14 0.55567000 5.57 0.71566115 6.00 0.84134475
5.15 0.55961769 5.58 0.71904269 6.01 0.84375235
5.16 0.56355946 5.59 0.72240468 6.02 0.84613577
5.17 0.56749493 5.60 0.72574688 6.03 0.84849500
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6.04 0.85083005 6.46 0.92785496 6.88 0.96994596
6.05 0.85314094 6.47 0.92921912 6.89 0.97062102
6.06 0.85542770 6.48 0.93056338 6.90 0.97128344
6.07 0.85769035 6.49 0.93188788 6.91 0.97193339
6.08 0.85992891 6.50 0.93319280 6.92 0.97257105
6.09 0.86214343 6.51 0.93447829 6.93 0.97319658
6.10 0.86433394 6.52 0.93574451 6.94 0.97381016
6.11 0.86650049 6.53 0.93699164 6.95 0.97441194
6.12 0.86864312 6.54 0.93821982 6.96 0.97500210
6.13 0.87076189 6.55 0.93942924 6.97 0.97558081
6.14 0.87285685 6.56 0.94062006 6.98 0.97614824
6.15 0.87492806 6.57 0.94179244 6.99 0.97670453
6.16 0.87697560 6.58 0.94294657 7.00 0.97724987
6.17 0.87899952 6.59 0.94408260 7.01 0.97778441
6.18 0.88099989 6.60 0.94520071 7.02 0.97830831
6.19 0.88297680 6.61 0.94630107 7.03 0.97882173
6.20 0.88493033 6.62 0.94738386 7.04 0.97932484
6.21 0.88686055 6.63 0.94844925 7.05 0.97981778
6.22 0.88876756 6.64 0.94949742 7.06 0.98030073
6.23 0.89065145 6.65 0.95052853 7.07 0.98077383
6.24 0.89251230 6.66 0.95154277 7.08 0.98123723
6.25 0.89435023 6.67 0.95254032 7.09 0.98169110
6.26 0.89616532 6.68 0.95352134 7.10 0.98213558
6.27 0.89795768 6.69 0.95448602 7.11 0.98257082
6.28 0.89972743 6.70 0.95543454 7.12 0.98299698
6.29 0.90147467 6.71 0.95636706 7.13 0.98341419
6.30 0.90319952 6.72 0.95728878 7.14 0.98382262
6.31 0.90490208 6.73 0.95818486 7.15 0.98422239
6.32 0.90658249 6.74 0.95907049 7.16 0.98461367
6.33 0.90824086 6.75 0.95994084 7.17 0.98499658
6.34 0.90987733 6.76 0.96079610 7.18 0.98537127
6.35 0.91149201 6.77 0.96163643 7.19 0.98573788
6.36 0.91308504 6.78 0.96246202 7.20 0.98609655
6.37 0.91465655 6.79 0.96327304 7.21 0.98644742
6.38 0.91620668 6.80 0.96406968 7.22 0.98679062
6.39 0.91773556 6.81 0.96485211 7.23 0.98712628
6.40 0.91924334 6.82 0.96562050 7.24 0.98745454
6.41 0.92073016 6.83 0.96637503 7.25 0.98777553
6.42 0.92219616 6.84 0.96711588 7.26 0.98808937
6.43 0.92364149 6.85 0.96784323 7.27 0.98839621
6.44 0.92506630 6.86 0.96855724 7.28 0.98869616
6.45 0.92647074 6.87 0.96925809 7.29 0.98898934

 

continued

 

Table A-8.  

 

 (Continued) Probit Transformation

Probit Proportion Probit Proportion Probit Proportion

 

C0457_frame_Apx  Page 221  Thursday, May 18, 2000  11:45 PM



 

222 APPENDIX

 

7.30 0.98927589 7.73 0.99683328 8.16 0.99921115
7.31 0.98955592 7.74 0.99692804 8.17 0.99923781
7.32 0.98982956 7.75 0.99702024 8.18 0.99926362
7.33 0.99009692 7.76 0.99710993 8.19 0.99928864
7.34 0.99035813 7.77 0.99719719 8.20 0.99931286
7.35 0.99061329 7.78 0.99728206 8.21 0.99933633
7.36 0.99086253 7.79 0.99736460 8.22 0.99935905
7.37 0.99110596 7.80 0.99744487 8.23 0.99938105
7.38 0.99134368 7.81 0.99752293 8.24 0.99940235
7.39 0.99157581 7.82 0.99759882 8.25 0.99942297
7.40 0.99180246 7.83 0.99767260 8.26 0.99944294
7.41 0.99202374 7.84 0.99774432 8.27 0.99946226
7.42 0.99223975 7.85 0.99781404 8.28 0.99948096
7.43 0.99245059 7.86 0.99788179 8.29 0.99949906
7.44 0.99265637 7.87 0.99794764 8.30 0.99951658
7.45 0.99285719 7.88 0.99801162 8.31 0.99953352
7.46 0.99305315 7.89 0.99807379 8.32 0.99954991
7.47 0.99324435 7.90 0.99813419 8.33 0.99956577
7.48 0.99343088 7.91 0.99819286 8.34 0.99958111
7.49 0.99361285 7.92 0.99824984 8.35 0.99959594
7.50 0.99379033 7.93 0.99830519 8.36 0.99961029
7.51 0.99396344 7.94 0.99835894 8.37 0.99962416
7.52 0.99413226 7.95 0.99841113 8.38 0.99963757
7.53 0.99429687 7.96 0.99846180 8.39 0.99965054
7.54 0.99445738 7.97 0.99851100 8.40 0.99966307
7.55 0.99461385 7.98 0.99855876 8.41 0.99967519
7.56 0.99476639 7.99 0.99860511 8.42 0.99968689
7.57 0.99491507 8.00 0.99865010 8.43 0.99969821
7.58 0.99505998 8.01 0.99869376 8.44 0.99970914
7.59 0.99520120 8.02 0.99873613 8.45 0.99971971
7.60 0.99533881 8.03 0.99877723 8.46 0.99972991
7.61 0.99547289 8.04 0.99881711 8.47 0.99973977
7.62 0.95560351 8.05 0.99885579 8.48 0.99974929
7.63 0.99573076 8.06 0.99889332 8.49 0.99975849
7.64 0.99585470 8.07 0.99892971 8.50 0.99976737
7.65 0.99597541 8.08 0.99896500 8.51 0.99977595
7.66 0.99609297 8.09 0.99899922 8.52 0.99978423
7.67 0.99620744 8.10 0.99903240 8.53 0.99979222
7.68 0.99631889 8.11 0.99906456 8.54 0.99979994
7.69 0.99642740 8.12 0.99909574 8.55 0.99980738
7.70 0.99653303 8.13 0.99912597 8.56 0.99981457
7.71 0.99663584 8.14 0.99915526 8.57 0.99982151
7.72 0.99673590 8.15 0.99918365 8.58 0.99982820
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8.59 0.99983466 8.73 0.99990426 8.87 0.99994558
8.60 0.99984089 8.74 0.99990799 8.88 0.99994777
8.61 0.99984690 8.75 0.99991158 8.89 0.99994988
8.62 0.99985270 8.76 0.99991504 8.90 0.99995190
8.63 0.99985829 8.77 0.99991838 8.91 0.99995385
8.64 0.99986368 8.78 0.99992159 8.92 0.99995573
8.65 0.99986888 8.79 0.99992468 8.93 0.99995753
8.66 0.99987389 8.80 0.99992765 8.94 0.99995926
8.67 0.99987872 8.81 0.99993052 8.95 0.99996092
8.68 0.99988338 8.82 0.99993327 8.96 0.99996253
8.69 0.99988787 8.83 0.99993593 8.97 0.99996406
8.70 0.99989220 8.84 0.99993848 8.98 0.99996554
8.71 0.99989637 8.85 0.99994094 8.99 0.99996696
8.72 0.99990039 8.86 0.99994331 9.00 0.99996833

 

Prepared from a program written by J.D. McCary.
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Table A-9.  

 

 Variance Ratio

 

a

 

F

 

(95%)

 

b

 

n

 

1

 

n

 

2

 

1 2 3 4 5 6 8 12 24

 

∞

 

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3
2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40
12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71

26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
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F

 

(95%)

 

b

 

n

 

1

 

n

 

2

 

1 2 3 4 5 6 8 12 24

 

∞

 

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51
60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39
120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25

 

∞

 

3.84 2.99 2.60 2.37 2.21 2.10 1.94 1.75 1.52 1.00

 

a

 

 From Fisher, R. A. and Yates, F. (1963). Reprinted by permission of Addison Wesley Longman, Ltd.
and Pearson Education, Ltd. Used with permission.

 

b

 

 Five percent points of 

 

F.

 

 Lower 5% points are found by interchange of 

 

n

 

1 and 

 

n

 

2

 

 — that is, 

 

n

 

1

 

must always correspond with the greater mean square, where 

 

n

 

1

 

 and 

 

n

 

2

 

 are appropriate degrees
of freedom.

 

c

 

 One percent points of 

 

F

 

. Lower % points are found by interchange of 

 

n

 

1

 

 and 

 

n

 

2

 

 — that is, 

 

n

 

1

 

 must
always correspond with the greater mean square, where 

 

n

 

1

 

 and 

 

n

 

2

 

 are appropriate degrees of freedom.

 

F

 

(99%)

 

b

 

n

 

1

 

n

 

2

 

1 2 3 4 5 6 8 12 24

 

∞

 

1 4,052 4,999 5,403 5,625 5,764 5,859 5,982 6,106 6,234 6,366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12
4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02

6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91

11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36
13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16
14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65
18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

 

continued

 

Table A-9.  

 

 (Continued) Variance Ratio

 

a

 

C0457_frame_Apx  Page 225  Thursday, May 18, 2000  11:45 PM



 

226 APPENDIX

 

F

 

(99%)

 

b

 

n

 

1

 

n

 

2

 

1 2 3 4 5 6 8 12 24

 

∞

 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36
22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21
25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38

 

∞

 

6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00
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Table A-10.  

 

Critical Values of the 

 

q

 

 Distribution

 

α

 

 = 0.05

 

ν

 

w = 2 3 4 5 6 7 8 9 10
1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07
2 6.085 8.331 9.798 10.88 11.74 12.44 13.03 13.54 13.99
3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462
4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826
5 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.802 6.995

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493
7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.998 6.158
8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739
10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5,487
12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254
15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150
17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108
18 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071
19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915
30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824
40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735
60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560
∞ 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 3.474

ν w = 11 12 13 14 15 16 17 18 19
1 50.59 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83
2 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57
3 9.717 9.946 10.15 10.35 10.53 10.69 10.84 10.98 11.11
4 8.027 8.208 8.373 8.525 8.664 8.794 8.914 9.028 9.134
5 7.168 7.324 7.466 7.596 7.717 7.828 7.932 8.030 8.122

6 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508
7 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097
8 6.054 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.802

continued
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Table A-10.  (Continued) Critical Values of the q Distribution

ν w = 11 12 13 14 15 16 17 18 19
9 5.867 5.983 6.089 6.186 6.276 6.359 6.437 6.510 6.579
10 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405

11 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265
12 5.511 5.615 5.710 5.798 5.878 5.953 6.023 6.089 6.151
13 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055
14 5.364 5.463 5.554 5.637 5.714 5.786 5.852 5.915 5.974
15 5.306 5.404 5.493 5.574 5.649 5.720 5.785 5.846 5.904

16 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843
17 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790
18 5.174 5.267 5.352 5.429 5.501 5.568 5.630 5.688 5.743
19 5.140 5.231 5.315 5.391 5.462 5.528 5.589 5.647 5.701
20 5.108 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663

24 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545
30 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429
40 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313
60 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199

120 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.044 5.086
∞ 4.552 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974

α = 0.05

ν w = 20 22 24 26 28 30 32 34 36
1 59.56 60.91 62.12 63.22 64.23 65.15 66.01 66.81 67.56
2 16.77 17.13 17.45 17.75 18.02 18.27 18.50 18.72 18.92
3 11.24 11.47 11.68 11.87 12.05 12.21 12.36 12.50 12.63
4 9.233 9.418 9.584 9.736 9.875 10.00 10.12 10.23 10.34
5 8.208 8.368 8.512 8.643 8.764 8.875 8.979 9.075 9.165

6 7.587 7.730 7.861 7.979 8.088 8.189 8.283 8.370 8.452
7 7.170 7.303 7.423 7.533 7.634 7.728 7.814 7.895 7.972
8 6.870 6.995 7.109 7.212 7.307 7.395 7.477 7.554 7.625
9 6.644 6.763 6.871 6.970 7.061 7.145 7.222 7.295 7.363
10 6.467 6.582 6.686 6.781 6.868 6.948 7.023 7.093 7.159

11 6.326 6.436 6.536 6.628 6.712 6.790 6.863 6.930 6.994
12 6.209 6.317 6.414 6.503 6.585 6.600 6.731 6.796 6.858
13 6.112 6.217 6.312 6.398 6.478 6.551 6.620 6.684 6.744
14 6.029 6.132 6.224 6.309 6.387 6.459 6.526 6.588 6.647
15 5.958 6.059 6.149 6.233 6.309 6.379 6.445 6.506 6.564
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Table A-10.  (Continued) Critical Values of the q Distribution

α = 0.05

ν w = 20 22 24 26 28 30 32 34 36
16 5.897 5.995 6.084 6.166 6.241 6.310 6.374 6.434 6.491
17 5.842 5.940 6.027 6.107 6.181 6.249 6.313 6.372 6.427
18 5.794 5.890 5.977 6.055 6.128 6.195 6.258 6.316 6.371
19 5.752 5.846 5.932 6.009 6.081 6.147 6.209 6.267 6.321
20 5.714 5.807 5.891 5.968 6.039 6.104 6.165 6.222 6.275

24 5.594 5.683 5.764 5.838 5.906 5.968 6.027 6.081 6.132
30 5.475 5.561 5.638 5.709 5.774 5.833 5.889 5.941 5.990
40 5.358 5.439 5.513 5.581 5.642 5.700 5.753 5.803 5.849
60 5.241 5.319 5.389 5.453 5.512 5.566 5.617 5.664 5.708

120 5.126 5.200 5.266 5.327 5.382 5.434 5.481 5.526 5.568
∞ 5.012 5.081 5.144 5.201 5.253 5.301 5.346 5.388 5.427

ν w = 38 40 50 60 70 80 90 100
1 68.26 68.92 71.73 73.97 75.82 77.40 78.77 78.98
2 19.11 19.28 20.05 20.66 21.16 21.59 21.96 22.29
3 12.75 12.87 13.36 13.76 14.08 14.36 14.61 14.82
4 10.44 10.53 10.93 11.24 11.51 11.73 11.92 12.09
5 9.250 9.330 9.674 9.949 10.18 10.38 10.54 10.69

6 8.529 8.601 8.913 9.163 9.370 9.548 9.702 9.839
7 8.043 8.110 8.400 8.632 8.824 8.989 9.133 9.261
8 7.693 7.756 8.029 8.248 8.430 8.586 8.722 8.843
9 7.428 7.488 7.749 7.958 8.132 8.281 8.410 8.526
10 7.220 7.279 7.529 7.730 7.897 8.041 8.166 8.276

11 7.053 7.110 7.352 7.546 7.708 7.847 7.968 8.075
12 6.916 6.970 7.205 7.394 7.552 7.687 7.804 7.909
13 6.800 6.854 7.083 7.267 7.421 7.552 7.667 7.769
14 6.702 6.754 6.979 7.159 7.309 7.438 7.550 7.650
15 6.618 6.669 6.888 7.065 7.212 7.339 7.449 7.546

16 6.544 6.594 6.810 6.984 7.128 7.252 7.360 7.457
17 6.479 6.529 6.741 6.912 7.054 7.176 7.283 7.377
18 6.422 6.471 6.680 6.848 6.989 7.109 7.213 7.307
19 6.371 6.419 6.626 6.792 6.930 7.048 7.152 7.244
20 6.325 6.373 6.576 6.740 6.877 6.994 7.097 7.187

continued
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Table A-10.  (Continued) Critical Values of the q Distribution

ν w = 38 40 50 60 70 80 90 100
24 6.181 6.226 6.421 6.579 6.710 6.822 6.920 7.008
30 6.037 6.080 6.267 6.417 6.543 6.650 6.744 6.827
40 5.893 5.934 6.112 6.255 6.375 6.477 6.566 6.645
60 5.750 5.789 5.958 6.093 6.206 6.303 6.387 6.462

120 5.607 5.644 5.802 5.929 6.035 6.126 6.205 6.275
∞ 5.463 5.498 5.646 5.764 5.863 5.947 6.020 6.085

α = 0.01

ν w = 2 3 4 5 6 7 8 9 10
1 90.03 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6
2 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69
3 8.261 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69
4 6.512 8.120 9.173 9.958 10.58 11.10 11.55 11.93 12.27
5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.972 10.24

6 5.243 6.331 7.033 7.556 7.973 8.318 8.613 8.869 9.097
7 4.949 5.919 6.543 7.005 7.373 7.679 7.939 8.166 8.368
8 4.746 5.635 6.204 6.625 6.960 7.237 7.474 7,681 7.863
9 4.596 5.428 5.957 6.348 6.658 6.915 7.134 7.325 7.495
10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.055 7.213

11 4.392 5.146 5.621 5.970 6.247 6.476 6.672 6.842 6.992
12 4.320 5.046 5.502 5.836 6.101 6.321 6.507 6.670 6.814
13 4.260 4.964 5.404 5.727 5.981 6.192 6.372 6.528 6.667
14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543
15 4.168 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.439

16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.349
17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270
18 4.071 4.703 5.094 5.379 5.603 5.788 5.944 6.081 6.201
19 4.046 4.670 5.054 5.334 5.554 5.735 5.889 6.022 6.141
20 4.024 4.639 5.018 5.294 5.510 5.688 5.839 5.970 6.087

24 3.956 4.546 4.907 5.168 5.374 5.542 5.685 5.809 5.919
30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756
40 3.825 4.367 4.696 4.931 5.114 5.265 5.392 5.502 5.559
60 3.762 4.282 4.595 4,818 4.991 5.133 5.253 5.356 5.447

120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299
∞ 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157
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Table A-10.  (Continued) Critical Values of the q Distribution

ν w = 11 12 13 14 15 16 17 18 19
1 253.2 260.0 266.2 271.8 277.0 281.8 286.3 290.4 294.3
2 32.59 33.40 34.13 34.81 35.43 36.00 36.53 37.03 37.50
3 17.13 17.53 17.89 18.22 18.52 18.81 19.07 19.32 19.55
4 12.57 12.84 13.09 13.32 13.53 13.73 13.91 14.08 14.24
5 10.48 10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81

6 9.301 9.485 9.653 9.808 9.951 10.08 10.21 10.32 10.43
7 8.548 8.711 8.860 8.997 9.124 9.242 9.353 9.456 9.554
8 8.027 8.176 8.312 8.436 8.552 8.659 8.760 8.854 8.943
9 7.647 7.784 7.910 8.025 8.132 8.232 8.325 8.412 8.495
10 7.356 7.485 7.603 7.712 7.812 7.906 7.993 8.076 8.153

11 7.128 7.250 7.362 7.465 7.560 7.649 7.732 7.809 7.883
12 6.943 7.060 7.167 7.265 7.356 7.441 7.520 7.594 7.665
13 6.791 6.903 7.006 7.101 7.188 7.269 7.345 7.417 7.485
14 6.664 6.772 6.871 6.962 7.047 7.126 7.199 7.268 7.333
15 6.555 6.660 6.757 6.845 6.927 7.003 7.074 7.142 7.204

16 6.462 6.564 6.658 6.744 6.823 6.898 6.967 7.032 7.093
17 6.381 6.480 6.572 6.656 6.734 6.806 6.873 6.937 6.997
18 6.310 6.407 6.497 6.579 6.655 6.725 6.792 6.854 6.912
19 6.247 6.342 6.430 6.510 6.585 6.654 6.719 6.780 6.837
20 6.191 6.285 6.371 6.450 6.523 6.591 6.654 6.714 6.771

24 6.017 6.106 6.186 6.261 6.330 6.394 6.453 6.510 6.563
30 5.849 5.932 6.008 6.078 6.143 6.203 6.259 6.311 6.361
40 5.686 5.764 5.835 5.900 5.961 6.017 6.069 6.119 6.165
60 5.528 5.601 5.667 5.728 5.785 5.837 5.886 5.931 5.974

120 5.375 5.443 5.505 5.562 5.614 5.662 5.708 5.750 5.790
∞ 5.227 5.290 5.348 5.400 5.448 5.493 5.535 5.574 5.611

α = 0.01

ν w = 20 22 24 26 28 30 32 34 36
1 298.0 304.7 310.8 316.3 321.3 326.0 330.3 334.3 338.0
2 37.95 38.76 39.49 40.15 40.76 41.32 41.84 42.33 42.78
3 19.77 20.17 20.53 20.86 21.16 21.44 21.70 21.95 22.17
4 14.40 14.68 14.93 15.16 15.37 15.57 15.75 15.92 16.08
5 11.93 12.16 12.36 12.54 12.71 12.87 13.02 13.15 13.28

continued
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Table A-10.  (Continued) Critical Values of the q Distribution

ν w = 20 22 24 26 28 30 32 34 36
6 10.54 10.73 10.91 11.06 11.21 11.34 11.47 11.58 11.69
7 9.646 9.815 9.970 10.11 10.24 10.36 10.47 10.58 10.67
8 9.027 9.182 9.322 9.450 9.569 9.678 9.779 9.874 9.964
9 8.573 8.717 8.847 8.966 9.075 9.177 9.271 9.360 9.443
10 8.226 8.361 8.483 8.595 8.698 8.794 8.883 8.966 9.044

11 7.952 8.080 8.196 8.303 8.400 8.491 8.575 8.654 8.728
12 7.731 7.853 7.964 8.066 8.159 8.246 8.327 8.402 8.473
13 7.548 7.665 7.772 7.870 7.960 8.043 8.121 8.193 8.262
14 7.395 7.508 7.611 7.705 7.792 7.873 7.948 8.018 8.084
15 7.264 7.374 7.474 7.566 7.650 7.728 7.800 7.869 7.932

16 7.152 7.258 7.356 7.445 7.527 7.602 7.673 7.339 7.802
17 7.053 7.158 7.253 7.340 7.420 7.493 7.563 7.627 7.687
18 6.968 7.070 7.163 7.247 7.325 7.398 7.465 7.528 7.587
19 6.891 6.992 7.082 7.166 7.242 7.313 7.379 7.440 7.498
20 6.823 6.922 7.011 7.092 7.168 7.237 7.302 7.362 7.419

24 6.612 6.705 6.789 6.865 6.936 7.001 7.062 7.119 7.173
30 6.407 6.494 6.572 6.644 6.710 6.772 6.828 6.881 6.932
40 6.209 6.289 6.362 6.429 6.490 6.547 6.600 6.650 6.697
60 6.015 6.090 6.158 6.220 6.277 6.330 6.378 6.424 6.467

120 5.827 5.897 5.959 6.016 6.069 6.117 6.162 6.204 6.244
∞ 5.645 5.709 5.766 5.818 5.866 5.911 5.952 5.990 6.026

ν w = 38 40 50 60 70 80 90 100
1 341.5 344.8 358.9 370.1 379.4 387.3 394.1 400.1
2 43.21 43.61 45.53 46.70 47.83 48.80 49.64 50.38
3 22.39 22.59 23.45 24.13 24.71 25.19 25.62 25.99
4 16.23 16.37 16.98 17.46 17.86 18.02 18.50 18.77
5 13.40 13.52 14.00 14.39 14.72 14.99 15.23 15.45

6 11.80 11.90 12.31 12.65 12.92 13.16 13.37 13.55
7 10.77 10.85 11.23 11.52 11.77 11.99 12.17 12.34
8 10.05 10.13 10.47 10.75 10.97 11.17 11.34 11.49
9 9.521 9.594 9.912 10.17 10.38 10.57 10.73 10.87
10 9.117 9.187 9.486 9.726 9.927 10.10 10.25 10.39
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Table A-10.  (Continued) Critical Values of the q Distribution

ν w = 38 40 50 60 70 80 90 100
11 8.798 8.864 9.148 9.377 9.568 9.732 9.875 10.00
12 8.539 8.603 8.875 9.094 9.277 9.434 9.571 9.693
13 8.326 8.387 8.648 8.859 9.035 9.187 9.318 9.436
14 8.146 8.204 8.457 8.661 8.832 8.978 9.106 9.219
15 7.992 8.049 8.295 8.492 8.658 8.800 8.924 9.035

16 7.860 7.916 8.154 8.347 8.507 8.646 8.767 8.874
17 7.745 7.799 8.031 8.219 8.377 8.511 8.630 8.735
18 7.643 7.696 7.924 8.107 8.261 8.393 8.508 8.611
19 7.553 7.605 7.828 8.008 8.159 8.288 8.401 8.502
20 7.473 7.523 7.742 7.919 8.067 8.194 8.305 8.404

24 7.223 7.270 7.476 7.642 7.780 7.900 8.004 8.097
30 6.978 7.023 7.215 7.370 7.500 7.611 7.709 7.796
40 6.740 6.782 6.960 7.104 7.225 7.328 7.419 7.500
60 6.507 6.546 6.710 6.843 6.954 7.050 7.133 7.207

120 6.281 6.316 6.467 6.588 6.689 6.776 6.852 6.919
∞ 6.060 6.092 6.228 6.338 6.429 6.507 6.575 6.636

Reprinted from Tallarida, R.J. and Murray, R.B., Manual of Pharmacologic Calculations with Computer
Programs, 2nd ed 1987. By permission of Springer-Verlag, New York.
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Table A-11B.  Critical Values of U in the Mann-Whitney Test: Critical Values 
of U for a One-Tailed Test at α = 0.001 or for a Two-Tailed Test at α = 0.002

[n2]
n1 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3 0 0 0 0
4 0 0 0 1 1 1 2 2 3 3 3
5 1 1 2 2 3 3 4 5 5 6 7 7
6 2 3 4 4 5 6 7 8 9 10 11 12
7 3 5 6 7 8 9 10 11 13 14 15 16
8 5 6 8 9 11 12 14 15 17 18 20 21
9 7 8 10 12 14 15 17 19 21 23 25 26

10 8 10 12 14 17 19 21 23 25 27 29 32
11 10 12 15 17 20 22 24 27 29 32 34 37
12 12 14 17 20 23 25 28 31 34 37 40 42
13 14 17 20 23 26 29 32 35 38 42 45 48
14 15 19 22 25 29 32 36 39 43 46 50 54
15 17 21 24 28 32 36 40 43 47 51 55 59
16 19 23 27 31 35 39 43 48 52 56 60 65
17 21 25 29 34 38 43 47 52 57 61 66 70
18 23 27 32 37 42 46 51 56 61 66 71 76
19 25 29 34 40 45 50 55 60 66 71 77 82
20 26 32 37 42 48 54 59 65 70 76 82 88

Critical Values of U for a One-Tailed Test at α = 0.01 or for a Two-Tailed Test 
at α = 0.02

[n2]
n1 9 10 11 12 13 14 15 16 17 18 19 20
1
2 0 0 0 0 0 0 1 1
3 1 1 1 2 2 2 3 3 4 4 4 5
4 3 3 4 5 5 6 7 7 8 9 9 10
5 5 6 7 8 9 10 11 12 13 14 15 16
6 7 8 9 11 12 13 15 16 18 19 20 22
7 9 11 12 14 16 17 19 21 23 24 26 28
8 11 13 15 17 20 22 24 26 28 30 32 34
9 14 16 18 21 23 26 28 31 33 36 38 40

10 16 19 22 24 27 30 33 36 38 41 44 47
11 18 22 25 28 31 34 37 41 44 47 50 53
12 21 24 28 31 35 38 42 46 49 53 56 60

continued
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Table A-11B.  (Continued) Critical Values of U for a One-Tailed Test at α = 
0.01 or for a Two-Tailed Test at α = 0.02

[n2]
n1 9 10 11 12 13 14 15 16 17 18 19 20
13 23 27 31 35 39 43 47 51 55 59 63 67
14 26 30 34 38 43 47 51 56 60 65 69 73
15 28 33 37 42 47 51 56 61 66 70 75 80
16 31 36 41 46 51 56 61 66 71 76 82 87
17 33 38 44 49 55 60 66 71 77 82 88 93
18 36 41 47 53 59 65 70 76 82 88 94 100
19 38 44 50 56 63 69 75 82 88 94 101 107
20 40 47 53 60 67 73 80 87 93 100 107 114

Critical Values of U for a One-Tailed Test at α = 0.025 or for a Two-Tailed Test 
at α = 0.05

1
2 0 0 0 1 1 1 1 1 2 2 2 2
3 2 3 3 4 4 5 5 6 6 7 7 8
4 4 5 6 7 8 9 10 11 11 12 13 13
5 7 8 9 11 12 13 14 15 17 18 19 20
6 10 11 13 14 16 17 19 21 22 24 25 27
7 12 14 16 18 20 22 24 26 28 30 32 34
8 15 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48

10 20 23 26 29 33 36 39 42 45 48 52 55
11 23 26 30 33 37 40 44 47 51 55 58 62
12 26 29 33 37 41 45 49 53 57 61 65 69
13 28 33 37 41 45 50 54 59 63 67 72 76
14 31 36 40 45 50 55 59 64 67 74 78 83
15 34 39 44 49 54 59 64 70 75 80 85 90
16 37 42 47 53 59 64 70 75 81 86 92 98
17 39 45 51 57 63 67 75 81 87 93 99 105
18 42 48 55 61 67 74 80 86 93 99 106 112
19 45 52 58 65 72 78 85 92 99 106 113 119
20 48 55 62 69 76 83 90 98 105 112 119 127

Critical Values of U for a One-Tailed Test at α = 0.05 or for a Two-Tailed Test 
at α = 0.10

[n1]
n2 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0
2 1 1 1 2 2 2 3 3 3 4 4 4
3 3 4 5 5 6 7 7 8 9 9 10 11
4 6 7 8 9 10 11 12 14 15 16 17 18
5 9 11 12 13 15 16 18 19 20 22 23 25
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Table A-11B.  (Continued) Critical Values of U for a One-Tailed Test at α = 
0.05 or for a Two-Tailed Test at α = 0.10

[n1]
n2 9 10 11 12 13 14 15 16 17 18 19 20
6 12 14 16 17 19 21 23 25 26 28 30 32
7 15 17 19 21 24 26 28 30 33 35 37 39
8 18 20 23 26 28 31 33 36 39 41 44 47
9 21 24 27 30 33 36 39 42 45 48 51 54

10 24 27 31 34 37 41 44 48 51 55 58 62
11 27 31 34 38 42 46 50 54 57 61 65 69
12 30 34 38 42 47 51 55 60 64 68 72 77
13 33 37 42 47 51 56 61 65 70 75 80 84
14 36 41 46 51 56 61 66 71 77 82 87 92
15 39 44 50 55 61 66 72 77 83 88 94 100
16 42 48 54 60 65 71 77 83 89 95 101 107
17 45 51 57 64 70 77 83 89 96 102 109 115
18 48 55 61 68 75 82 88 95 102 109 116 123
19 51 58 65 72 80 87 94 101 109 116 123 130
20 54 62 69 77 84 92 100 107 115 123 130 138
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